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Abstract
Background: The receiver operating characteristic (ROC) curve is a fundamental tool to assess the discriminant 
performance for not only a single marker but also a score function combining multiple markers. The area under the 
ROC curve (AUC) for a score function measures the intrinsic ability for the score function to discriminate between the 
controls and cases. Recently, the partial AUC (pAUC) has been paid more attention than the AUC, because a suitable 
range of the false positive rate can be focused according to various clinical situations. However, existing pAUC-based 
methods only handle a few markers and do not take nonlinear combination of markers into consideration.

Results: We have developed a new statistical method that focuses on the pAUC based on a boosting technique. The 
markers are combined componentially for maximizing the pAUC in the boosting algorithm using natural cubic splines 
or decision stumps (single-level decision trees), according to the values of markers (continuous or discrete). We show 
that the resulting score plots are useful for understanding how each marker is associated with the outcome variable. 
We compare the performance of the proposed boosting method with those of other existing methods, and 
demonstrate the utility using real data sets. As a result, we have much better discrimination performances in the sense 
of the pAUC in both simulation studies and real data analysis.

Conclusions: The proposed method addresses how to combine the markers after a pAUC-based filtering procedure in 
high dimensional setting. Hence, it provides a consistent way of analyzing data based on the pAUC from maker 
selection to marker combination for discrimination problems. The method can capture not only linear but also 
nonlinear association between the outcome variable and the markers, about which the nonlinearity is known to be 
necessary in general for the maximization of the pAUC. The method also puts importance on the accuracy of 
classification performance as well as interpretability of the association, by offering simple and smooth resultant score 
plots for each marker.

Background
The receiver operating characteristic (ROC) curve has
been widely used in various scientific fields, in situations
where the evaluation of discrimination performance is of
great concern for the researchers. The area under the
ROC curve (AUC) is the most popular metric because it
has a simple probabilistic interpretation [1] and consists
of two important rates used to assess classification per-
formance: the true positive rate (TPR) and the false posi-
tive rate (FPR). The former is a probability of an affected

subject being correctly judged as positive; the latter is
that of an unaffected subject being improperly judged as
positive. These two rates are shown to be more adequate
to evaluate the classification accuracy than the odds ratio
or relative risk [2]. However, the AUC has been severely
criticized for inconsistency arising between statistical sig-
nificance and the corresponding clinical significance
when the usefulness of a new marker is evaluated [3].
Recently, Pencina et al. [4] propose a criterion termed
integrated discriminant improvement and show the
advantage over the AUC in the assessment of a new
marker. In this context, the partial AUC (pAUC) is paid
more attention than the AUC, especially in clinical set-
tings where a low FPR or a high TPR is required [5-7].

Dodd and Pepe [8] propose a regression modeling
framework based on the pAUC, and apply this framework
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to investigation of a relationship between a test result and
the patient characteristics. Cai and Dodd [9] make some
modifications to improve the efficiency of the estimation
for parameters, and provide graphical tools for the model
checking. In regard to classification problems, Pepe and
Thompson [10] propose a method for deriving a linear
combination of two markers that optimizes the AUC as
well as the pAUC. However, as recognized by Pepe et al.
[11], more general approaches are required when the
number of markers is large. Moreover, the nonlinear
combination of markers is necessary to maximize the
AUC as well as the pAUC even in a simple setting such
that normality is assumed to the distribution of markers
[12]. However, the existing methods [10,13,14] only deal
with the linear combination of markers.

In this paper, we propose a new statistical method
designed to maximize the pAUC, as an extension of
AUCBoost [12], using a boosting technique and the
approximate pAUC. The approximation-based method
makes it possible to nonlinearly combine more than two
markers, based on basis functions of natural cubic splines
as well as decision stumps. The resultant score plots for
each marker enable us to observe how the markers are
associated with the outcome variable in a visually appar-
ent way. Hence, our boosting method attaches impor-
tance not only to the classification performance but also
to the interpretation of the results, which is essential in
clinical and medical fields.

This paper is organized as follows. In the Methods sec-
tion, we present a new boosting method for the maximi-
zation of the pAUC after giving a brief review of the
pAUC and the approximate pAUC. Then, we show a rela-
tionship between the pAUC and the approximate pAUC
in Theorem 1, which justifies the use of the approximate
pAUC in the boosting algorithm. In the Results and Dis-
cussion section, we compare the proposed method with
other existing ones such as SDF [10], AdaBoost [15], Log-
itBoost [16] and GAMBoost [17]. In addition, we demon-
strate the utility of the proposed method using real data
sets; one of them is breast cancer data, in which we use
both clinical and genomic data. In the last section, we
summarize and make concluding remarks.

Methods
pAUC and approximate pAUC
Partial area under the ROC curve
Let y denote a class label for cases (y = 1) and controls (y
= 0), and x be a vector of p markers as x = (x1, x2, ..., xp).
Given a score function F (x) and a threshold c, we judge
the subject as positive if F (x) ≥ c, and as negative if F(x)
<c. The corresponding false positive rate (FPR) and true
positive rate (TPR) are given as

where H is the Heaviside function: H(z) = 1 if z ≥ 0 and 0
otherwise, and g0(x) and g1(x) are probability density
functions given class 0 and class 1, respectively. Note that
FPR and TPR are also dependent on the score function F.
However, for the sake of simplicity, we abbreviate it when
the abbreviation does not cause ambiguity.

Then, the ROC curve is defined as a plot of TPR against
FPR when the threshold c moves on a real number line:

and the area under the ROC curve (AUC) is given as

In this setting, we consider a part of the AUC by limit-
ing the value of FPR between α1 and α2, with correspond-
ing thresholds c1 and c2, respectively:

where 0 ≤ α1 <α2 ≤ 1 (c2 <c1). In this paper, we set the val-
ues to be 0 and 0.1, respectively. However, it is also worth
considering to take α1>0 and choose α2- α1 to be small
enough, so that we essentially maximize TPR for the fixed
range of FPR. Then, the pAUC can be divided into a fan-
shaped part and a rectangular part:

Its probabilistic interpretation is offered by Dodd [18]
and Pepe [19] as
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Given samples from class 0  and

class 1 , the empirical form is

expressed as

where  and  are empirical values that are the clos-

est to α1 and α1 respectively; 

where  and  are thresholds determined by  and

.
Approximate pAUC
As seen in Equation (2), the empirical pAUC is non-dif-
ferentiable. Eguchi and Copas [20] use the standard nor-
mal distribution function to approximate the AUC, and
applies an algorithms in order to maximize the AUC. Ma
and Huang [13] and Wang et al. [14] employ the similar
approximation to the AUC by a sigmoid function for mul-
tiple marker combination. Since there is no essential dif-
ference between the two approximations, we use the
standard normal distribution for the approximation of
the pAUC:

where α1 and α2 are defined in Equation (1), and Hσ (z) is
an approximation of H(z) by the standard normal distri-
bution function, that is, Hσ (z) = Φ(z/σ). Similarly, the cor-
responding empirical pAUC is defined as

where  and 

. A smaller scale parameter σ implies a better

approximation of H(z).

pAUCBoost with natural cubic splines
Boosting
Boosting is one of the most popular method for classifica-
tion in machine learning community. The main concept
is that the score function F is constructed based on vari-
ous simple functions, termed weak classifiers. There exist
many boosting methods according to the objective func-
tions [15-17,21,22]. The seminal and important one is
AdaBoost, whose objective function is the exponential
loss and its algorithm with the iteration number T is as
follows.

1. Start with a score function F0(xi) = 0, i = 1, 2, ..., n, 
where n = n0 + n1.
2. For t = 1, ..., T

(a) Calculate the weights wt(i)

(b) For 

, find the best weak classifier ft

where Ada is a set of weak classifiers taking















values 1 or -1, and I(·) is the indicator function.

(c) Calculate the coefficient βt

(d) Update the score function as

3. Finally, output a final score function as

Based on this iterative procedure, we propose the
pAUCBoost algorithm after defining the object function.
Objective function
We construct a score function F(x) in an additive model
for the maximization of the pAUC:

x i ni0 01 2: , , ,={ }…

x j nj1 11 2: , , ,={ }…

pAUC HF
n n

F x F xj i

j

n

i I

, , ,a a1 2 1 0

1

1

0 1

1

( ) = ( ) − ( )( )
=∈

∑∑
(2)

a1 a2

I i c F ci= ≤ ( ) ≤{ }2 0 1x ,

c1 c2 a1

a2

pAUC

H FPR

TP

s

s

a aF

F c g d d c
cc

c

F c

, ,1 2

1
2 11

2

( )

= ( ) −( ) ( ) ( )

+
≤ ( )≤

∫∫ x x x
x

RR c1 2 1( ) −( )a a ,

pAUC

H

H

fan

s

s

a aF

n n
F F

F x

j i

j Ji I

, ,1 2

1 0

1

1

0 1

( )

= ( ) − ( )( )
⎧
⎨
⎪

⎩⎪

+

∈∈
∑∑ x x

jj i

j J

F x( ) − ( )( )}
∈
∑ 0

rec

,

J j c F cjfan = ≤ ( ) ≤{ }2 1 1x J j crec = <{ 1

F j( )}1x

w i
n

F yt t i i( ) = − ( ) −( ){ }−
1

2 11exp x

err I 2t ti

n
i if w i y f( ) = ( ) − ≠ ( )( )=∑ 1

1 x

ti

n
w i( )=∑ 1

f ft
f

t
Ada

= ( )
∈

arg min ,
F

err (3)

F

b t
t ft

t ft
=

− ( )
( )

1
2

1
log .

err

err
(4)

F F ft t t tx x x( ) = ( ) + ( )−1 b

F ft t

t

T

x x( ) = ( )
=

∑ b
1

.

F F xk k

k

p

x( ) = ( )
=

∑
1

, (5)



Komori and Eguchi BMC Bioinformatics 2010, 11:314
http://www.biomedcentral.com/1471-2105/11/314

Page 4 of 17
where Fk(xk) is the k-th component of F(x), and the plot of
Fk(xk) against xk is called a score plot that describes the
association between xk and an outcome variable. The sub-
set of weak classifiers for xk is given as

where Nk, l (xk) is a basis function of xk for representing a
natural cubic spline with mk knots, and Zk, l is a standard-
ization factor that makes the heights of Nk, l's uniform.
Thus, Fk (xk) in Equation (5) has the following expression.

where βl's are coefficients that are calculated in the
pAUCBoost algorithm. Then, the set of weak classifiers
that we use in pAUCBoost is defined as

In this setting, the objective function we propose is
given as

where  is the second derivative of Fk(xk) and λ is a
smoothing parameter that controls the smoothness of
F(x). It is rewritten as

Therefore, we have

We remark that the scale parameter σ in the definition of

 in Equation (6) can be fixed to 1 because of
Equation (8). Hence, we redefine the objective function as

without loss of generality.
The maximum value that is attained by a set of (F1, F2,

..., Fp) can take the larger value by replacing the functions
with p sets of natural cubic splines. This can be proved in
the same way as the result of generalized additive models
[23], because the penalty term is the same. Hence, we find
that the maximizer of the pAUCBoost objective function
is the natural cubic spline.
pAUCBoost algorithm

Using weak classifiers f 's ∈ , we construct a score
function F for the maximization of the pAUC. Note that
the coefficient β cannot be determined independently of
the weak classifier, so we denote it as β(f) in the following
algorithm.

1.Start with a score function F0(x) = 0 and set every 
coefficient β0(f) to be 1 or -1, so that the candidates of 
the initial score function have positive or negative 
derivatives.
2. For t = 1, ..., T

(a) For all f 's ∈ , calculate the values of thresh-
olds  and  of Ft-1 + βt-1 (f)f.

(b) Update βt-1(f) to βt(f) with a one-step Newton-
Raphson iteration.

(c) Find the best weak classifier ft

(d) Update the score function as

3. Finally, output a final score function as

The dependency of the 

on thresholds  and  makes it necessary to pick up
the best pair (βt(ft), ft) at the same time in step 2.(c). This
process is quite different from that of AdaBoost, in which
βt and ft are determined independently in Equations (3)
and (4). Because of the dependency and the difficulty of
getting the exact solution of βt(ft), the one-step Newton-
Raphson calculation is conducted in the boosting pro-
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cess. The one-step Newton-Raphson update is also
employed in LogitBoost [16] and GAMBoost [17]. The
details of the pAUCBoost algorithm are given in addi-
tional file 1: Details of the pAUCBoost algorithm.
Tuning procedure
We conduct K-fold cross validation to determine the
smoothing parameter λ and the iteration number T. We
divide the whole data into K subsets, and calculate the
following objective function.

where F(-i) denotes a score function that is generated by

the data without i-th subset, and  is 
calculated by the i-th subset only. The optimal parame-
ters are obtained at the maximum value of pAUCcv(λ, T)
in a set of grid points (λ, T). In the case where the values
of the pAUCcv(λ, T) are unstable, we calculate the
pAUCcv(λ, T) 10 times and take the average to determine
the optimal parameters. In our subsequent discussion, we
set K = 10 and explicitly demonstrate the procedure in
the section regarding real data analysis.

Relationship between pAUC and approximate pAUC
We investigate the relationship between the pAUC and
the approximate pAUC, which gives a theoretical justifi-
cation of the use of the approximate pAUC in the pAUC-
Boost algorithm.

Theorem 1. For a pair of fixed α1 and α2, let

where γ is a scalar, Λ(x) = g1 (x)/g0(x) and m is a strictly
increasing function. Then, Ψ(γ) is a strictly increasing
function of γ, and we have

See additional file 2: Proof of Theorem 1 and Corollary
1 for the details. Note that Theorem 1 holds for the
approximate pAUC by a sigmoid function, so it also gives
the justification of the AUC-based methods of Ma and
Huang [13] and Wang et al. [14], as a special case where
α1 = 0 and α2 = 1. As proved in Eguchi and Copas [20] and
Mcintosh and Pepe [24], the likelihood ratio Λ(x) is the
optimal score function that maximizes the AUC as well as
the pAUC. In general, the Bayes risk consistency has been
well discussed under an assumption of convexity for a
variety of loss functions [25]. Theorem 1 suggests a weak

version of the Bayes risk consistency for the nonconvex
function in the limiting sense.

We also have a following corollary from Theorem 1.
Corollary 1. For any score function F, let

where η is a score function, and γ is a scalar. For a fixed
FPR of Fγη, the TPR of Fγηbecomes a increasing function of
γ if and only if η  = m(Λ), where m is a strictly increasing
function.

See additional file 2: Proof of Theorem 1 and Corollary
1 for the details. Note that the corollary holds for any FPR
in the range of (0,1). Hence, we find that the score func-
tion that moves every and all TPR's upward from the
original positions, is nothing but the optimal score func-
tion derived from likelihood. This fact is not derived from
the Neyman-Pearson fundamental lemma [26], from
which m(Λ) is proved to maximize the AUC as well as
pAUC. This corollary characterizes another property of
the optimal score function m(Λ).

Results and Discussion
Simulation studies
We compare the performance of pAUCBoost with that of
the smooth distribution-free (SDF) method proposed by
[10] in a two-dimensional setting, and with those of other
existing boosting methods: AdaBoost, LogitBoost and
GAMBoost in a higher-dimensional setting. The simula-
tion setting is similar to that of [27]. Suppose that there
are four types of sample distributions for each class, y = 0
or y = 1, as shown in Figure 1. The first panel shows an
ideal situation, where we see very little overlap between
the two class-conditional distributions. The second situa-
tion is of practical interest for disease screening, where
FPR must be restricted to be as small as possible, in a case
where invasive or costly diagnostic treatments will follow.
A small portion of samples from class 1 (cases) is clearly
distinguishable from the bulk of samples from class 0
(controls). On the other hand, in the third situation, cases
are completely within the range of controls, and therefore
not useful for disease screening. The fourth situation is
similar to the second one, but some of the samples from
cases deviate from controls clearly on both side of the dis-
tribution, rather than only on one side. This situation
could be worth consideration in a case where high TPR is
required with very low FPR in the same way as in the sec-
ond situation.

In the simulation study, we apply pAUCBoost with 

= 0 and  = 0.1. The training data set contains 50 con-
trols and 50 cases, and the accuracy of the performance is
evaluated based on 100 repetitions using test data sets of
size 1000 (500 for each class).
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Comparison with SDF
We consider the second situation, where we assume nor-
mality distributions such as  and

 with mixing pro-
portion π = 0.9, and the last situation:

. That is, the
conditional probability density function of a class label y
given x is given by

where Λ1(x) is the likelihood ratio:

and ϕ(z) is the standard normal density function. The
resultant mean value (and the 95 percent confidence
interval) of the pAUC based on pAUCBoost turns out to
be 0.017 (0.012, 0.020), and the value of SDF to be 0.011
(0.005, 0.017). This large difference is because SDF
assumes linearity of the score function of F(x) as

and the coefficient of x4 is estimated by SDF to be around
0 as shown in Figure 2 (a), under the condition that λ2 is
fixed to 1. On the other hand, pAUCBoost considers the
nonlinearity of F(x) as

as shown in Figure 2(b). The left panel shows the score
plot of x2, and the right one shows that of x4. The pAUC-
Boost clearly captures the nonlinearity of F4 (x4), where
one of the optimal score function in this setting is derived
from Equation (12) as
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Figure 1 Illustration of simulation setting. Illustration of four different types of sample distributions for class 0 (black) and class 1 (gray).
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Note that the ROC curve is invariant to a monotone
transformation of the score function.

Although a nonlinear transformation could be applied
to the data in advance, it is not practical to examine all
marginal distributions and decide the appropriate trans-
formations in general situations. Hence, it is better to

take the nonlinearity into consideration in the method
itself in this way.

We have also confirmed that the performance of
pAUCBoost is compatible with that of SDF, in a setting
when linearity of the score function is reasonable. We
have averages of 0.013 (0.007, 0.017) and 0.013 (0.011,
0.015 pAUCBoost and the SDF method, respectively,
under the situation that x4 is also distributed as

 and .
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Figure 2 Comparison of SDF method and pAUCBoost method. (a) Illustration of the estimated value of pAUC by SDF method, where 

 and 2-1/γ4 otherwise; (b) the resultant score plots by pAUCBoost. The rug plot along the bottom of each graph de-

scribes the observations from class 0; the rug plot along the top of each graph describes those from class 0.
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That is, the conditional probability density function of y
given x is given same way as Equation (11):

where

The one of the optimal score function is given by

It is interesting to note that almost the same results are
obtained by these quite different statistical methods. SDF
uses the estimated values of pAUC to derive a score func-
tion; on the other hand, pAUCBoost directly uses the
empirical value of the approximate pAUC in the algo-
rithm.
Comparison with other boosting methods
We focus on only the most practical situation in disease
screening such as the second situation in Figure 1. Pepe et
al. [27] show the utility of the use of the pAUC, in selec-
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Figure 3 Results of simulation study based on the values of the pAUC. (a) The results of the pAUC with FPR between 0 and 0.1 for training data 
(left panel) and test data (right panel) with only informative genes. The gray dashed lines indicate the 95% confidence bands. (b) the results of the 
pAUC with noninformative genes added.
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tion of potential genes that are useful for discrimination
between normal and cancer tissues. The point is that the
value of pAUC reflects the overlap of two distributions of
controls and cases, so that we can select genes that are
suitable for the purpose of further investigation. For
example, some overexpressed genes encourage us to
investigate the corresponding protein products. However,
the task of how to combine the selected genes for better
discrimination is still pending.

Suppose we select 50 genes by a filtering procedure,
which are closely correlated each other, such that 50-
dimensional gene vectors for class 0 and class 1 are dis-
tributed as  and ,
respectively. The covariance matrices are designed as Σ0
= 0.95 × W0 + 0.05 × I and Σ1 = 0.95 × W1 + 0.05 × I,
where W0 and W1 are 50 × 50 matrices that are sampled
from Wishart distribution with the identity matrix and 10
degrees of freedom at every repetition of the simulation.
The identity matrix I is added for avoiding the singularity
of the covariance matrices. These matrices are normal-
ized to have 1's on the diagonal part in the similar way to
the simulation setting of Zhao and Yu [28], and the range
of the correlations turns out to be about between 0.8 and

-0.8. Then, we randomly replace 10 percent of samples
from class 1 with those that are distributed as 
for each gene, so that each gene is informative in the
sense of the pAUC as shown in the second situation of
Figure 1.

Figure 3(a) shows plots of the average of the pAUC
against iteration number T for five boosting methods. For
all the boosting methods, the values of the pAUC based
on the training data almost reach the upper bound values
0.1 after a number of iterations. However, the values
based on the test data show clear differences. The pAUC-
Boost properly detects the small difference of the two dis-
tributions illustrated in the second panel in Figure 1, and
shows the best performance. On the other hand, Ada-
Boost, LogitBoost and GAMBoost cannot distinguish the
two groups at all.

Next for illustration of the gene selection of pAUC-
Boost, we added some noninformative genes to the 50
genes above, i.e., genes that are assumed to be normally
distributed with the same mean and the same covariance

matrix: , where  is generated
in the same way as above. The results in the left panel of
Figure 3(b) are the almost the same as those in Figure

X 0 0∼ N 0,åå( ) X1 1∼ N 0,åå( )

N 3 1,( )

X X0 1
noise noise, ,∼ N 0 åå( )

Figure 4 Results of simulation study based on the marker selection. The mean values of percentage of false discovery (left panel) and 95% con-
fidence bands (right panel) for each boosting method. The horizontal axis denotes the iteration number of T. The lower sides of the 95% confidence 
bands of AUCBoost are shown by the heavy black line to emphasize the difference from those of pAUCBoost.
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3(a). However, we can find a clear difference between the
right panels. The performances of all methods except for
pAUCBoost go down on a relatively large scale. We can
observe that the mean values of the pAUC by pAUC-
Boost are above the upper sides of the 95% confidence
bands of those by AUCBoost after around T = 20. This is
mainly because of "false discovery", or selection of nonin-
formative genes by chance. Figure 4 shows the resistance
of pAUCBoost to false discovery. The mean values of per-
centage of false discovery (the number of selected nonin-
formative genes over the number of selected genes) are
plotted in the left panel; the 95 percent confidence bands
(gray lines) are plotted in the right panel, against the iter-
ation number T, respectively. We see that the boosting
methods other than pAUCBoost select noninformative
genes from the early stage of boosting procedure. The dif-
ference of performance of pAUCBoost from the others is
95% significant after around T = 15 as shown in the right
panel. The upper side bands of the 95% confidence bands
reached 1 at the very beginning of the iteration for AUC-

Boost, AdaBoost, LogitBoost and GAMBoost. The boost-
ing methods other than pAUCBoost clearly suffer from
false discovery. pAUCBoost seems to have an advantage
because it focuses on the essential part of the sample dis-
tribution in the sense of the pAUC.

Mainly, there are two types of weak classifiers: smooth-
ing splines and decision stumps. Buhlmann and Yu [21]
proposed to use smoothing splines in the L2 Boost algo-
rithm, and Tutz and Binder [17] used B-splines in GAM-
Boost. However, the way of fitting the weak classifiers in
pAUCBoost is different from those methods. Our algo-
rithm updates a score function with a basis function of a
natural cubic spline for one marker in Equations (9) and
(10). On the other hand, their algorithms update a score
function with a set of basis functions for one marker.
Hence, our resultant score functions have tendency to
have simpler forms (See the illustrations of score plots in
the next section), which also leads to simple interpreta-
tion of the association between the markers and the out-
come variable. Note that there exists a trade-off between

Figure 5 Score plots of clinical markers in breast cancer data. Score plots of clinical markers that describe the association between the markers 
and the outcome variable. The rug plot at the bottoms of each score plot shows the observations from patients with good prognosis; the rug plot for 
patients with distant metastases is described at the top of each score plot.
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the simplicity and the number of markers necessary for
good performance of discrimination. However, the sim-
plicity depends on the number of basis functions used for
the selected markers, so the more complicated associa-
tion can be expressed by increasing the number of the
basis functions.

In AdaBoost and LogitBoost, decision stumps are used
as weak classifiers [29,30]. The advantage of using deci-
sion stumps is that we can apply the boosting methods
independently of the scale of the marker values. Hence,
the decision stump-based method is resistant to outliers,
which often occur in real data. However, it easily suffers
from false discovery, as clearly shown in simulation stud-

ies. This causes poor performance in a setting where non-
informative genes are mixed with informative ones. We
have also confirmed that pAUCBoost with decision
stumps for weak classifiers shows worse performance
than that of pAUCBoost with natural cubic splines.
Hence, we have to be much careful about which weak
classifiers to be employed. It depends on the types of
markers or the purpose of the analysis we are engaged in.

Application of pAUCBoost to real data
Breast cancer data
The breast cancer data of van't Veer et al. [31] contains
not only gene expression profiles but also clinical markers
such as Age, age of patients; Size, diameter of breast can-
cer; Grade, tumour grade; Angi, existence or nonexis-
tence of angioinvasion; ERp, ER expression; PRp, PR
expression; and Lymp, existence or nonexistence of lym-
phocytic infiltrate. First, we apply AUCBoost to these
clinical markers and investigate their utility. The weak
classifiers we use are natural cubic splines for continuous
markers (Age and Size), and decision stumps to discrete
or categorical markers. Second, we apply pAUCBoost
with  = 0 and  = 0.1 to the gene expression data
after a pAUC-based filtering procedure proposed by Pepe
et al. [27]. The training data set and the test data set are
the same as those in [31], that is, 44 patients with good
prognosis and 34 patients with distant metastases for
training data, and 7 and 12 patients for test data, respec-
tively.

Figure 5 shows the results of the score plot generated by
AUCBoost with λ = 0.01 and T = 20, which were deter-
mined by a 10-fold cross validation. The Age and Size
showed almost linear association with the prognosis, and
a tendency to develop metastases increased as the value
of Grade. The patients with negative ER and negative PR
were estimated to have high risk of metastases, which are
consistent with the result of van't Veer et al. [31]. The
order of description of the score plots is in accordance
with that of markers selected in the AUCBoost algorithm.
Hence, Age has the largest contribution to the value of
the AUC. The order is from the upper left panel to the
lower right panel, so the second important marker is Size
and the last one is Lymp. We have found that the values of
the AUC for training and test data are 0.846 and 0.964,
respectively. These results are comparable to those of
van't Veer et al. [31] that were derived from the gene
expression data: 0.882 and 0.869, respectively. This means
that clinical markers themselves also have the ability to
discriminate to some extent the patients with good prog-
nosis from those with metastases.

Next, we analyze the gene expression data as follows.
The informative genes were selected, in the same way as
[31], from the total of 25000 genes according to the crite-

a1 a2

Table 1: The top 30 genes ranked by the probability of gene 
selection, and the values of the pAUC and AUC.

No gene name Pg(100) pAUC AUC

1 Contig41613_RC 0.728 0.036 0.666

2 NM_006931 0.728 0.035 0.678

3 Contig40831_RC 0.706 0.037 0.672

4 Contig55574_RC 0.639 0.035 0.654

5 AB023173 0.636 0.034 0.684

6 Contig63649_RC 0.626 0.034 0.749

7 NM_018964 0.586 0.034 0.660

8 AL137615 0.571 0.033 0.655

9 NM_006201 0.541 0.032 0.664

10 NM_001710 0.520 0.032 0.638

11 AA555029_RC 0.519 0.032 0.708

12 NM_020386 0.490 0.030 0.699

13 Contig7558_RC 0.488 0.032 0.659

14 Contig51464_RC 0.482 0.030 0.668

15 NM_014246 0.474 0.032 0.613

16 NM_007359 0.463 0.032 0.696

17 NM_006148 0.450 0.029 0.661

18 NM_004163 0.442 0.029 0.729

19 Contig37562_RC 0.423 0.031 0.630

20 Contig55377_RC 0.416 0.029 0.726

21 Contig47405_RC 0.404 0.029 0.718

22 NM_012261 0.393 0.029 0.721

23 NM_014400 0.379 0.028 0.681

24 Contig44409 0.368 0.029 0.692

25 AL080059 0.364 0.027 0.801

26 Contig60864 RC 0.358 0.029 0.637

27 NM_003748 0.353 0.025 0.793

28 AL080110 0.349 0.026 0.652

29 AL122101 0.343 0.028 0.708

30 NM_018120 0.336 0.026 0.671
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ria that the genes are two-fold regulated and that the p-
values are less than 0.01 in more than 3 patients. Then,
the approximately 5000 filtered genes were ordered based
on their values of the pAUC with  = 0 and  = 0.1. In
order to assess the variability of the top genes, we used
the probability of gene selection proposed by Pepe et al.
[27], that is

where k was set to 100 in this analysis and this probability
was calculated by 1000 bootstrap resampling replications.
Table 1 shows the results of the top 30 genes ranked by Pg
(100), along with the values of pAUC and AUC calculated
from the original data. We picked up significant genes
with Pg (100) > 0.5, and applied pAUCBoost to the 11
genes. The score plots in Figure 6 describe the nonlinear
association between gene expressions and the prognosis.

Among the 11 genes, Contig41613_RC showed a nonlin-
ear and nonmonotonic association. That is, the gene
expression of the patients with metastases had large vari-
ance as shown by the rug plot, compared with that of
patients with good prognosis, which had a tendency to
take small absolute values and concentrate around the
origin. The nonlinearity of the associations can be cap-
tured by pAUCBoost in this way. The values of tuning
parameter λ and T were determined to be 10-6 and 65 by
10-cross validation, as described in the left panel in Fig-
ure 7. The value of A is very small, and it seems to be
ignorable. However, since the value of A has an implicit
role to control the accuracy of approximation of the
pAUC as seen Equations (7) and (8), it should not be set
to 0. The right panel in Figure 7 shows the pAUC for
training (solid) and test (dashed) data, as a function of T
with λ = 10-6. We saw that both of the values for training
and test data are more than 3 times larger than those of
van't Veer et al. [31]: 0.025 and 0.0084, respectively.
Finally, we confirmed that the nonlinearity of score func-

a1 a2

P k P g kg ( ) = ( )gene ranked the top in , (13)

Figure 6 Score plots of gene expressions in breast cancer data. Score plots of the selected 11 genes that describe the association between the 
genes and the outcome variable. The rug plot at the bottoms of each score plot shows the observations from patients with good prognosis; the rug 
plot for patients with distant metastases is described at the top of each score plot.
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Figure 7 Results of the pAUC. The results of 10-fold cross validation with different values of smoothing parameter λ and iteration number T (left pan-
el); the results of the values of pAUC for training data (solid) and test data (dashed) by pAUCBoost, as a function of T with λ = 10-6 (right panel).

0 20 40 60 80

T

0
.0

4
0

.0
5

0
.0

6
0

.0
7

0
.0

8

p
A

U
C

c
v

λ= 1e-006
λ= 1e-005
λ= 1e-004
λ= 1e-003
λ= 1e-002

0 20 40 60 80 100

T
0

.0
0

0
.0

2
0

.0
4

0
.0

6
0

.0
8

0
.1

0

p
A

U
C

training
test

Figure 8 Linear score plots of gene expressions in breast cancer data. Score plots of the selected 11 genes generated by pAUCBoost using only 
linear weak classifiers.
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tion F as shown in Figure 6 played an important role for
the classification performance. See the score plots that
are generated by only linear basis functions of natural
cubic splines in Figure 8, and resultant values of the
pAUC in Figure 9. Both the values of the pAUC based on
training data and those on test data changed for the
worse. The results of other boosting methods, and the
results for less stringent bounds on the values of  are
presented in additional file 3: Supplementary results of
breast cancer data analysis.

Ovarian cancer data
This dataset was analyzed by Pepe et al. [27] for illustra-
tion of their pAUC-based filtering procedure in Equation
(13). It consists of 1536 genes spotted on the glass arrays,
and is available from the website of a textbook by Pepe
[19]. It includes 23 controls with normal ovarian tissues
and 30 cases with ovarian cancers. We divided the whole
data into training data and test data in the ratio of 2 to 1.
That is, the first 15 controls and 20 cases in the original
data are used for training data; the others are for test data.

Using the training data only, we ranked the genes accord-
ing to the value of the pAUC with  = 0 and  = 0.1,
and assessed the variability as in the breast cancer analy-
sis above. Then, we picked up 20 genes that satisfy
Pg(100) > 0.9 in the same way as Pepe et al. [27]. We found
that there are 12 common genes to theirs, including
g1483 that ranked best in their analysis. For these 20 fil-
tered genes, we applied pAUCBoost and had the resul-
tant score plots in Figure 10. As seen is Figure 10, the
pAUCBoost selected 11 genes and attained the maximum
value of the pAUC (0.1). Finally, we assessed the classifi-
cation performance based on the independent test data,
and had a high value of the pAUC (0.08). The classifica-
tion is relatively easy, so the results of other boosting
methods also reached the same values of the pAUC based
on the independent test data.

Leukemia data
The third data we analyzed is leukemia data [32]. It con-
tains 38 training samples and 34 test samples with 7129
genes for acute myeloid leukemia (AML) and acute lym-

a2

a1 a2

Figure 9 Comparison between linear and nonlinear score functions. Comparison based on the values of the pAUC between linear and nolinear 
score functions generated by pAUCBoost.
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phoblastic leukemia (ALL). We repeated the same proce-
dure as the previous two analyses above using the 8
filtered genes that satisfy Pg(100) > 0.9. We achieved the
perfect classification performance regarding both train-
ing and test data sets, and had the score plots in Figure
11. The results of other boosting methods produced simi-
lar but a little worse values of the pAUC. That is, the val-
ues are more than 0.08 but less than 0.1 on the basis of
test data.

Conclusions
We have developed the pAUCBoost algorithm to maxi-
mize the pAUC based on the approximate pAUC in the
additive model. The use of the approximate pAUC is jus-
tified by showing a relationship with the pAUC in
Theorem 1.

A resultant score function is decomposed component-
wise into functions that are useful for understanding the
associations between each marker and the outcome vari-

able, as shown in real data analysis. Natural cubic splines
that give the maximum of the pAUCBoost objective func-
tion are used for markers taking continuous values. In
addition, using decision stumps for markers that take dis-
crete or categorical values the proposed method enables
us to treat various kinds of markers together.

We have also provided a consistent way to analyze gene
expression data in the sense of the pAUC, as shown in the
analysis of the breast cancer data, ovarian cancer data and
leukemia data. The pAUC is shown to be useful by Pepe
et al. [27] for selection of informative genes, some of
which are overexpressed or underexpressed in cancer tis-
sues. However, how to combine the selected genes and
how to discriminate the cancer tissues from normal tis-
sues, have not been addressed. We nonlinearly combined
the genes ranked by the pAUC in order to produce a
score function, by which the classification of controls and
cases is done. Interestingly, we have found 4 genes in
common with the 70 genes of van't Veer et al. [31]:
Contig63649_RC, AA555029_RC, Contig40831_RC,

Figure 10 Score plots of gene expressions in ovarian cancer data. Score plots of the selected 11 genes by pAUCBoost based on ovarian cancer 
data. The rug plot at the bottoms of each score plot shows the observations from normal controls; the rug plot for ovarian cancer cases is described 
at the top of each score plot.

0.5 1.0 1.5 2.0 2.5 3.0

g1441

0
2

4
6

8
10

12

sc
or

e

0.5 1.0 1.5 2.0 2.5

g1117

0
2

4
6

8
10

12

sc
or

e

1 2 3 4

g9

0
2

4
6

8
10

12

sc
or

e

0.8 1.0 1.2 1.4 1.6

g1238
0

2
4

6
8

10
12

sc
or

e

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

g1483

0
2

4
6

8
10

12

sc
or

e

0.8 1.0 1.2 1.4 1.6 1.8 2.0

g1409

0
2

4
6

8
10

12

sc
or

e
0.0 0.5 1.0 1.5 2.0 2.5

g1491

0
2

4
6

8
10

12

sc
or

e
0.6 0.8 1.0 1.2 1.4 1.6 1.8

g49
0

2
4

6
8

10
12

sc
or

e

0.8 1.0 1.2 1.4 1.6

g1019

0
2

4
6

8
10

12

sc
or

e

0.6 0.8 1.0 1.2 1.4

g176

0
2

4
6

8
10

12

sc
or

e

1.0 1.5 2.0

g1277

0
2

4
6

8
10

12

sc
or

e



Komori and Eguchi BMC Bioinformatics 2010, 11:314
http://www.biomedcentral.com/1471-2105/11/314

Page 16 of 17

Figure 11 Score plots of gene expressions in leukemia data. Score plots of the selected 5 genes by pAUCBoost based on leukemia data. The rug 
plot at the bottoms of each score plot shows the observations from ALL; the rug plot for AML is described at the top of each score plot.
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NM_L006931. 6 genes among the selected 11 genes are
related to protein coding. We also applied pAUCBoost to
the 70 genes for comparison with the result from the 11
genes. We found that it yielded a poor result, especially
about the value of pAUC for test data. Hence, pAUC-
Boost with FPR restricted to be small should be applied to
the genes or markers that have gone through a pAUC-
based filtering procedure beforehand. In the usual analy-
sis setting, in which markers do not have especially high
values of the pAUC, AUCBoost is preferable because of
the stable performance due to the comprehensive infor-
mation it can take into the algorithm.
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