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Abstract

developed.

running on a conventional Linux server.

Background: Many analyses of microarray association studies involve permutation, bootstrap resampling and cross-
validation, that are ideally formulated as embarrassingly parallel computing problems. Given that these analyses are
computationally intensive, scalable approaches that can take advantage of multi-core processor systems need to be

Results: We have developed a CUDA based implementation, permGPU, that employs graphics processing units in
microarray association studies. We illustrate the performance and applicability of permGPU within the context of
permutation resampling for a number of test statistics. An extensive simulation study demonstrates a dramatic
increase in performance when using permGPU on an NVIDIA GTX 280 card compared to an optimized C/C++ solution

Conclusions: permGPU is available as an open-source stand-alone application and as an extension package for the R
statistical environment. It provides a dramatic increase in performance for permutation resampling analysis in the
context of microarray association studies. The current version offers six test statistics for carrying out permutation
resampling analyses for binary, quantitative and censored time-to-event traits.

Background

Many resampling algorithms used in microarray associa-
tion studies can be formulated within the framework of
embarrassingly parallel problems in the sense that the
algorithm can be split up into smaller components which
can be completed mutually independently of each other
[1]. Standard algorithms used in this context include per-
mutation and bootstrap resampling, and cross-validation.
These algorithms consist of replicates which can be pro-
cessed independently of each other. Furthermore, each
replicate consists of the calculation of a large number of
test statistics. The calculation of these test statistics can
often be divided into independent parts. There are sev-
eral protocols, including MPI [2] and OpenMP [3], that
facilitate parallel programming for these algorithms.

Due to their highly parallel structure, Graphics Process-
ing Units (GPU) are more effective than general-purpose
Central Processing Units (CPU) for a set of algorithms
widely used in the quantitative biomedical sciences. This

* Correspondence: kouros.owzar@duke.edu

' Department of Biostatistics and Bioinformatics, Duke University, 2424 Erwin
Road, Durham, NC 27705, USA
Full list of author information is available at the end of the article

has been demonstrated by using GPUs for example in fea-
ture detection in proteomics experiments [4], analysis of
epistasis [5], statistical phylogenetics [6], and sequence
alignment algorithms [7-10]. The R [11] extension pack-
age gputools [12] provides GPU enabled implementa-
tions of a set of commonly used functions for analysis of
microarray data. Another attractive feature of using a
GPU is that the hardware is relatively inexpensive, cur-
rently ranging from $400 to $800 for consumer grade
cards (e.g., GTX 280, GTX 295) and $1200 to $2500 for
high-end cards (e.g., Firestream 9270, Tesla C1060, Tesla
C2050), compared to high-end multi-core workstations
or cluster farms. GPU hardware can be easily added to
existing workstations.

The primary focus of many published microarray asso-
ciation studies is the identification of genes differentially
expressed with respect to a binary trait. An extensively
cited example is the data set reported by Golub et al [13]
who identified genes differentially expressed in Acute
Myeloid Leukemia (AML) and Acute Lymphoblastic Leu-
kemia (ALL). For many microarray experiments, espe-
cially those in cancer, the primary endpoint of interest is
not a binary outcome but rather a censored time-to-event
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outcome such as time to death or time to relapse. An
example is the data set reported by Beer et al [14] who
identified genes associated with survival in early-stage
Lung Adenocarcinoma. More recently, the Director's
Challenge Consortium (DCC) for the Molecular Classifi-
cation of Lung Adenocarcinoma reported predictive
models for survival, based on gene expression profiles
and clinical data from 442 patients with Adenocarcinoma
Lung Cancer [15]. The Repository of Molecular Brain
Neoplasia Data (Rembrandt) database currently provides
566 gene expression arrays and survival outcomes from
brain cancer patients [16]. In this context, cases for which
the event of interest is not realized (e.g., patients who are
still alive) at the time of the analysis are censored. Specifi-
cally, let Y0 denote the time of event and let C be the cen-
soring time. What is observed is not Y0 but rather Y =

min{Y?, C} along with event indicator A = I (Y°<C). The
censoring times vary among patients since they are regis-
tered to studies at different times. A proper analysis must
take into account not only the distribution of Y9, called
the survival distribution, but also the censoring mecha-
nism induced by the distribution of the censoring time C.
A popular approach for analyzing time-to-event out-
comes is to dichotomize the outcome at a given land-
mark, say 7 > 0, that is believed to be clinically and
biologically relevant [17]. For example, suppose that for a
specific cohort of early stage Lung Adenocarcinoma
patients, the median survival time 7 = 5 years. In this
case, one may categorize patients who live less than five
years as high risk and those who live at least five years as
low risk. This type of simplification allows for the use of
methods and software tools developed for binary out-
comes, but is not an optimal approach as the censoring
mechanism is entirely ignored while the survival distribu-
tion is considered only at a single time-point (i.e, at 7=5
years). In a recent article, Subramanian and Simon [17]
conducted a critical review of sixteen published prognos-
tic signatures in lung cancer and provided guidelines for
statistical analysis in this context. Avoiding this type of
binary transformation is the first item in this set of guide-
lines. Thus, software tools which can expeditiously con-
duct large-scale association testing for censored time-to-
event outcomes are of great importance.

In this paper, we present a Compute Unified Device
Architecture (CUDA) [18] framework, permGPU, that
employs GPUs in microarray association studies. We
illustrate the performance and applicability of permGPU
within the context of permutation resampling for a num-
ber of test statistics. The software is provided as a stand-
alone application that can be used to carry out permuta-
tion resampling inference for binary (e.g., case versus
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control), quantitative (e.g., blood pressure) or censored
time-to-event (e.g., time to death) traits. For wider use,
we also have integrated permGPU into the R statistical
environment as an extension package. The source code
along with documentation is provided in Additional File

1. Updates will be available from http://code.google.com/
p/permgpu/.

Implementation

We illustrate our framework using a simulation study by
implementing a single-step multiple testing procedure
based on the maximum statistic as described in [19] and
[20]. The CUDA toolkit from NVIDIA, a minimal set of
extensions to the C and C++ languages, is used for pro-
gramming on a GTX 280 GPU, with 240 processor cores
and 1 GB of memory. For comparison, we carry out a tim-
ing analysis based on a single CPU. The CPU code is
compiled using g++ version 4.3.2 with —-03 and -fun-
roll-loops, while the GPU code is compiled using
nvcc with -02 and --use_ fast math optimization
flags. The current implementation is designed for CUDA
enabled GPUs.

Both the GPU and CPU analyses are carried out on a
2.83 GHz Intel(R) Core(TM)2 Quad CPU Q9550 with 4
GB RAM of memory using the AMD64 Linux operating
system. For wider applicability to the research commu-
nity, we integrated permGPU into an R extension pack-
age. This implementation has been developed and tested
on R version 2.10.1.

The gene-expression matrix X is of dimension #n x K,
where K is the number of genes, or other features, and #
is the number of patients. The vector of outcomes is
denoted by Y while the test statistic for testing the
hypothesis of marginal association between feature k and
the outcomes is denoted as T. We consider test statistics
where the critical region is of the form {|T}| > £} for some
&> 0. For a given family-wise error rate (FWER) & (0, 1),

we determine the critical value & > 0 such that
P( U§=1| T, |>¢& ) = a under the hypothesis that no fea-

ture is associated with the outcome. The null sampling
distribution is approximated using permutation resam-

pling as follows:
1. Compute the K statistics T}, ..., Ty based on Y|X1, ...,
Y | XK,
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2.Let Y be arandom permutation of Y.
3. Compute Tlll, s TL x » permutation replicates of the
test statistics, based on Y [X1, .., ¥ | XK.

4. Compute &, =max{| Ty |,...| Ty |}
5. Repeat the last three steps B - 1 additional times.
The unadjusted and FWER adjusted two-sided permu-

tation P-values are computed as

- _ B ~
pr =B, I T I<I Ty Il

ﬁkB = B_lz:bB:l I[| T, |€ &,] respectively, where I[] is the

and

indicator function.

The code implementing our algorithm is a combination
of kernels (GPU) and functions (CPU). While most of the
calculations for the test statistics are carried out as ker-
nels on the GPU, some of the calculations are relegated to
functions on the CPU. The results of these functions are
then copied to the GPU. For example, the random shuf-
fling of the outcome is carried out only once per permu-
tation. Therefore, we found it more efficient to permute
the outcome vector on the CPU and then copy the result
to the GPU. The components of the code that compute
the K test statistics, their maximum and P-values, are
separate kernels. The kernel that computes the K test sta-
tistics is the most computationally expensive. Global
memory reads and computation are the primary bottle-
necks for speed. To increase global memory read speed,
we allocate X and other auxiliary data types via the func-
tion cudaMallocPitch( ), thus automatically assuring
aligned memory access. The random numbers are gener-
ated on the CPU. The data is copied between the CPU
and GPU using standard CUDA library functions.

Results

We illustrate the timing performance of our approach
using an extensive simulation study considering the ¢ test
statistic, for two-sample problems, the Pearson test statis-
tic, for continuous outcomes, and the Cox rank score test
statistic [21], for censored time-to-event outcomes. The
gene expression matrices are obtained by simulating n x
K mutually independent and identically distributed stan-
dard normal variates where n = 100, ..., 1000 and K =
60000. For the two-sample case, the groups are drawn
from a Bernoulli law with mean 0.5. For the continuous
case, the outcomes are drawn from a standard normal
law. For the time to event case, the expected censoring
rate is set to 0.3. The illustrations for the ¢ and Pearson
test statistics are based on B = 10000 permutations. The
CPU approach for the Cox rank score test statistic is pro-
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hibitively slow for large problems. For (1, K) = (1000,
60000), an analysis based on a mere B = 10 replicates
takes approximately 21 minutes versus only 16 seconds
on the GPU. The CPU/GPU execution time ratios along
with the GPU times (measured in seconds) are shown in
Figure 1. It can be seen that the biggest speed increase is
in the case of the survival test, where speedup factors of
78 can be observed. Next, we illustrate an application of
permGPU by conducting an analysis of the DCC [15] data
set. For this illustration, we limit our attention to finding
genes associated with survival. The analyses presented
here are based on gene expression profiles and survival
data from n = 442 patients from this data set. The
observed death rate is 0.53 (236 out of 442) and the esti-
mated median survival time is 70.5 months. The biospec-
imens are profiled on the Affymetrix GeneChip" Human
Genome U133A 2.0 array which profiles the RNA using K
= 22283 probe sets. To conduct the analysis, we pre-pro-
cessed the array source files (*.CEL) using the RMA algo-
rithm [22]. We tested the association between the
expression level of each of the K = 22283 probe sets with
survival using the Cox score test with B = 10000 permuta-
tion replicates. In Table 1, we list the probe sets signifi-
cant at most 0.05 two-sided FWER level. In addition to
the observed test statistic, the unadjusted and FWER-
adjusted permutation P-values, and the gene symbol and
description linked to the probe set are provided. Using
our GPU approach, the time required to conduct the
analysis is about 20.1 minutes while the corresponding
time based on the CPU approach is about 14.7 hours sug-
gesting a time reduction factor in the order of 43.

Discussion

Although we have limited the discussions to three tests,
our approach can be applied to most tests used for ana-
lyzing high-dimensional data. Currently, our code also
implements the Wilcoxon, Spearman and Cox score sta-
tistics, and can be extended using other test statistics
including the family of score tests. The existing six test
statistics can be used as a starting template. This may not
be the most computationally efficient approach. It may
however serve as an appropriate reference point. As in
the case of the existing six test statistics, the most effi-
cient code for any given test statistic must take full advan-
tage of the computational resources offered by both the
CPU and GPU and therefore should most likely consist of
a combination of kernels and functions.

Permutation resampling to control FWER is one
approach to address multiple testing for high-dimen-
sional data. Our method can be easily extended to use the
bootstrap via resampling with replacement. The false-dis-
covery rate (FDR) [23] is another framework for adjusting
for multiplicity. Our framework can be modified by omit-
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Table 1: Association Analysis of DCC Data
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probe set T 1~7 B 15 B Symbol Description

220658_s_at 33.7 0e+00 0.004 ARNTL2 aryl hydrocarbon receptor nuclear translocator-like 2
221249 s_at 32.5 0e+00 0.006 FAM117A  family with sequence similarity 117, member A
218507_at 27.8 0e+00 0.018 C70rf68 chromosome 7 open reading frame 68

204524 _at 27.2 0e+00 0.021 PDPK1 3-phosphoinositide dependent protein kinase-1
218498_s_at 27.2 0e+00 0.022 ERO1L ERO1-like (S. cerevisiae)

208453_s_at 27.1 0e+00 0.022 XPNPEP1  X-prolyl aminopeptidase (aminopeptidase P) 1, soluble
201250_s_at 26.4 0e+00 0.026 SLC2A1 solute carrier family 2 (facilitated glucose transporter), member 1
200621_at 254 0e+00 0.036 CSRP1  cysteine and glycine-rich protein 1

210369_at 24.8 0e+00 0.043 SWAP70 SWAP switching B-cell complex 70 kDa subunit
205308_at 24.3 0e+00 0.049 FAM164A  family with sequence similarity 164, member A

Results from survival analysis of the Director's Challenge Consortium for the Molecular Classification of Lung Adenocarcinoma (DCC) data are
shown in this table. The arrays were pre-processed using the RMA algorithm. The association between the summary expressions for each probe
set and survival were tested using the Cox score test with B= 10000 permutation replicates. Probe sets significant at the two-sided FWER level of

0.05 are listed. The test statistic, permutation unadjusted and FWER adjusted P-values are denoted by T, ﬁB ,and pB respectively. The gene

symbol and description linked to each probe set was obtained from the Bioconductor hgu133a.db (version 2.3.5) annotation package.

ting the calculation of the FWER adjusted P-values and
applying any FDR algorithm to the unadjusted permuta-
tion P-values.

In many studies, including Shedden et al [15], the pri-
mary interest is not the identification of significant fea-
tures but rather the building of predictive models. It is
neither appropriate nor practical to build the model using
all features. Feature selection is typically used to identify,
from the training data, a set of features, which are mar-
ginally important based on some criterion. Note that the
feature selection needs to be redone for each cross-vali-
dation training set. Our framework can be customized to
speedup the feature selection by recomputing the test sta-
tistic T} based on the training set.

It may be argued that for microarray data sets the per-
mutation analysis only needs to be done once and that the
gain in speed is not practically important. In practice,
however, one does not carry out a single analysis but
rather a series of analyses to assess the implications of
using a specific test statistic or pre-processing method.
As a case in point, consider the analysis of the DCC data
based on the Cox score statistic. As illustrated in [21], the
test procedure is robust with respect to the survival dis-
tribution, but is not robust with respect to the marginal
distributions of the gene expressions and is thus sensitive
to outliers. The Cox rank score statistic [21], already
implemented by permGPU, can be used to conduct a
robust analysis. If considerable discrepancies between the

sets of results from these two test statistics are observed,
then one may need to be concerned about the presence of
outliers in the microarray data. Furthermore, as pointed
out in [24], microarray association analyses are sensitive
to the pre-processing method used, especially in the pres-
ence of batch effects or outliers. For example, the DCC
data set is comprised of specimens and clinical data pro-
vided by four institutions. Thus, one should be concerned
not only about batch effects among the four sets of arrays
but also about differences among the study populations
and treatments. The conduct of, say, three additional
analyses will bring the total time expenditure to almost
2.5 days in contrast to 1.5 hours on the GPU.

Finally, as illustrated in [25], for power and sample-size
calculations, the permutation analysis needs to be
repeated N times. Our approach can be extended to
accommodate this type of analysis. For (n, K) = (600,
60000) and B = 10000, our GPU Pearson algorithm takes
about 12 seconds. A power analysis based on B = 10000
and N = 1000 would then be expected to take less than 4
hours. Since the projected speedup time factor for this
case is about 36, the expected time for completion on the
CPU would exceed 5 days.

Conclusions

A CUDA based implementation for deploying GPUs in
RNA microarray association studies has been presented.
Our implementation can be customized by incorporating
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Figure 1 CPU/GPU Time Ratios. lllustration of the CPU/GPU time ratio as a function of n, for the t, Pearson and Cox rank score [21] tests for K= 60000.
For the tand Pearson tests B= 10000 permutations are used while for the Cox rank score test B= 10 permutations are used. The GPU times (in seconds)
are also shown. The results are based on one simulation replicate.

other statistical tests and scales readily with GPU cores.
An extension for incorporating our framework into the R
statistical environment has been developed. Dramatic
increase in speed in comparison to an optimized C/C++
code was demonstrated. The increased speed becomes
more pronounced when the test statistic is computation-
ally complex or the data set size is large, which makes our
algorithm ideal for handling large genomic data sets. This
is a practical framework that can be easily implemented
using relatively inexpensive hardware.

Availability and requirements
+ Project name: permGPU
« Project home page: http://code.google.com/p/per-
mgpu/
» Operating system: Linux AMD64
+ Programming language: CUDA, C/C++ and R
+ Other requirements: CUDA SDK and Toolkit 2.0
or higher; gcc/g++ 4.3.2; R http://www.R-project.org
2.10.1; Biobase http://www.bioconductor.org 2.6.1

« License: GPL v3

Additional material

Additional file 1 Supplementary Material for: "permGPU: Using
graphics processing units in RNA microarray association studies". The
compressed tar archive contains the source code for the examples dis-
cussed in "permGPU: Using graphics processing units in RNA microarray
association studies" by Shterev et al. It also contains a tutorial for compiling
and executing the code. The development version of the code is available
for download from http://code.google.com/p/permgpu/.

Abbreviations

CPU: Central Processing Unit; CUDA: Compute Unified Device Architecture;
GPL: General Public License; GPU: Graphics Processing Unit; FDR: False Discov-
ery Rate; FWER: Family-Wise Error Rate; GTX 280: NVIDIA GeForce GTX 280; MPI:
Message Passing Interface; OpenMP: Open Multi-Processing; RNA: Ribonucleic
Acid; SDK: Software Development Kit.
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