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Abstract
Background: In recent years, the number of available RNA structures has rapidly grown reflecting the increased 
interest on RNA biology. Similarly to the studies carried out two decades ago for proteins, which gave the fundamental 
grounds for developing comparative protein structure prediction methods, we are now able to quantify the 
relationship between sequence and structure conservation in RNA.

Results: Here we introduce an all-against-all sequence- and three-dimensional (3D) structure-based comparison of a 
representative set of RNA structures, which have allowed us to quantitatively confirm that: (i) there is a measurable 
relationship between sequence and structure conservation that weakens for alignments resulting in below 60% 
sequence identity, (ii) evolution tends to conserve more RNA structure than sequence, and (iii) there is a twilight zone 
for RNA homology detection.

Discussion: The computational analysis here presented quantitatively describes the relationship between sequence 
and structure for RNA molecules and defines a twilight zone region for detecting RNA homology. Our work could 
represent the theoretical basis and limitations for future developments in comparative RNA 3D structure prediction.

Background
The view of RNA as a simple information transfer mole-
cule has been challenged since the discovery of
ribozymes, a class of RNA with enzyme-like functions [1-
3]. RNA molecules are now known to carry a large reper-
tory of biological functions such as transfer of informa-
tion, enzymatic catalysis and regulation of cellular
processes [4]. Similar to proteins, functional RNA mole-
cules fold into specific three-dimensional conformations
essential for performing their biological activity. Despite
advances in characterizing the folding and unfolding of
RNA molecules [5-8] and the significant increase of RNA
structures deposited in the Protein Data Bank (PDB) [9],
our knowledge of the atomic mechanism by which RNA
molecules adopt their biological active structures is still
limited [10]. Nonetheless, it is common knowledge that
RNA 3D structure is more conserved than RNA sequence
and that such principle could be used for comparative

RNA structure prediction in a similar way it is done for
proteins [11]. It was back in the eighties when Chothia
and Lesk first quantified such evolutionary relationship
for proteins [12-14]. Their seminal works on the relation-
ship between protein sequence and structure conserva-
tion provided the theoretical grounds for many
computational approaches in comparative protein struc-
ture and function prediction [11,15]. Their work con-
cluded that the overall structural changes between two
homologous proteins were proportional to their sequence
differences. It was then estimated that homologous pro-
teins aligning with less than 20% sequence identity could
have large structural differences [14]. Such findings were
later confirmed and expanded by several other studies
[16-20].

For RNA, the axiom of "function is more conserved
than structure and structure is more conserved than
sequence" has been adopted since the end of the sixties
[21] and even reinforced with the analysis of newly deter-
mined large RNA containing complexes such as the ribo-
some [22-29]. The wealth of new structures has
prompted the development of computational methods
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for classifying RNA molecules [30-34], describing their
structural features [35-37] assigning their functions
[34,38] comparing their structures [39-41] and predicting
their structures [42-45]. For example, the relationship
between sequence and structure in RNA molecules has
previously been characterized for the RNA ribose zipper
[28], the C1 region of the env HIV1 gene [46] and RNA
loop regions [47,48]. A new method that relies on sec-
ondary structure information to align homolog RNA
sequences was also recently developed [49]. Finally, with
the aim of characterizing RNA structure diversity, Abra-
ham and co-workers recently studied the RNA conserva-
tion at three levels: primary, secondary, and tertiary
structure. The work resulted in the DARTS database [34],
which constitutes a new classification of RNA structure
after the SCOR database [31]. However, to date no gen-
eral large-scale study has systematically addressed the
quantitative analysis of the relationship between
sequence and structure conservation in RNA molecules.
The work here introduced aims to address such gap by
performing an all-against-all comparison of 451 non-
identical (that is, 100% sequence identity) RNA structures
from the PDB. The resulting analysis confirms in a gen-
eral and quantitative manner the relationship between
sequence and structure conservation in RNA molecules
as well as allows the definition of a "twilight zone" for
RNA homology detection.

We begin this article by describing the results of an all-
against-all comparison of a non-identical RNA structure
set (Results). Next, we discuss the impact that our find-
ings could have in the development of comparative
approaches for RNA structure prediction (Discussion).
Finally, we end by detailing the methodology used for
aligning and assessing RNA alignments (Materials and
Methods).

Results
Accurate pair-wise alignments of RNA structures
All pair-wise RNA structure alignments were generated
by the SARA program [41] using the 114 non-identical
RNA structures in the HA-RNA09 dataset. The SARA
program was run with default parameters and selecting
only based-paired regions of the structures (Methods).
HA-RNA09 included 589 pair-wise alignments between
39 tRNA (34.2%), 21 23S Ribosomal RNA (18.4%), 14
riboswitches (12.3%), 11 Ribozymes (9.6%), 10 5S Ribo-
somal RNA (8.8%), 9 16S Ribosomal RNA (7.9%) an 10
other RNA structures (8,8%). Such alignments super-
posed with PSI values (i.e., percentage of C3' atoms
within 4.0 Å RMSD) higher than 60% and only 3 align-
ments resulted in less than 75% PSI. The average PSI
value for the 589 pair-wise alignments was 90.4%, which
corresponded to a core RNA size ranging from ~50 to
~2,800 nucleotides. The superimposition of the Staphylo-

coccus phage group I ribozyme (1y0q PDB identifier,
chain A) and a fragment of the synthetic construct group
I Intron (1u6b PDB identifier, chain B) resulted in 60.9%
aligned C3' atoms, which corresponded to a structural
core of 120 nucleotides (Figure 1A). About 48% of the
pair-wise alignments in the HA-RNA09 dataset aligned
two tRNA molecules. The alignment of a tRNA(Leu) of
Pyrococcus horikoshii (1wz2 PDB identifier, chain C) and
the tRNA(Met) of Acuifex aeolicus (2ct8 PDB identifier,
chain C) resulted in 65 core nucleotides within 1.9 Å
RMSD (Figure 1B). About 14% of the alignments in the
HA-RNA09 dataset superposed a pair RNA structures
that did not include either a tRNA or a ribosomal RNA.
The alignment of two synthetic constructs P4-P6 RNA
ribozyme domains (1l8v and 2r8s PDB identifiers, chains
A and R, respectively) resulted in 134 core nucleotides
within 1.8 Å RMSD (Figure 1C). Finally, ~38% of the
alignments in the HA-RNA09 dataset corresponded to
alignments between ribosomal RNA molecules. The
alignment of 23S ribosomal RNA of Haloarcula maris-
mortui (3cce PDB identifier, chain 0) and 23S ribosomal
RNA of Thermus thermophilus (3d5b PDB identifier,
chain A) resulted in 2,347 core nucleotides within 1.7 Å
RMSD (Figure 1D).

The relationship between sequence and structure 
conservation in RNA
All the alignments in the HA-RNA09 set superposed a
medium to large structurally conserved RNA core. The
structure diversity between the selected pairs of RNA
structure cores had a measurable relationship to the
sequence diversity, which best fitted an exponential decay
curve with a 0.67 correlation coefficient (Figure 2A). Sim-
ilar to proteins, the structure identity decreased with the
decrease of the sequence identity and the structure of the
core was more conserved than its sequence. The median
of the percentage of sequence and structure identity for
the 589 alignments in the HA-RNA09 set were 52.3% and
89.0%, respectively. Sequence identity ranged from 29.2
to 100.0%, with 95% of the alignments with PID (i.e., per-
centage of sequence identity) higher than 34.2%. Struc-
ture identity ranged from 60.9 to 100.0%, with 95% of the
alignments with PSI higher than 81.2%. The same trend is
observed by comparing sequence conservation (PID)
with structure diversity (structure core RMSD) (Figure
2B). The relationship between RMSD and percentage of
sequence identity fits an exponential curve with a 0.77
correlation coefficient. It is important to note that the
pair-wise structure alignments appeared to cluster into
two groups around sequence identity ranges of 30-60%
and 90-100%. The correlation coefficient between RMSD
and sequence identity in the two groups was 0.34 (p =
8.7·10-11) for 30-60% and 0.63 (p = 3.8·10-15) for 90-100%,
which indicates that as sequence identity decreases, the
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Figure 1 Accurate RNA structure alignments. (A) Staphylococcus phage group I ribozyme (1y0q PDB identifier, chain A) superimposed to a fragment 
a synthetic construct group I Intron (1u6b PDB identifier, chain B). (B) tRNA(Leu) of Pyrococcus horikoshii (1wz2 PDB identifier, chain C) superimposed 
to the tRNA(Met) of Acuifex aeolicus (2ct8 PDB identifier, chain C). (C) Superimposition of two synthetic constructs P4-P6 RNA ribozyme domain (1l8v 
and 2r8s PDB identifiers, chains A and R). (D) 23S ribosomal RNA of Haloarcula marismortui (3cce PDB identifier, chains 0) superimposed to the 23S 
ribosomal RNA of Thermus thermophilus (3d5b PDB identifier, chain A).

Staphylococcus phage group I ribozyme (1y0q:A)
Synthetic I Intron fragment (1u6b:B)

Aligned nucleotides:    120
RMSD:       1.8 Å
Sequence Identity:    34.0 %
Secondary Structure Identity:  52.1 %
Structure Identity:    60.9 %
Sequence -ln(p-value):   18.2
Secondary structure -ln(p-value): 10.3
Structure -ln(p-value):   15.6
Mean -ln(p-value):     14.7

Synthetic P4-P6 RNA ribozyme (1l8v:A)
Synthetic P4-P6 RNA ribozyme (2r8s:R)

Aligned nucleotides:    134
RMSD:       1.8 Å
Sequence Identity:    80.9 %
Secondary Structure Identity:  81.0 %
Structure Identity:    85.4 %
Sequence -ln(p-value):   37.0
Secondary structure -ln(p-value): 17.1
Structure -ln(p-value):   19.4
Mean -ln(p-value):     24.5

Pyrococcus horikoshii tRNA(Leu) (1wz2:C)
Acuifex aeolicus tRNA(Met) (2ct8:C)

Aligned nucleotides:     65
RMSD:       1.9 Å
Sequence Identity:    56.8 %
Secondary Structure Identity:  88.5 %
Structure Identity:    87.8 %
Sequence -ln(p-value):   10.2
Secondary structure -ln(p-value):  5.2
Structure -ln(p-value):    7.2
Mean -ln(p-value):      7.5

A

DC

B

Haloarcula marismortui 23S RNA (3cce:0)
Thermus thermophilus 23S RNA (3d5b:A)

Aligned nucleotides:      2,347
RMSD:       1.7 Å
Sequence Identity:    52.7 %
Secondary Structure Identity:  75.7 %
Structure Identity:    85.2 %
Sequence -ln(p-value):   37.0
Secondary structure -ln(p-value): 37.0
Structure -ln(p-value):   37.0
Mean -ln(p-value):     37.0
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relationship between sequence and structure conserva-
tion weakens. Furthermore, to assess the impact of the
sequence high identity alignments (95-100%) in the fit-
ting of our exponential curves, we removed all pair-wise
alignments with sequence identity higher than 95%. The
correlation coefficient between RMSD and PID
decreased to 0.66 but remained statistically significant (p
= 1.5·10-57). A similar clustering of the sequence space
was previously observed for proteins [19,50], where there
was an increase of frequency of alignments with low

sequence identity (20-40%) as well as high sequence iden-
tity (90-100%).

As previously observed, this analysis quantitatively
confirmed that RNA secondary structure largely deter-
mines tertiary structure. The relationship between sec-
ondary structure and tertiary structure conservation in
RNA best fitted an exponential decay curve with a corre-
lation coefficient of 0.73 (Figure 2C). The median of sec-
ondary structure identity (PSS) for the 589 alignments in
the HA-RNA09 set was 85.7%, which agrees with previ-

Figure 2 The relationship between sequence and structure conservation in RNA. (A) Relationship between sequence and structure conserva-
tion in RNA shown for the 589 pair-wise structure alignments in the HA-RNA09 dataset. Points are colored proportional to the mean of the negative 
logarithm of the three p-value cut-offs (-ln(PPID), -ln(PPSS), and -ln(PPSI)). Example pair-wise alignments are highlighted with the letters of their respective 
panels in Figure 1. (B) Relationship between RMSD and sequence conservation. (C) Relationship between secondary and tertiary structure conserva-
tion. (D) Relationship between sequence and secondary structure conservation.

%
 o

f 
st

ru
ct

u
re

 id
en

ti
ty

 (
P

S
I)

PSI � 96.7 (1� e�0.051 *PID )

R � 0.67

p �1.8·10 �78

<
-ln
(p
-v
al
ue
)>

5

13

21

29

37

% of sequence identity (PID)% of sequence identity (PID)

B
A D

C

DC

BA

PSS �91.2 (1� e�0.053 *SID )

r � 0.37

p � 2.9·10�20

PSI � 118.8 (1� e �0.016 *PSS )

r � 0.73

p � 1.1·10�97

%
 o

f 
st

ru
ct

u
re

 id
en

ti
ty

 (
P

S
I)

% of secondary structure identity (PSS) % of sequence identity (PID)

%
 o

f 
se

co
n

d
ar

y 
st

ru
ct

u
re

 id
en

ti
ty

 (
P

S
S

)
R

M
S

D
 (

Å
)

RMSD � 3.4. e-0.013*PID

R � 0.77

p �2.7·10 �118

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
0.0

0.5

1.0

1.5

2.0

2.5

3.0



Capriotti and Marti-Renom BMC Bioinformatics 2010, 11:322
http://www.biomedcentral.com/1471-2105/11/322

Page 5 of 10
ous analysis [34]. However, there was a weaker relation-
ship between sequence and secondary structure
conservation in RNA, which could only be fitted to an
exponential decay curve with a correlation coefficient of
0.37 (Figure 2D). Pairs of structures that align with rela-
tively high sequence identity could have different second-
ary structures. For example, the alignment of two group I
introns (1hr2 and 1x8w PDB identifiers, chains A)
resulted in 75.6% sequence identity and only 54.7% sec-
ondary structure identity.

A "twilight zone" for RNA sequence alignments
The 101,475 pair-wise alignments in the RNA09 dataset
were divided into three different groups depending on
the -ln(PPID), -ln(PPSS), and -ln(PPSI) cut-offs, which were
calculated using the background distribution of similarity
scores from a set of 3D structural alignments between
RNA molecules with sequence identity lower than 25%
(Methods). The resulting groups included: (i) true posi-
tive alignments between related structures with all three
cut-offs higher than 4.5, (ii) true negative alignments
between dissimilar structures with all three cut-offs lower
than or equal to 4.5, and (iii) medium accuracy align-
ments with one or two cut-offs higher than 4.5. The
sequences of all pair-wise alignments within each group
were aligned using the sequence-based alignment pro-
gram Infernal [51]. This division and alignment allowed
us to study of relationship between alignment signifi-
cance (i.e., Infernal e-value) and the length of the align-
ment (i.e., shortest sequence between the aligned RNA)
as well as to assess the difficulty detecting homology
based solely on sequence information. Similar to proteins
[19], we observed a "twilight zone" for sequence align-
ment where true relationship was difficult to assess (Fig-
ure 3A). The curve that best separated true positive pairs
(green dots) from false positive pairs (orange dots) expo-
nentially decayed from 10-10 e-value for RNA sequences
of ~50 nucleotides and leveled at ~5·10-4 e-value for RNA
larger than 100 nucleotides (Figure 3B). Pair-wise align-
ments below the "twilight zone" curve included 98,841
true negatives (i.e., unrelated pairs below the curve) and
only 152 false positives (i.e., unrelated pairs above the
curve). There were a total of 262 RNA structure pairs
with all three p-values higher than or equal to 4.5 that
were very difficult to detect based on the Infernal align-
ment score. Those pairs of sequences, which corre-
sponded mainly to tRNA molecules, aligned between 67
and 78 nucleotides with mean sequence identities of
41.7% and constitute a 23.2% of false negative rate (i.e.,
true related pairs below the fitted curve). The analysis of
the 262 false negative pair-wise alignments showed that
their average PID was much lower (41.7%) than for the
pairs of related structure above the "twilight zone" (71.2%
average PID). However, the secondary structure of those

pairs resulted in an 83.1% average PSS indicating that
even though their sequences diverged, their secondary
and tertiary structures were conserved. This set thus
becomes a very difficult set of related RNA structures to
detect by sequence alignment methods.

Discussion
Our analysis indicate that two related RNA molecules
conserve a structure core of at least ~50 nucleotides,
which can be superimposed within 4.0 Å RMSD. Such
conserved structure core starts diverging as sequence
identity decreases below 50% and becomes noteworthy
(i.e., structural divergence >20%) for pairs of RNA struc-
tures that superimpose with sequence identity below
40%. Moreover, the exact relationship between sequence
and structure conservation for pairs of distant RNA mol-
ecules (that is, resulting in 30 to 60% sequence identity
alignments) is less evident, which results in a correlation
coefficient of 0.34. Homologous pairs of RNA molecules
will diverge into different structures when there is a sig-
nificant decrease in the identity of their sequences.
Therefore, it is more difficult to assess structure conser-
vation based on sequence diversity in the low regime of
sequence identity (i.e, <60%). Highly similar structures
conserve their base pairing. The degree of conservation
between tertiary and secondary structure in RNA results
in a correlation of 0.73. However, the relationship
between sequence and secondary structure conservation
is weakly correlated, which agrees with the difficulty of
predicting secondary structure from RNA sequence
alone. Similar conclusions were obtained with the ARTS
program, which used a >90% secondary structure identity
threshold for structural classification of RNA [34]. Our
results show that for conserved RNA structure cores,
high secondary structure identity implies high tertiary
structure identity but not necessarily high sequence iden-
tity. This reflects the co-variation effect in RNA that
requires balancing a single mutation with a second
change in the based-paired nucleotide to maintain its
secondary and tertiary structures.

To accurately detect a pair of related RNA structures
from sequence, their alignment should result in Infernal
e-values smaller than 5·10-4. This result indicate that for
RNA, likewise for proteins [19], there is a "twilight zone"
for the practical application of homology-based
approaches for RNA structure prediction. Using the
Infernal program with an e-value cut-off of 5·10-4, we
identified 50,523 pair-wise alignments between RNA
sequences from the RFam database [52] and known RNA
structures. This represents 26.2% and 4.5% coverage of all
sequences and families in the RFam database, respec-
tively. Of those, 90.7% (45,812) were between two
sequences that result in alignments above the "twilight
zone" curve and represent a set of query sequences for
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which comparative RNA structure prediction could reli-
ably be used.

It is important to note that our study is currently
affected by two circumstances. First, the distribution of
RNA structures deposited in the PDB is rather scattered.
It is known that the RNA structures in the PDB do not
evenly represent the entire RNA structure space. To min-
imize such problem, we have used a pre-selected dataset
of non-identical RNA structures (identity cut-off of
100%) as well as removing alignments between a struc-
ture and its sub-structures. Moreover, such problem will
become less relevant with time given the increased pace
of deposition of new RNA structures in the PDB. Second,
RNA motif comparison has classically been centered on
small RNA fragments of about 10 to 30 nucleotides.
However, given the intrinsic difficulty of discerning sig-
nificant alignments from random pairs of short RNA
structures or motifs, our work has focused on identifying
structural cores of at least ~50 nucleotides.

Conclusions
Despite the increasing interest on RNA function and the
accelerated deposition of RNA structures, there was a gap
between the common knowledge and a quantitative anal-

ysis of the relationship between sequence and structure
conservation in RNA. Here we have addressed this
knowledge gap by applying our RNA alignment method
[41] to a set of 451 non-identical RNA structures. The
relationship we quantified confirms previous studies in
ribosomal RNA [25,27,28,53] and could prove useful to
assess whether a particular alignment could be reliably
used for comparative RNA structure prediction. We have
quantitatively shown that: (i) there is an exponential
decay relationship between sequence and structure con-
servation, (ii) evolution tends to conserve more structure
than sequence, and (iii) there is a "twilight zone" for RNA
homology detection.

Our study provides an initial assessment of the current
limits of comparative modeling of RNA structures. We
anticipate that our work will aid the development of new
methods for RNA structure prediction from sequence. In
the near future, it is expected that large-scale compara-
tive modeling of RNA structures will extend opportuni-
ties for answering key questions about RNA evolution,
such as the origin of RNA as functional molecules [54].
We have estimated that it would be possible to model by
comparative modeling segments of approximately one
quarter of all RNA sequences in the RFam database. More

Figure 3 "Twilight zone" for RNA sequence alignments. The length of the shorter of the two aligned sequences (N) is plotted against the e-value 
of aligning both sequences with the Infernal program. (A) Result from an all-against-all sequence comparison of the RNA sequences in the RNA09 
dataset. Green dots correspond to true positive relationships (i.e., with -ln(PPID), -ln(PPSS), and -ln(PPSI) higher than 4.5). Blue dots correspond to medium 
accuracy alignments (i.e., with at least one of the three scores below or equal to 4.5). Orange dots correspond to true negatives relationships (i.e., with 
-ln(PPID), -ln(PPSS), and -ln(PPSI) lower or equal to 4.5). The inner plot shows the results for alignments with N shorter than 500 nucleotides. (B) The best-
fit curve (red line in panels A and B) that optimally separates true positive from true negative. Matthew's correlation coefficient of 0.81 (-Log10(e-value) 

= 3.11+3.62e+02·e-0.0798N, fitting correlation coefficient 0.85, probability 1.6·10-2).

A

All -log(p-values) ≤ 4.5
At least one -log(p-value) ≤ 4.5
All -log(p-values) > 4.5
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accurate RNA sequence alignment methods, including
those that explicitly use base-pairing information, will be
needed to increase the coverage, diversity and accuracy of
reliable comparative RNA 3D structure models. Assum-
ing the current growth rate in the number of known RNA
structures, comparative modeling will be applicable to a
significant number of RNA families within the next few
years and thus could play an important bridging role in
understanding the atomic mechanisms of RNA folding.

Methods
Two types of RNA alignments were obtained in our
experiment. First, 3D structure-based alignments, which
were produced by the SARA program [41] and used to
characterize the relationship between sequence and sec-
ondary/tertiary structure conservation in RNA. Second,
sequence-based alignments, which were produced by the
Infernal program [51] and used to characterize a "twilight
zone" for RNA homology detection.

Structure-based RNA alignments
Pairs of RNA structures were aligned using the SARA
program, which is based on the unit vector approach [55].
A similar approach was previously used for protein struc-
ture alignment by the MAMMOTH program [56].
Briefly, SARA alignments were built by the following pro-
cedure: (i) given a RNA structure with N nucleotides, for
each i = 1,...,N-1 extract the vector from the i-th to the
(i+1)-st selected atoms; (ii) normalize all vectors to a
unit-distance, and place the tails of all normalized vectors
at the origin of a unit-sphere; the resulting collection of
normalized vectors is the unit-vector representation of
the input RNA. In this work, SARA aligned two RNA
structures by selecting only C3' atoms involved in base-
pairing as computed by the 3DNA program [57]; (iii) cal-
culate the Unit-vector RMS distance between two sets of
unit vectors as a score for local RNA structural compari-
son. This is equivalent to the root mean square deviation
(RMSD) between their corresponding normalized vectors
after determining the rotation to minimize the RMSD
[58]; (iv) the comparison of consecutive unit-spheres gen-
erates an all-against-all similarity scoring matrix, which is
used in a dynamic programming procedure for the global
alignment of two RNA structures using zero end gap pen-
alties [59]; (v) the output alignment is then refined by
maximizing the number of equivalent atoms or base-
pairs within 3.5 Å RMSD using a variant of the MaxSub
algorithm, which ensures that the best local alignment is
contained in the resulting alignment [56,60]; and (vi)
three p-value and their negative logarithms are calculated
to assess the statistical significance of the resulting align-
ment scores.

The three alignment scores calculated by SARA are:
first, percentage structure identity (PSI):

where nal is the number of aligned C3' atoms within a
threshold distance of 4.0 Å and N is the length of the
shortest of the two RNA structures. Second, percentage
of aligned secondary structure (PSS):

where pal is the number of aligned base pairs within a
threshold distance of 4.0 Å and NP is the smallest number
of base pairs of the two aligned RNA structures. Two base
pairs are aligned when both C3' atoms of the interacting
nucleotides in the first structure are below 4.0 Å to the
two C3' of the interacting nucleotides in the second struc-
ture. Third, percentage of sequence identity (PID):

where nid is the number of identical nucleotide types
aligned in the structural alignment and N is the length of
the shortest of the two RNA structures.

After an alignment is produced, SARA calculates the
PSI, PSS and PID scores as well as their associated p-val-
ues for estimating the probability of obtaining an equal-
or better-scored alignment by chance. The distribution of
the accuracy scores (i.e., PSI, PSS and PID) for alignments
between unrelated RNA structures follows an extreme
value distribution and the probability for a given align-
ment to obtain a score x larger than z can be calculated by
integrating the Gumbel distribution:

where γ = 0.5772 and z is

where μ, σ are the values that best fit the extreme value
distribution (Eqn. 4 and Additional file 1 Figure S1).

Sequence-based RNA alignments
To assess the limits of RNA homology detection, we used
the Infernal program [51] to generate a set of covariance
models (CMs) for each structure in the RNA09 dataset.
The CMs were built using known RNA secondary struc-
tures calculated by the 3DNA program [57] from the 3D

PSI
nal
N

= 100 (1)

PSS
pal
NP

= 100 (2)

PID
nid
N

= 100 (3)

P x z z( ) exp exp> = − − − −⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜

⎞

⎠
⎟1

6
p g (4)

z
x= −m
s

(5)
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coordinates of the structures. An arbitrary random
sequence length of 4 Mb was set to calibrate the local
covariance model, which exceed the length of largest
ribosomal RNA sequences in the RNA09 dataset (~2900
nt). We then performed a leave-one-out procedure
removing from the RNA09 dataset one RNA entry at the
time and treating it as target sequence of unknown struc-
ture. Each target was aligned with Infernal against the
remaining set of CMs of known structures or templates.
The size of the search space was set to 200 Mb during the
search step. All other parameters in Infernal were set at
their default values. The searching by Infernal returned a
list of hits of each target sequence and the e-value of the
statistical significance of the alignments. Infernal resulted
in 2,335 top hits with e-value lower than 1.0, which where
stored and used to calculate a "twilight zone" for RNA
homology detection. Additionally, all the 451 covariance
models generated from the RNA structures in RNA09
dataset where used to search homologous RNA
sequences in the RFam database using the same Infernal-
based protocol. Such analysis allowed us to assess the
likely impact of comparative RNA structure prediction.

Alignments datasets
As of March 2009, the PDB database stored a total of
1,534 structure files containing at least one RNA chain.
This initial dataset of structures was filtered by removing
RNA structures that: (i) were less than 20 nucleotides
long and had less than 4 base pairs; and (ii) were 100%
identical in sequence to another RNA structure in the
dataset. The final dataset (RNA09) included 451 RNA
chains from 417 PDB entries (Table 1 and Additional file
2). Next, an all-against-all comparison of the structures in
the RNA09 set using the SARA program [41] was carried
out and resulted in 101,475 pair-wise RNA structure
alignments, which were used to create two other datasets:
(i) the non-related structure alignments dataset (NR-
RNA09), which included 50,995 pair-wise alignments
(Table 1 and Additional file 3) and (ii) the highly accurate
structure alignments dataset (HA-RNA09), which
included 589 pair-wise alignments (Table 1 and Addi-
tional file 4). The NR-RNA09 dataset was generated by
selecting only pair-wise alignments in the RNA09 dataset
with sequence identity below 25% and was used for calcu-
lating the background distribution of identity scores
(Additional file 1 Figure S1). The HA-RNA09 dataset was

generated by selecting high-scored alignments (i.e., with
all three negative logarithm of p-value -ln(PPSI), -ln(PPSS),
and -ln(PPID) higher than or equal to 4.5) with a crystallo-
graphic resolution higher than 5 Å and removing all
alignments between a RNA structure and its sub-struc-
tures. The ability of the negative logarithm p-values
scores for identifying biologically relevant alignments
was previously tested by means of functional annotation
of the SCOR database [31,38]. The HA-RNA09 dataset,
which was generated after applying this triple cut-off to
the RNA09 dataset and removing sub-structures, repre-
sented a set of related non-identical high-resolution RNA
structures. Therefore, the HA-RNA09 dataset is a good
compromise between the need of a large set of align-
ments and the appropriate sampling of the sequence and
structure spaces. The entire datasets of RNA structures
and alignments used in this work are available as Addi-
tional files as well as for downloading at http://sgu.bio-
info.cipf.es/datasets.
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