Gottlieb et al. BMC Bioinformatics 2010, 11:300
http://www.biomedcentral.com/1471-2105/11/300

BMC
Bioinformatics

RESEARCH ARTICLE Open Access

UFFizi: a generic platform for ranking informative
features

Assaf Gottlieb*, Roy Varshavsky?, Michal Linial® and David Horn!

Abstract

Background: Feature selection is an important pre-processing task in the analysis of complex data. Selecting an
appropriate subset of features can improve classification or clustering and lead to better understanding of the data. An
important example is that of finding an informative group of genes out of thousands that appear in gene-expression
analysis. Numerous supervised methods have been suggested but only a few unsupervised ones exist. Unsupervised
Feature Filtering (UFF) is such a method, based on an entropy measure of Singular Value Decomposition (SVD), ranking
features and selecting a group of preferred ones.

Results: We analyze the statistical properties of UFF and present an efficient approximation for the calculation of its

entropy measure. This allows us to develop a web-tool that implements the UFF algorithm. We propose novel criteria
to indicate whether a considered dataset is amenable to feature selection by UFF. Relying on formalism similar to UFF

framework is also implemented as a web-tool.

The web-tool is available at: http://adios.tau.ac.il/UFFizi

we propose also an Unsupervised Detection of Outliers (UDO) method, providing a novel definition of outliers and
producing a measure to rank the "outlier-degree" of an instance.

Our methods are demonstrated on gene and microRNA expression datasets, covering viral infection disease and
cancer. We apply UFFizi to select genes from these datasets and discuss their biological and medical relevance.

Conclusions: Statistical properties extracted from the UFF algorithm can distinguish selected features from others.
UFFizi is a framework that is based on the UFF algorithm and it is applicable for a wide range of diseases. The

Background

The present information age is characterized by expo-
nentially increasing data, e.g. in numbers of documents
and in records of various kinds or biological data.
Improved experimental techniques, such as high
throughput methods in biology, allow for the measure-
ment of thousands of features (genes) for each instance
(single gene-expression microarray per patient). This
leads to a flood of data, whose analysis calls for prepro-
cessing in order to reduce noise and enhance the signal
through dimensionality reduction. This is important for
both enabling the application of various categorization
techniques and allowing for biological inference from the
data.
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Dimensionality reduction algorithms are usually cate-
gorized as extraction or selection methods. Feature
extraction transforms all features into a lower dimension
space, while feature selection selects a subset of the origi-
nal features. A benefit of the latter is the ability to attach
meaning to the selected features. This is important both
for exploration of the biological reality and for preparing
a more concise experimental layout. The method to be
studied here is categorized as feature selection.

It is customary to divide feature selection methods into
two types: supervised, in which a target function is
known and one tries to rank features or optimize some
objective function relative to it, and unsupervised, in
which one has no additional information regarding the
instances. In practice, the abundance of unlabeled data or
data that might posses multiple possible labeling, calls for
an unsupervised approach.
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While supervised feature selection methods are abun-
dant [1], unsupervised methods are scarce, most of them
tested on labeled data [2]. Nevertheless, unsupervised
feature selection methods may play an important role
even in supervised cases. Being unbiased by the labeling
of the instances, unsupervised feature selection can be
used as a preprocessing tool for supervised learning algo-
rithms providing reduction of overfitting (for a compre-
hensive review we refer to [2]). As described in [3],
feature selection from unsupervised data can be applied
at three different stages: before, during and after cluster-
ing. Methods that operate before clustering are referred
to as filter methods. Common methods of unsupervised
feature filtering rank features according to either (1) their
non-zero loadings in the first principal components [4],
(2) their normalized range,(3) entropy or (4) variance of
the feature as calculated from its values on all instances
[2,5]. All these methods estimate the importance of each
feature independently of all others.

Our Unsupervised Feature Filtering (UFF) algorithm
[6] differs from aforementioned methods in that it ranks
features based on a criterion that involves all other fea-
tures. It also provides a natural cutoff for selecting the
number of features. We have also previously showed that
UFF also selects stable feature sets under perturbations
[7]. Our aim in this article is to introduce a new frame-
work, based on the UFF. We (1) explore the properties of
UFF and the features it selects, (2) introduce a faster
approximate version, (3) suggest indicators for the ability
to apply the method to certain datasets and (4) extend it
by proposing a method called Unsupervised Instance
Selection (UIS) for inspecting and eliminating potential
outlier instances. A faster version of UFF, together with
identification of indicators for the ability to apply the
method to different datasets enables the implementation
of UFF as a web-tool. The performance of the UFF is
shown to surpass commonly used unsupervised filtering
methods (e.g. variance, feature entropy) for the datasets
used in this study. These findings are consistent with the
findings reported in [6].

In the Results section, we explore the properties of UFF
on example datasets, introduce a faster algorithm for UFF
and analyze which datasets can be evaluated successfully
by the UFF method. We then describe the UDO method
and provide biological insights on gene and microRNA
expression from a wide range of diseased states.

Results and Discussion

Analyzing and Improving UFF

In this section, we present analysis of UFF selected fea-
tures and provide improvements and extensions to the
algorithm. The improvements include (i) Faster version
of the algorithm and (ii) Addition of a criterion for assess-
ing the quality of the results provided by UFE. We further
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extend the algorithm by introducing the Unsupervised
Detection of Outliers (UDO).

Properties of selected features

We investigated the general properties of features
selected by UFF, by studying their statistical properties.
We demonstrate these properties on the melanoma gene
expression dataset (see Methods). Figure 1 displays the
mean (A) and variance (B) of all features (as measured on
all instances), for the melanoma dataset. The features are
ordered by their UFF rank, which is displayed in Figure 2.
Dotted lines, denoting the mean (score) + one standard
deviation, supply the separation between the positive
(group 1), neutral (group 2) and negative (group 3) score
features (Methods). Most features belonging to the sec-
ond (neutral) group possess low mean and variance. It is
evident that both the positive score features and the neg-
ative score features have high mean (in general high abso-
lute values of mean) and variance. This explains a major
difference between UFF and the Variance Selection
method: while UFF selects features from group 1, Vari-
ance Selection chooses features from both groups 1 and
3. It should be noted that if datasets of this nature (e.g.
gene-expression) undergo standardizing operations, UFF
selection may be meaningless.

An important difference between the positive (group 1)
and negative (group 3) features is displayed in Figure 3.
This figure shows the projection of typical positive and
negative features (A and B, respectively) on the SVD
eigenvectors (or principal components, PCs) of the origi-
nal data matrix. Positive score features have more evenly
distributed projections on the PCs relative to the negative
score features, which project most strongly on the first
PC. It is the latter property that explains the negative
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Figure 1 First moments of the melanoma dataset genes. (A) Mean
and (B) variance of the melanoma dataset (X axis refers to genes or-
dered according to UFF score).
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Figure 2 UFF Scores of the melanoma dataset genes. UFF Scores of
the 22283 genes of the melanoma dataset, ordered by decreasing
scores. Dashed lines represent mean(score) + std(score).

score: by preferring the leading principal component
these features decrease SVD-entropy. We present in the
Appendix a proof showing that when a feature lies only
on the first PC, it is bound to have a negative score.

The differences in projection on the principal compo-
nents between the positive and negative scored features,
may provide an explanation for the difference between
our approach and the sparse-PCA approach [4]. The lat-
ter selects genes that correlate mainly with the leading
PC, while UFF prefers a wider distribution.

Finally we observe that negative score features have
skewness close to zero and kurtosis close to three. Hence
we conclude that negative score features possess wide
Gaussian distributions, which can be regarded as baring
no indicative signal over the instances. These noisy fea-
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Figure 3 Projection of features on the principal components. Pro-
jection on the 70 principal components of a typical - (A) positive score
and (B) negative score - feature from the melanoma dataset. Note the
outstanding value (approximately -5) of PC1 in B.
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tures are discarded by UFF but selected by Variance
Selection, which explains their inferior results demon-
strated in [6]

Fast UFF

In order to obtain the UFF ranking of features one per-
forms M times the SVD evaluation, where M is the num-
ber of features. This has the complexity of
O(M*min(N,M)3) (see [6]). The data matrix A of M fea-
tures by N instances is often represented by its SVD
transformation A = USVT, where U and V are unitary and
S is the diagonal matrix of the singular values. The associ-
ated Gram matrix C = ATA, of size NxN, can then be writ-
ten as C = VS2VT, with eigenvalues that are the squares of
the singular values of A and thus can be used directly to
calculate the SVD-entropy. Removing a row from A, i.e.
removing the feature f* of length N, the Gram matrix C
changes to

C—)C—(fk)TkaC' (1)

We assume that removal of one feature can be regarded
as a small perturbation, an assumption which generally
holds for a large enough number of features. The singular
values can be approximated by using the eigenvectors of
the Gram matrix C on the new matrix C" Plugging into
equation (1), the changed SVD entropy is:

H(VEVT)=H(vevT ) =H(s*-(f)*) ()

An extended formulation is given in the Appendix.

This approximation reduces the complexity to
O(M*N?) leading to considerable faster calculations.
Table 1 compares the running times of fast UFF vs. regu-
lar UFF for three of the datasets used in this paper. As can
be seen, the reduction in running time is substantial,
allowing for an online computation.

The quality of the approximation lies in the assumption
of small perturbations. In order to test whether this
assumption holds for a given dataset, we inspect the SVD
entropy of the matrix, defined to lie between 0 and 1 (see
Methods). For most data-sets that we studied it is smaller
than 0.1. Such a small value of the entropy guarantees
that only a few eigenvalues (principal components) are of
importance, and the removal of a single feature is indeed
a small perturbation assuring the validity of the approxi-
mation (equation 2). In two of the studied datasets (GBM
and OV microRNA) the SVD entropy is large (0.59 and
0.34 correspondingly), putting the approximation (equa-
tion 2) in doubt. In both cases one should therefore resort
to the regular UFF calculation to obtain reliable results

Fast UFF allows for the analysis of much larger datasets.
Moreover it enables incorporating this algorithm in a
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Table 1: Comparison of running time between regular and fast UFF
Dataset Regular UFF Matlab Fast UFF Matlab Regular UFF C++ Fast UFF C++
Melanoma Size = [69 x 22283] 153 0.76 94.6 0.5
HIV Size = [40 x 22283] 54 0.63 26.7 0.19
Hepatitis C Size = [78 x 54675] 453 1.9 300.2 1.5

Running was performed both on Matlab and using a compiled C++ executable. All runs were performed on a single computer. Time is
specified in seconds (Difference in running time of Matlab and C++ UFF implementation is due to difference in SVD calculation times. C++

implementation uses external linear algebra package - Lapack++).

web-based tool. Computationally, it allows for a distrib-
uted evaluation of UFF scores, once the eigenvectors of
the Gram matrix C are obtained. The calculation of the
SVD entropy of the matrix is incorporated into the
UFFizi web tool, initiating a warning when the results of
the fast UFF might deviate substantially from the regular
UFFE.

When is UFF applicable
While UFF works very well on many datasets, including
most gene-expression data we have analyzed, we have
found datasets where selection according to UFF is not
effective. Figure 4 presents such an example using a data-
set of pre-selected cell-cycle regulated genes. On such a
dataset, UFF did not lead to improved clustering. We
note that the distribution of score values in Figure 4 is
somewhat different from Figure 2. In particular, group 2
features display large variance among their scores.
Working with more than twenty datasets from different
domains, we have found measures that allow for separa-
tion between datasets on which UFF is effective from
datasets in which it is not. One such measure is the nor-
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Figure 4 UFF scores for a non-applicable dataset. UFF Scores of the
Spellman cell-cycle dataset, ordered by decreasing UFF score.

malized entropy of the squares of UFF scores. This, as
well as another measure, is presented in the supplemen-
tary appendix. They allow for a prior estimate on whether
UFF selected features should be used. These measures,
formulated in the supplementary appendix, are incorpo-
rated into our web-tool, providing a confidence level for
relying on UFF results.

Unsupervised Detection of Outliers (UDO)

Outliers are typically defined as instances that differ sig-
nificantly from other instances in the data (for extensive
surveys, see [8,9]). Detecting such outlier instances may
be desirable in certain cases, e.g. when there is a suspi-
cion of faulty or unreliable measurements or for detecting
rare events. A multitude of methods for unsupervised
outlier detection have been proposed. Most relate to one
of two approaches: (1) model based, in which a model is
fit to the data and outliers are the ones deviating from the
model [10,11], (2) Distance-based methods, which find
instances lying far from all instances, nearest instances,
or nearby clusters [12-18]. We present here an alternative
definition and a method to detect such outliers, based on
the UFF framework.

The data-matrix A contains information on instances
in terms of features and features in terms of instances,
and the singular values are common to both. One may
therefore consider a 'leave-one-out' measure applied to
instances. This is the Unsupervised Detection of Outliers
(UDO) method, to be studied here. UDO identifies
instances that, when removed, decrease the entropy of
the dataset and thus provide a more homogeneous data-
set. Recognizing these entropy-increasing instances as
outliers provides a natural definition for an "outlier-
degree". UDO attaches to each instance the amount of
decrease of the SVD entropy, which is considered the
global measure of the "outlier-degree" of each instance in
the dataset. As in the UFF method, a threshold of one
standard deviation (std) above the mean may be applied
to assess the number of such outliers. UDO is a data-
driven method, making no prior assumption regarding
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the distribution of the data such as model-based meth-
ods. It is not restricted by small sample size datasets
which prohibit creation of valid distribution assessments.
It is also different from distance-based outlier detection
schemes in that it assesses the influence of instance
removal on the entire dataset rather than the mere loca-
tion in feature space of the instance relative to other
instances. In contrast to the Donoho-Stanhel estimator
[12], which assesses the "outlier-degree" of an instance
relative to one selected direction in feature space, UDO
estimates it on all eigenvectors at once. UDO in this sense
emphasizes directions along which other instances are
relatively comparable. We note that in datasets of rela-
tively low SVD entropy, the correlation between the UDO
ranking and the popular outlier detection method of the
kth-NN ranking [16] is relatively high (0.61 and 0.82 for
the melanoma and HIV datasets respectively, k = 5). This
can be explained by noting that removal of an instance in
such datasets does not alter the leading eigenvectors sub-
stantially and UDO thus selects the high-entropy
instances that reside mainly farthest along these eigen-
vectors. In high SVD entropy datasets (e.g. the two
microRNA datasets in this paper), the correlation
between the two different methods is essentially zero.

Since outlier defining criterion and the methods imple-
menting them are intertwined, evaluation of each method
turns often into subjective inspection of the outliers. We
note that in the HIV dataset for which we have some clin-
ical information, the first 4 selected instances (out of 5
selected by UDO) are samples of two individuals (con-
taining both CD4+ and CD8+ T cells). The two leading
outlier instances belong to the same individual, possess-
ing an HIV infection at a very preliminary stage (~1
month), possibly explaining high divergence of measure-
ments from individuals with longer periods of HIV infec-
tion.

Selected Datasets

In this section we present novel results obtained by
applying UFF to gene-expression and microRNA
(miRNA) expression datasets.

Melanoma - UFF selected genes

The melanoma dataset is used for demonstrating the dif-
ferent traits of UFF. Running UFF on this dataset, we
obtain 231 genes. The top ranked genes include Stratifin,
Keratin 14, Keratin 1 and Loricrin, mutations in which
are related to skin cancer and other skin diseases [19-22].
Enrichment analysis includes terms having Bonferroni
score < 0.05. GO Enrichment analysis of the selected
genes includes functions of biological processes such as
ectoderm and epidermis development, homophilic cell
adhesion, keratinocyte differentiation and melanin bio-
synthetic process. Cellular compartments enrichment
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includes intermediate filament, extracellular region and
melanosome. Interestingly, GO molecular function
enrichment show various metal ion binding, including
copper, cadmium and calcium, all having relations to the
tumor suppressor protein p53 [23-25]. Enriched path-
ways include cell communication, antigen processing and
presentation and also breast cancer estrogen signaling.
Human phenotype analysis reveals enrichment for pal-
moplantar hyperkeratosis, keratinization, skin and integ-
ument abnormalities. The list of UFF selected genes is
provided in Additional file 1, Table S1. The full list of GO
enrichment terms is provided in Additional file 2, Table
S1.

Talantov, et al. (2005) performed clustering analysis on
this dataset, using a filtered list of 15,795 genes. They did
not obtain perfect separation between melanoma and
benign tumors or normal tissues (obtaining Jaccard score
[26] of 0.74). Using UFF selected genes and the Quantum
Clustering algorithm [27], we were able to correctly split
melanoma from benign tissues, while identifying two
clusters in the melanoma samples similar to the ones
identified by [28] (Jaccard score of 0.85)32 of UFF
selected genes appear also in the 439 differentially
expressed genes of [28] (p-value = e12) and 10 out of 33
differentially expressed genes with high fold change (p-
value < e-12).

Figure 5 compares the clustering results in terms of Jac-
card score using UFF selected genes for different thresh-
olds, with genes selected using variance, feature entropy
and random selection and using all the genes (see Meth-
ods). It is evident that UFF features provide better clus-
tering results than either selection method or compared
to using all the genes for all thresholds (with an exception
for the top 10 genes, where variance selection has slightly

Jaccard Score
8

\
200 300 400 500 600
# of selected features

Figure 5 Comparison of UFF with other selection methods on the
melanoma dataset. Mean Jaccard scores of clustering results for dif-
ferent selection methods on the melanoma dataset. Tested methods
include (A) UFF, (B) Variance, (C) Feature entropy, (D) Random selection
and (E) All features.
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better Jaccard score). Error bars were removed for clarity.
Additional file 3, Figure S1 displays the same comparison
with error bars, including a comparison with selection of
the first eigenvectors, computed using SVD.

Quantum Clustering results are provided in Additional
file 4, Table S1.

HIV - UFF Selected genes

Next we explored the HIV dataset. UFF selected 179
genes, enabling us to cluster the CD4+ and CD8+ sam-
ples into separate clusters with only one misclassification.
In comparison, when we clustered the samples using all
the genes 2 misclassifications were obtained. In the top
ranking genes we find mostly hemoglobin units, but also
the specific CD4+ HIV related protein defensin [29] and
the CD8+ HIV related CD8 antigen [30]. GO enriched
biological processes for the 179 selected genes (Bonfer-
roni < 0.05) include immune system process, immune
response, cellular defense response, antigen processing
and presentation of peptide antigen via MHC class I and
class IL. Cellular compartments are enriched for the MHC
class I and II protein complexes. Non trivial enriched
pathways include Graft-versus-host disease, natural killer
cell mediated cytotoxicity and type I diabetes (Bonferroni
< 109). The selected genes involved in the type I diabetes
pathway are usually in direct connection with either
CD4+ or CD8+ T-cells. This connection is strongly sup-
port by literature text mining (not shown). The list of
selected genes is provided in Additional file 1, Table S2.
Enriched terms are provided in Additional file 2, Table
S2.

Similar to figure 5, Additional file 3, Figure S2 displays
the performance of clustering the HIV instances using
different gene sets, selected by various unsupervised fea-
ture selection methods, random selection and using all
the genes, as well as comparison to a feature extraction
method, selecting the first eigenvectors computed using
SVD. The performance of UFF surpasses all other meth-
ods in terms of clustering results (see Methods).

Chronic hepatitis C - UFF selected genes

The CHC database is intended for inspecting results of
chronic hepatitis C (CHC) treatment with interferon
(Figure 6). UFF selected 513 genes. Using these selected
genes, we were able to separate perfectly pre-interferon
and post interferon blood samples. Liver biopsies, how-
ever, were clustered according to sample origin instead of
pre and post interferon treatment. The clustering results
are different when using all the genes; in this case, liver
samples could not be separated at all and blood samples
typically split into different clusters. This is displayed in
Figure 5. The relevance of the gene selected is demon-
strated by the GO enrichment scheme. The GO cellular
compartment contains various lipoprotein particles
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Figure 6 Clustering of the CHC dataset. Clustering of the 78 samples
of Hepatitis C dataset, relative to known labeling. Y-axis denotes cluster
number and X-axis denotes division into pre-interferon liver biopsy
(LPR), post-interferon liver biopsy (LPO), pre-interferon blood sample
(BPR) and post-interferon blood sample (BPO). Clustering was per-
formed using both k-means (k = 4) using UFF selected genes (A) and
using all genes (B) and by using Quantum Clustering using UFF select-
ed genes (C) and using all genes (D). Alternating colors are introduced
to help view cluster boundaries.

(high-density, plasma, spherical high-density, triglycer-
ide-rich, very-low-density and intermediate-density).
Biological process enrichment includes lipid metabolic
process, along with regular defense system terms, such as
acute inflammatory response, response to wounding and
response to xenobiotic stimulus and metabolism of xeno-
biotics by cytochrome P450 pathway, possibly related to
the Interferon treatment [31]. An enriched human phe-
notype is generalized amyloid deposition, which is
reported to relate to hepatitis C [32]. Finally, using the
Comparative Toxicogenomics Database (CTD) the UFF
selected genes are enriched for Hepatitis and the related
immune complex diseases. UFF selected genes and
enrichment analysis are provided in Additional file 1,
Table S3 and Additional file 2, Table S3 respectively. Clus-
tering results appear in additional file 4, Table S2.

Additional file 3, Figure S3 compares the performance
of clustering the Hepatitis-C instances using UFF
selected genes with gene sets selected by various unsu-
pervised feature selection methods, random selection
and using all the features, as well as comparison to a fea-
ture extraction method, selecting the first eigenvectors
computed using SVD. The performance of UFF again
tops other methods in terms of clustering results.

Glioblastoma - UFF selected genes

We present results on glioblastoma multiforme (GBM)
from The Cancer Genome Atlas (TCGA) project. We
selected features from each platform independently, due
to the difference between experiments, allowing for iden-
tification of genes that differentiate between different
platforms, rather than different instance type (UFF was
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applied to AgilentG4502A_07_1 and
AgilentG4502A_07_2 separately, to avoid selection of
genes that allows perfect separation of the two plat-
forms). The unsupervised approach displays its full
strength in this case, since we do not have access to addi-
tional sample information on these datasets.

Based on UFF selected genes, we clearly identify clus-
tering of the instances in each dataset into a small num-
ber of groups. As clinical details of the subjects are not
specified, we cannot link these clusters to known labels.
An example of the clustering results for one of the GBM
datasets is displayed in Figure 7. Clustering results of
selected datasets are found in Additional file 4, Table S3.

There are variations between the number of genes
selected on Agilent and Affymetrix gene expression plat-
forms (563 and 731 genes for Agilent 1 and 2 platforms,
while only 140 for Affymetrix).

We focus on the list of 44 genes, which are common to
both platforms. 13 genes from this list also appear in the
list of top 100 primary glioblastoma-associated genes
expressed at higher levels compared with normal brain
tissue [33]. We note also that 3 out of 4 patented markers
for glioblastoma (patent #7115265) appear on this com-
mon list (the 4th marker, ABCC3, appears in genes
selected from Agilent 2 platform). The top 10 genes from
this list, in terms of minimal UFF rank, are displayed in
Table 2 (Detailed list is available in Additional file 5, Table
S1). Additional file 6, Table S1 provides detailed explana-
tions on relations to cancer biomarkers. UFF selected
genes and the 44 common genes appear in Additional file
1, Table S4.

Although Agilent and Affymetrix datasets show high
variance in the number of genes selected by UFF, the
highest GO enrichment terms are common to both. Both
show high GO enrichment of general biological processes
such as regulation of multicellular organismal process,
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Figure 7 Clustering of a GBM dataset. Clustering of 54 samples of
GBM Agilent G4502A_07_1.4.2.0 array, colors and shapes denote dif-
ferent clusters. Image displays projection on principal components 2-
4.
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Table 2: Top 10 ranked genes for glioblastoma multiforme

Gene name Minimal UFF rank Related to Cancer
across platforms Biomarkers
RPS4Y1 1 N.D
SEC61G 1 Yes
POSTN (*) 2 Yes
ECOP 7 Yes
TMSLS (*) 9 N.D.
SERPINA3 (*) 10 Yes.
COL1A2 (¥) 12 Yes
NPTX2 13 Yes
TIMP1 (¥) 14 Yes
VSNL1 17 Yes

Genes with asterisk appear on the list of [33]. N.D = Not
Determined.

cell proliferation and nervous system development (Bon-
ferroni < 0.05) and nervous system development in
Affymetrix, (FDR < 0.05, but Bonferroni < 0.1). UFF
selected genes on Affymetrix also show inflammatory
response while UFF selected genes of Agilent are
enriched for cell adhesion. Both platforms are also
enriched for cellular compartment of extracellular matrix
and both were highly enriched for 'signal peptide' and
'secreted’ (Bonferroni < 0.0005) based on UniProt key-
words. UFF selected genes on both platforms are
enriched for molecular function of protein and receptor
binding, which includes various ligands such as polysac-
charide, heparin and neuropeptide hormone activity
binding (Agilent platform), and lipid and ferric iron bind-
ing (Affymetrix platform). Enrichment analysis is pro-
vided in Additional file 2, Table S4.

OV - UFF selected genes

We performed similar analysis of the glioblastoma multi-
forme (GBM) datasets on the ovarian serous cystadeno-
carcinoma (OV) dataset from TCGA. UFF selects 669
and 998 genes from Agilent and Affymetrix platform
datasets respectively. GO enrichment analysis reveals
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that UFF selected genes expose very similar GO terms as
UFF selected genes on GBM.

The first interesting exception is cellular compartment
enrichment in which OV shows enrichment for collagen
and fibril, which are identified as predictors for ovarian
cancer [34,35]. An enrichment term which includes
arthritis and osteoarthritis is of special interest, as the
former was postulated as a marker for ovarian cancer
[36], while the later has not been determined. Finally,
enriched diseases show stomach and breast neoplasms.
Clustering of the samples according to the UFF selected
genes is provided in Additional file 4, Table S4. Enrich-
ment analysis is provided in Additional file 2, Table S5.

190 genes are common to both Agilent and Affymetrix
platforms. Table 3 lists the top 10 common genes in terms
of minimal UFF rank. Additional file 5, Table S2 provides
detailed explanations for Table 3. List of UFF OV selected
genes and the 190 platform-shared genes are provided in
Additional file 1, Table S5.

7 of the UFF selected genes are common to both GBM
and OV. These are POSTN, NPTX2, GJAl, NNMT,
CSRP2, SCG5 and HSPA1A, all of them related to cancer
biomarkers. Additional file 5, Table S3 provides further
details on relation of these 7 common genes to cancer
biomarkers. Note that POSTN appears in the top 10
selected genes in both GBM and OV datasets.

Table 3: Top 10 ranked genes for ovarian serous (OV)
cystadenocarcinoma

Gene name Minimal UFF rank Related to Cancer
across platforms Biomarkers
IGF2 1 Yes
HOXA4 2 Yes
POSTN 3 Yes
LMO3 5 Yes
ZIC1 7 Yes
HOXA9 8 Yes
PCP4 8 N.D
OVGP1 9 Yes
PON3 9 N.D
CXCL1 10 Yes

N.D = Not Determined.
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Selected miRNA for GBM and OV

We also report UFF selected microRNAs (miRNA) from
TCGA microarrays for the glioblastoma (GBM) and ovar-
ian (OV) cancers. There are 534 miRNAs in GBM, taken
from 325 samples and 799 miRNAs taken from 295 OV
samples. UFF selected 43 and 63 miRNAs in GBM and
OV respectively.

Almost all of the UFF selected miRNAs are human
miRNAs (hypergeometric p-value = 0.003 and 0.05 for
GBM and OV respectively). The selected miRNAs for
GBM and OV are enriched in comparison to [37] list of
up or down-regulated miRNAs relative to normal tissue
(15 and 20 genes, corresponding to p-values of 7*10-> and
9*10¢ for GBM and OV respectively). In comparison,
negative entropy miRNAs are not enriched relative to this
list.

12 of the selected miRNAs appear in both GBM and
OV tumors. They are listed in Table 4. Additional file 6,
Table S1 provides further details on relation of these miR-
NAs to cancer biomarkers. Selected miRNAs for GBM
and OV are also listed in Additional file 6, Tables S2 and
S3.

Conclusions

We present an improved method, and a new web tool,
that enable users to benefit from the power of UFF, an
unsupervised approach that scores and ranks each fea-
ture according to its influence on the singular values dis-
tribution.

A statistical characterization of the selected features
shows that our method selects features of high variance
(over instances), but only those that do not have large
correlation only with the first principal component. It
turns out that thus we ignore noisy features that have
Gaussian distributions. The strength of our method lies
in selecting features that both capture inherent clustering
of the instances and possess high variance. The combina-
tion of the two is significant in the case of biological data-
sets such as expression microarrays.

By studying various empirical datasets and evaluating
different scoring functions we show that our approach is
generic, and can identify the subset of relevant features.
In contradistinction to other methods we can estimate
the size of the group of selected relevant features. Fur-
thermore, we present a novel approximation method,
enabling significantly faster calculation of the UFF feature
scores.

UFF is a heuristic method which exposes its strength in
realistic applications. Nevertheless, not all datasets are
amenable to feature selection by UFF. We propose criteria
for deciding when UFF application is effective. This infor-
mation is also provided in the online UFF tool. We fur-
ther extend the capabilities of UFF by introducing the
Unsupervised Detection of Outliers (UDO) method.
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Table 4: MicroRNAs selected by UFF, common to GBM and
ov

microRNA Minimal UFF rank Related to Cancer
Biomarkers
hsa-mir-181a’ 3 Yes
hsa-mir-363 4 N.D
hsa-mir-2102 6 Yes
hsa-mir-451 7 Yes
hsa-mir-10a 7 Yes
hsa-mir-311 8 Yes
hsa-mir-196a’ 8 Yes
hsa-mir-145%23 10 Yes
hsa-mir-135b’ 1 Yes
hsa-mir-10b1.24 1 Yes
hsa-mir-10b*1.24 11 Yes
hsa-mir-31*1 12 Yes
hsa-mir-4244 18 Yes
hsa-mir-15514 20 Yes
hsa-mir-22212 25 Yes
hsa-mir-30a*14 26 Yes
hsa-mir-517*% 31 N.D

MicroRNAs selected by UFF, common to GBM and OV.

Tup or down-regulated microRNAs relative to normal tissue
according to [37]

2MicroRNAs that affect the properties of cancer cells according to
[37]

3 down-regulated in ovarian cancer [37]

4 Differentially expressed miRNAs in ovarian cancer tissues and cell
lines [52].

N.D = Not Determined.

UDO provides a novel definition of an "outlier-degree” of
an instance and identifies such outliers in the dataset.
This enables the researcher to detect rare events in the
dataset or filter faulty instances before proceeding with
further analysis.
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Finally, we analyze various gene expression and
microRNA expression datasets to show the strength of
our approach and to expose interesting findings on these
datasets with possible biological relevance.

Web tool: http://adios.tau.ac.il/UFFizi

Methods

Datasets

We use three gene-expression microarray datasets with
known labeling in order to demonstrate the performance
of UFF. They were compiled from the online public
repository of the National Center for Biotechnology
Information/GenBank Gene Expression Omnibus (GEO)
database [38,39]. Data collections are: (i) Gene expression
measurements taken from skin tissues including 7 nor-
mal skin tissues, 18 benign melanocytic lesions and 45
malignant melanoma [28] (series entry GSE3189); (ii)
HIV dataset (series entry GSE6740), containing gene
expression measurements from 20 CD4+ and 20 CD8+ T
cells from HIV patients at different clinical stages; (iii)
Hepatitis C (series entry GSE11190) containing gene
expression measurements from 78 samples, comprising
of 38 blood samples and 40 liver biopsy, before and after
interferon treatment of Hepatitis C (19 blood samples
before and after the treatment, 21 and 19 liver biopsies
before and after respectively). All these datasets are
Affymetrix Human Genome U133A Array (Hepatitis C is
a U133 plus 2.0 array).

In addition, we present results obtained from using
UFF on The Cancer Genome Atlas (TCGA) gene-expres-
sion and microRNA (miRNA) expression datasets[40].
These datasets are comprised of samples taken from (i)
glioblastoma multiforme (GBM) and (ii) ovarian serous
cystadenocarcinoma (OV) patients. Gene-expression
datasets are measured using Affymetrix Human Genome
U133A Arrays and Agilent G4502A_07 platforms.
miRNA expression is measured using Agilent Human
miRNA Microarray Rel12.0 and Agilent 8 x 15 K Human
miRNA-specific platforms. Details of these datasets are
specified in Additional file 7, Table S1.

Unsupervised Feature Filtering (UFF)
UFF is based on an entropy measure applied to Singular
Value Decomposition (SVD). Let A denote a matrix,
whose elements Aij denote the measurement of feature i
on instance j, e.g. expression of gene i under condition j.
SVD decomposes the original matrix A into A = USVT,
where U and V are unitary matrices whose columns form
orthonormal bases. The diagonal matrix S is composed of
singular values (s;) ordered from highest to lowest. SVD
is a common technique in feature extraction. UFF uses
the information contained in the singular values in order
to select the features.

Let q be the rank of the matrix (q = min(#n,m), where n
is the number of instances and m is the number of fea-
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tures). Using the singular values, s;, one may define the
normalized relative squared values p; [41,42]:

q
pe=si) Yo ®)

i=1
A dataset that is characterized by only a few high nor-
malized singular values, whereas the rest are significantly
smaller, reflects large redundancy in the data. On the
other hand, non-redundant datasets lead to uniformity in
the singular values spectrum. UFF exploits this property
of the spectrum in order to measure how each feature i
influences this redundancy, while favoring features which
decrease redundancy. The score of a feature i is defined
using a leave-one-out principle. A function f is calculated
on the set of all singular values for the original matrix and
for the corresponding set of the matrix without feature i.
The difference in the values of & defines the score of each
feature i. In this work, we use the SVD-entropy (H) as the
function f [42,43] (note that this 'Shannon'-like function
does not use probabilities). The score of a feature can be

thus regarded as its contribution to the SVD-entropy.

-
1l

1 q
=— E 4
H log(q) & Py log(p,) (4)

Other functions may be used instead of H. They have to
be monotonic and vary from a maximum, when all singu-
lar values are equal, to a minimum when there is only one
singular value bigger than zero. Two such functions that
we tested are the negative value of sum of squares and the
geometric mean. The results using these functions are
very similar to those obtained using the SVD-entropy,
hence we will not elaborate further on them.

Figure 2 displays the typical results after applying the
UFF algorithm to the melanoma dataset (see the datasets
subsection for description), and sorting the features
according to the decreasing score of the UFFE. Clearly, one
can divide the features into three groups:

1. Features with positive score. These features
increase the entropy.

2. Neutral features. These features have negligible
influence on the entropy.

3. Negative score features. These features decrease
the entropy.

We follow the Simple Ranking (SR) method of UFF,
denoting positive score features (group 1) as features
whose scores lie above the mean score + one std (upper
dotted line in figure 2), negative score features (group 3)
as features whose scores lie below the mean score - one
std (lower dotted line) and neutral features (group 2) the
rest. Note that most features fall into group 2, while
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groups 1 and 3 represent minorities. UFF [6] selects
group 1 as containing the most relevant features. The
rationale behind this selection is that, because these fea-
tures increase the entropy, they decrease redundancy.
Hence one may expect that instances will be better sepa-
rated in the space spanned by these features. Further
analysis of this group and its comparison with the two
other groups is presented in the "properties of selected
features” section.

In this paper, we follow the Simple Ranking (SR)
method of UFF, selecting all positive score features
(group 1). Alternative UFF methods suggested in [6] are
not shown.

GO and Pathway Enrichment

Enrichment of Gene Ontology (GO), KEGG pathways
and PubMed papers presented here were calculated using
the DAVID [44,45] and ToppGene tools [46]. Verifica-
tions were also done using other tools such as Ontolo-
gizer [47] and GO Tree Machine [48].

UFF performance validation
Clustering comparison between different unsupervised
feature selection methods was performed using the
widely used k-means clustering algorithm. In order to
provide an unbiased comparison, all feature selection
methods were tested with the same input parameter k (k
= 3 for the melanoma dataset, k = 2 for the HIV dataset
and k = 4 for the Hepatitis-C dataset) for the k-means
clustering algorithm with no additional preprocessing.
The clustering was repeated 100 times for each feature
selection method and each number of selected features.
Random selection was used to generate 100 different
sets. Feature entropy was performed on each feature indi-
vidually, using the same formalism as in equation 3. We
used the Jaccard score [26] to measure the quality of the
clustering relative to known labels.

Appendix
Connection between projection on first principal
component and negative entropy score
One can prove that in the extreme case, where a feature is
lying only on the first PC, it is bound to have a negative
score. We shall now prove it for the SVD-entropy func-
tion. This proof can be extended to cover also the alterna-
tive measures mentioned in the methods section (UFF
sub-section).

Starting with the positive-definite Gram matrix C,
defined as

c=A"A=vsV" (5)
for the data matrix A of M features by N instances
(where, without loss of generality we assume N < M). We
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use the eigenvalues of the Gram matrix, defined by c;?s;?
(see equation 3) to define:

N N
Ci
Pi=?l' T:Egj.,[{:—chlog(cj) (6)
j=1 j=1

T is positive. SVD entropy can be related to K through

N
K

H= ;Pilog(Pi)— T+108(T) (7)
where, for simplicity, we dropped the normalization
constant (log(N)) in the definition of H. Consider the
small perturbation of removing one feature from the
matrix A. The assumption of a small perturbation gener-
ally holds for a large enough number of features. Using

equation (8), we can write the resulting change of H as

TdH = dK + (1 - %)dT (8)

If the removed feature projects only on the first PC, it
can change only the first singular value. It follows then
that

dT =dc,, dK = -dc,(1+log(c,)) (9)

Plugging the terms in (10) into equation (9), we arrive at

TdK+(T-K)dT

TdH = —dCTl(K+Tlog(cl))>O

(10)

This means that removing such a feature always leads
to increase of entropy.

To complete the proof we show that the right hand side
is indeed positive. T is positive, and so is the sum of the
two terms in brackets, since c, is the leading eigenvalue
and the following inequality holds:

N

-K = Zc]. In(c;) < T log(c,)

1

(11)

We now prove that dc, < 0. Note that, by definition,

dci = vaicmnvni (12)

The first order perturbation of the eigenvalues of C is
related to the change of the original matrix C by the orig-
inal unitary transformation V. This follows from the uni-
tarity constraint on V
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Z 4V, =0 (13)

and is the discrete analog of the Hellman-Feynman the-
orem [49-51].

Removing a row to A, i.e. removing the feature vector f&
of size N, the Gram matrix C changes to

Cmn %Cmn_anfrf (14)

Plugging it back into equation (13), we conclude the
proof with showing that dc; is negative according to:

dci:—(fK-Vi)2 (15)

where Vi is the i-th eigenvector of C.

Adjusting appropriately S and K, it is easy to prove this
also for the sum of squares and the geometric mean func-
tions mentioned in the methods section.

When is UFF applicable?

We present two measures that allow for a separation
between datasets on which UFF is effective, from those in
which it is not. The first is SE, an entropy-like measure on
normalized squares of UFF score-values.

Score%
Y ) (16)
Y Scorei
i=1
M
1
SE=———— | 17
lOg(M) ; wk Og(wk) ( )

and the second is VE, an entropy-like measure on the
variance-values (i.e. variance of feature-values on all
instances)

_ var(fiy)
M
3 Varl(f) 1)
i=1
1 M
VE:—log(Ad);Zk log(zk) (19)

Suitable datasets can then be defined as those lying
below certain thresholds in both measures. We tested
more than a dozen 'suitable’ and ten 'not-suitable' datasets
(not shown) using UFF and clustering algorithms. It
seems that combining the two measures using the geo-
metric mean provides the best test for applicability. We
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found 'suitable’ datasets to lie below a threshold of 0.8 of

the combined score.

Additional material

Additional file 1 UFF selected genes for various datasets.
Gene_list_tables.pdf: UFF selected genes for the viral infection disease and
cancer datasets.

Additional file 2 Enrichment of UFF selected genes for various data-
sets. Enrichment_tables.pdf: Enrichment of UFF selected genes for the viral
infection disease and cancer datasets (using DAVID and ToppGene tools).
ToppGene results that appear in DAVID tool were removed. All ToppGene
enrichments have Bonferroni < 0.05.

Additional file 3 Additional figures. Supp_figures.pdf: Comparison of
UFF with other selection methods in terms of clustering results on the Mel-
anoma, HIV and Hepatitis-C datasets.

Additional file 4 Clustering of various dataset instances using UFF
selected genes. Clustering_results_tables.pdf: Clustering of the mela-
noma, Hepatitis-C, GBM and OV dataset instances using UFF selected
genes.

Additional file 5 Top ranked genes, selected on all platforms of TCGA
datasets. TCGA_top_ranked_genes.pdf: Top ranked genes, selected on all
platforms of TCGA datasets.

Additional file 6 microRNAs, selected by UFF on the TCGA datasets.
miRNA_tables.pdf: lists of microRNAs, selected by UFF on the TCGA data-
sets.

Additional file 7 List of datasets used in this paper. Datasets.pdf: List of
datasets used in this paper. GEO, Gene Expression Omnibus; TCGA, The
Cancer Genome Atlas; GBM, glioblastoma multiforme; OV, ovarian serous
cystadenocarcinoma.
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