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Abstract
Background: Genetic interaction profiles are highly informative and helpful for understanding the functional linkages 
between genes, and therefore have been extensively exploited for annotating gene functions and dissecting specific 
pathway structures. However, our understanding is rather limited to the relationship between double concurrent 
perturbation and various higher level phenotypic changes, e.g. those in cells, tissues or organs. Modifier screens, such 
as synthetic genetic arrays (SGA) can help us to understand the phenotype caused by combined gene mutations. 
Unfortunately, exhaustive tests on all possible combined mutations in any genome are vulnerable to combinatorial 
explosion and are infeasible either technically or financially. Therefore, an accurate computational approach to predict 
genetic interaction is highly desirable, and such methods have the potential of alleviating the bottleneck on 
experiment design.

Results: In this work, we introduce a computational systems biology approach for the accurate prediction of pairwise 
synthetic genetic interactions (SGI). First, a high-coverage and high-precision functional gene network (FGN) is constructed 
by integrating protein-protein interaction (PPI), protein complex and gene expression data; then, a graph-based semi-
supervised learning (SSL) classifier is utilized to identify SGI, where the topological properties of protein pairs in weighted FGN 
is used as input features of the classifier. We compare the proposed SSL method with the state-of-the-art supervised classifier, 
the support vector machines (SVM), on a benchmark dataset in S. cerevisiae to validate our method's ability to distinguish 
synthetic genetic interactions from non-interaction gene pairs. Experimental results show that the proposed method can 
accurately predict genetic interactions in S. cerevisiae (with a sensitivity of 92% and specificity of 91%). Noticeably, the SSL 
method is more efficient than SVM, especially for very small training sets and large test sets.

Conclusions: We developed a graph-based SSL classifier for predicting the SGI. The classifier employs topological 
properties of weighted FGN as input features and simultaneously employs information induced from labelled and 
unlabelled data. Our analysis indicates that the topological properties of weighted FGN can be employed to accurately 
predict SGI. Also, the graph-based SSL method outperforms the traditional standard supervised approach, especially 
when used with small training sets. The proposed method can alleviate experimental burden of exhaustive test and 
provide a useful guide for the biologist in narrowing down the candidate gene pairs with SGI. The data and source 
code implementing the method are available from the website: http://home.ustc.edu.cn/~yzh33108/
GeneticInterPred.htm
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Background
Genetic interaction analysis, in which two mutations
have a combined effect not exhibited by either mutation
alone, can reveal functional relationship between genes
and pathways, and thus have been used extensively to
shed light on pathway organization in model organisms
[1,2]. For example, proteins in the same pathway tend to
share similar synthetic lethal partners [3]. Given a pair of
genes, the number of common genetic interaction part-
ners of these two genes can be used to calculate the prob-
ability that they have physical interaction or share a
biological function. Therefore, identifying gene pairs
which participate in synthetic genetic interaction (SGI) is
very important for understanding cellular interaction and
determining functional relationships between genes.
Usually, SGI includes synthetic lethal (SL, where simulta-
neous mutation, usually deletion, on both genes causes
lethality while mutation on either gene alone does not)
and synthetic sick (SS, where simultaneous mutation of
two genes causes growth retardation) interactions. How-
ever, so far little is known about how genes interact to
produce more complicated phenotypes like the morpho-
logical variations.

Recently, modifier screening such as synthetic genetic
arrays (SGA) has been applied to experimentally test the
phenotype of all double concurrent perturbation to iden-
tify whether gene pairs have SGI [3]. Although high-
throughput SGA technology has enabled systematic con-
struction of double concurrent perturbation in many
organisms, it remains difficult and expensive to experi-
mentally map out pairwise genetic interactions for
genome-wide analysis in any single organism. For exam-
ple, the genome of S. cerevisiae includes about 6,275
genes. About 18 million double mutants need to be tested
if the analysis is carried out based on their combinatorial
nature. This number will expand to about 200 million for
the simple metazoan C. elegans (with ~20,000 genes),
posing insurmountable technical and financial obstacles.

Therefore, many computational methods for predicting
SGI have been proposed in previous works in order to
alleviate the experimental bottleneck [4,5]. A promising
solution is to predict the SGI by integrating various types
of available proteomics and genomics data. Candidate
gene pairs with SGI are computationally predicted and
validated experimentally. In [4], SS or SL gene pairs in
S.cerevisiae are successfully predicted, with 80% of the
interactions being discovered by testing 20% of all possi-
ble combinations of gene pairs. Various supervised algo-
rithms, such as artificial neural network, SVM and
decision tree, have been developed to tackle the synthetic
genetic interaction prediction problem [4,6]. In spite of
being able to handle large input spaces and deal with
noisy samples in an efficient and robust way, a main diffi-
culty facing all supervised methods is that they predict

the SGI only from labelled samples and the learning pro-
cess heavily relies on the quality of the training dataset
[7]. For example, in [4] about 519,647 experimentally
tested gene pairs of S. cerevisiae are adopted as training
dataset, which is impossible in most cases.

Usually, obtaining labelled samples is much more diffi-
cult than getting unlabelled samples. When the size of
available training set is small, traditional approaches
based on supervised learning may fail. Worse still, experi-
ment-supported genetic interactions gene pairs are far
more less in metazoans than in S. cerevisiae, thus it is
more difficult in metazoans to generate genome-wide
predictions by using supervised algorithms. Therefore, it
is desirable to develop a predictive learning algorithm
using both labelled and unlabelled samples. In this con-
text, it becomes natural that semi-supervised classifiers
are employed. SSL classifier uses available label informa-
tion as well as the wealth of unlabelled data as the input
vector. We propose a graph-based SSL method, previ-
ously presented in [8], in the context of SGI prediction.
One advantage of SSL is the compatibility to small train-
ing sets, thus it could have great potentials in organisms,
especially metazoans with less experiment-supported
genetic interaction gene pairs. We concentrate on graph-
based method due to their solid mathematical back-
ground, as well as the close relationship with kernel
methods and model visualization.

In recent years, it has been a growing and hot topic to
combine information from diverse genomic or proteomic
evidence in order to arrive at accurate and holistic net-
work [9-13]. The heterogeneous data sources, in one way
or the other, carry interaction information reflecting dif-
ferent aspects of gene associations and their function
relationships. Therefore, one of the major challenges is to
integrate these data sources and obtain a system level
view on functional relationships between genes [14]. The
successful applications have proved that an integration of
heterogeneous types of high-throughput biological data
can improve the accuracy of the groupings compared
with any single dataset alone [10,15-19]. However, despite
the success of integrated networks in other area [10],
most previous works on synthetic genetic interaction
prediction mainly consider PPI or gene expression data
alone [20-22].

In this study, we integrate PPI, protein complex and
gene expression data simultaneously to utilize more
information for more accuracy of genetic interaction pre-
diction taking the following observations into consider-
ation. PPI data is believed to contain valuable insight for
the inner working of cells. Therefore, it may provide use-
ful clues for the function of individual protein or signal-
ling pathways [23,24]. Although it is unclear which
proteins are in physical contact, protein complexes
include groups of proteins perform a certain cellular task
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together and contain rich information about functional
relationships among the involved proteins. The high-
throughput gene expression profiles are becoming essen-
tial resources for systems-level understanding of genetic
interaction [25-28]. Gene expression profiles measure the
expression levels of certain genes in genome scale. Rela-
tive to randomly paired genes, functionally interacting
genes are more likely to have similar expression patterns
and phenotypes [5,29,30]. It is assumed that genes with
similar expression profiles are involved in the control of
the same transcriptional factors and thus they are func-
tionally associated [25,31].

Network analysis is a quantitative method originating
from the social science; it studies the nodes' topology
properties related to its connectivity and position in the
network. It has become increasingly popular in diverse
areas, especially in molecular biology and computational
biology [9,32]. Network analysis is a powerful tool for
studying the relationships between two nodes in a net-
work. It has been proved in recent work that genetic
interactions are more likely to be found among proteins
that are highly connected and highly central in protein
interaction network [33]. This finding demonstrates the
correlations between topological properties of PPI net-
work and SGI between proteins. In this study, we study
the extent to which pairwise SGI can be predicted from
the topological properties of the corresponding proteins
in a FGN.

In previous works, they only consider the topological
properties of the binary protein interaction network
while ignore the underlying functional relationships
which can be reflected by the gene expression profile
[4,20]. A major limitation of these methods stems from
the fact that the weight of ties is not taken into account.
For FGN, the weights often reflect the function similarity
performed by the ties. Exploring the information that
weights hold allows us to further our understanding of
networks [34,35]. In this paper, we also present a straight-
forward generalization of a number of weighed network
properties which originally defined on the unweighted
networks. Concretely, the weighted network properties
are defined by combining weighted and topological
observables that enable us to characterize the complex
statistical properties and heterogeneity of the actual
weight of edges and nodes. This information allows us to
investigate the correlations among weighted quantities
and the underlying topological structure of the network.
The topological properties of the FGN are examined with
the aim of discovering the relationship between the net-
work properties of gene pairs and the existence of a SGI
relationship.

Results
General approach
The aim of the proposed approach is to predict genetic
interactions in Saccharomyces cerevisiae using topologi-
cal properties of two proteins in a weighted functional
gene network. The first input feature vector for the algo-
rithm is a set of network properties corresponding to
pairwise genes. The second input is a set of synthetic
genetic interaction and non-interaction pairs found from
previous large scale mutant screens. The output of this
approach is scores corresponding to the propensity of a
particular gene pair to be synthetic genetic interaction.
The overall workflow is illustrated in Figure 1.

We can see from Fig. 1 that PPI data, protein complex
data, and gene expression profiles are integrated to build
a high coverage and high precision weighted FGN. More
specifically, PPI and protein complex data are used to
determine the topology of the network. Then a clustering
analysis method is utilized to identify functionally related
groups from the gene expression profile and the weights
of the interaction are calculated based on the gene
expression profile and clustering centroids, i.e. the weight
of a PPI network derives from a metric considering the
distance of expression of individual gene and the cen-
troids of its cluster, as well as the distance between the
two cluster centroids themselves. The weights are
assigned as the confidence scores which represents their
functional coupling. Considering weights of interactions
instead of binary linkage information allows more accu-
rate modelling and will have better classification perfor-
mance [15,17].

And then, a set of topological properties are extracted
from the FGN. These network properties and the experi-
mentally obtained gene pairs which have been confirmed
to have or do not have the synthetic genetic interaction
are considered as an input vector of a SSL classifier to
predict other unknown interacting gene pairs. Con-
cretely, we use a SSL classifier to model correlations
between network properties and the existence of a SGI.
The output labels of the SSL classifier are soft labels yi 
[0, 1], which measure if the two corresponding genes par-
ticipate in a SGI. The details of above procedure are
described in the method section.

Cross validation
Performance comparisons are based on the following
Cross Validation (CV) procedures. CV is a way of choos-
ing proper benchmarking samples to assess the accuracy
and validity of a statistical model. Specifically, we ran-
domly select 1,500 known SGI pairs and 1,500 non-SGI
pairs from the dataset provided by Tong et al [3]. Thus,
the sampled dataset contain an equal number of SGI and
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non-SGI gene pairs. In n - fold CV, we randomly divide
the known SGI pairs into n subsets of approximately
equal size. Equal number of non-SGI pairs corresponding
to above n divided subsets are randomly selected and
assigned to the n subsets. Then n - 1 such subsets are
combined for training the classifier, which is subse-
quently tested on all other SGI and non-SGI pairs from
the withheld subset. This procedure is repeated n times
with each subset playing the role of the test subset once.

We use the standard Receiver Operating Curve (ROC)
to assess performance overall. We compute the sensitivity
(or true-positive rate, defined here as the fraction of SGI
gene pairs correctly predicted) and false-positive (defined
here as the fraction of non-SGI gene pairs incorrectly pre-
dicted to be SGI) by decreasing stringency levels of the
classifier (outputs soft labels). By using alternative score
thresholds, this approach can be tuned to predict a subset
of SGI with higher confidence at a small cost of sensitiv-
ity.

Experiment results
SVM has emerged as one of the most popular supervised
approaches with a wide range of applications. In particu-
lar, the previous studies have demonstrated that SVM has
better learning performance and accuracy than other
supervised algorithms, such as Artificial Neural Network
and Decision Trees [36]. Therefore, in this study we
implemented our graph-based SSL algorithm and com-
pared it with the SVM in distinguishing SGI versus non-
SGI gene pairs on the same benchmark dataset. We test
the capability of our method using different levels of spar-
sity of training set. In the experiment, 80% (5-fold CV),
50% (2-fold CV), and 20% of the known SGI and non-SGI
gene pairs are randomly chosen for training the classifier
respectively, which was subsequently tested on all other
SGI and non-SGI gene pairs from the withheld group
(This is repeated several times with each group playing
the role of the test group at least one time). Since the gene
pairs to be classified for cross-validation are randomly
chosen, we repeated each experiment five times and com-
puted the average of all the results.

Figure 2 shows a comparison result between SSL algo-
rithm and SVM method when 20% of gene pairs are
assumed to be unlabelled. Figures 3, 4 demonstrate the
performance of the two tested algorithms when 50% and
80% of gene pairs are assumed to be unlabelled respec-
tively. The proposed SSL algorithm outperforms SVM in
almost all the range of threshold. In particular, we can see
from Figure 2 that when 20% of nodes are unlabelled,
SVM has a slightly better performance in the first part of
the ROC curve while SSL achieves better results in other
part. Conversely, when 80% of nodes are unlabelled, SSL

shows much higher accuracy than SVM (see Figure 4). In
summary, the accuracy of SSL appears higher than that of
SVM classifier. Further, when labelled nodes in training
dataset are very small, the performance of SSL is signifi-
cantly better than that of SVM. SSL method can reach a
true positive rate of 92% against a false positive rate of 9%
accuracy at a maximum in our experiment. However,
Wong et al [4] reported that they predicted SSL gene
pairs in S. cerevisiae with a success rate such that 80% of
the interactions are discovered by testing <20% of the
pairs. Our algorithm has higher accuracy than their
method. Moreover, our approach only depends on pro-
tein interaction data and gene expression data, and does
not require other data source like genomic sequence data.
Our results clearly demonstrate that the FGN integrating
of proteome and genomic data can be used to predict the
SGI. We exhibit that the topological properties of FGN
for pairwise genes serve as compelling and relatively
robust determinants for the existence of synthetic genetic
interaction between genes.

As a supplementary result we also compare the perfor-
mance of proposed method on the same training dataset
between the weighted network and binary network. The
binary network is constructed by combining PPI and pro-
tein complex data. From Figure 5, we can see that the
weighted network has higher performance than that of
binary network in almost all the range of threshold. We
believe this is because for binary network the weights of
interactions are not taken into account and the informa-
tion that weights hold is not employed.

Discussion
In order to assess the suitability of using certain network
properties to classify SGI gene pairs and non-SGI pairs,
we draw the distributions of probability density for these
properties across SGI pairs and non-SGI pairs, respec-
tively. To make it simple, we just give detailed description
of four network properties, such as centrality degree,
betweenness centrality, closeness centrality and cluster-
ing coefficient. For each property, we plot the distribution
of the average value over pairwise genes and the absolute
difference across the two genes. For most properties here,
the difference in distribution of probability density across
SGI and non-SGI pairs is statistically significant (see
Additional file 1 Figure S1-S16). The distributions of the
average and difference value of each property across two
proteins in case of SGI pairs (blue lines) and non-SGI
pairs (red lines) are displayed in figure 6.

We used the Kolmogorov-Smirnov (K-S) test to com-
pare the two distributions. The null hypothesis is that the
two distributions are from the same continuous distribu-
tion. The alternative hypothesis is that they are from dif-
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ferent continuous distributions. The major contribution
of K-S test is that no distribution assumption is needed
for the data. As shown in Table 1 that all the P-values of
the KS-test are less than 0.05. From Additional file 1 Fig-
ure S17-S32, we can see that the empirical distributions
of cumulative function across SGI and non-SGI pairs are
also different. According to the result, the difference
between SGI and non-SGI samples is significant enough.
Also when viewed as part of a FGN, comparing with non-
SGI pairs, SGI pairs tends to have higher average degree,
higher average closeness centrality. We also compared the
KS-test performance in weighted FGN and binary net-
work. We can see from Table 1 that the P-values of all
network properties in weighted network are much less
than those in binary network.

Conclusions
In conclusion, a SSL prediction approach was proposed
in this paper to predict SGI by combining functional and
topological properties of FGN. Using a clustering-based
data integration method, large-scale protein interaction
data, protein complex data and multiple time-course gene
expression datasets were combined in order to build FGN
in yeast. Greater coverage and higher accuracy were
achieved in comparison with previous high-throughput
studies of PPI networks in yeast. Then, we show that
topological properties of protein pairs in a FGN can be
served as compelling and relatively robust determinants
for the existence of synthetic genetic interaction between
them. Finally, a graph-based SSL is utilized as a classifier
to model correlations between FGN properties and the
existence of a synthetic genetic interaction.

Our results clearly demonstrate that the proposed algo-
rithm can achieve better performance comparing with
previous methods. Our framework of feature representa-
tion is a general form, and it is straightforward to add
other topological properties that are relevant to this
problem. It is also possible to add other types of biologi-
cal evidences. For example, information about the func-
tion of proteins can be encoded in our framework as well.
We hope to extend this work and improve feature repre-
sentation in future so that we can detect other types of
interaction groups.

Figure 2 Comparison of the ROC curves for Semi-supervised 
learning and SVM algorithm (unknown genetic interaction and 
non-interaction gene pairs: 20%). The horizontal axis is 1-Specificity 
and vertical axis is the corresponding Sensitivity. The diagonal line de-
notes random prediction.

Figure 1 Schematic diagram for predicting the synthetic genetic interaction. The simplest case of a synthetic genetic interaction and non-inter-
action involving two genes is shown (See low left corner of Fig. 1). The green and purple nodes denote two different genes. The node with cross inside 
means it is knocked out and vice versa. Here, two single deletions would not result in cell mortality but would result in a "synthetic" lethality pheno-
type. Hit gene pair means mutations in both of these two genes would result in a "synthetic" lethality phenotype.
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Methods
Biological datasets
There are four different types of data sets used in the
study. 1) Golden standard dataset of known genetic inter-
actions (True positives, TPs) and non-interacting protein
pairs (True negatives, TNs). 2) Experimental protein-pro-
tein interaction data. 3) Experimental protein complex
data. 4) Time-lapse gene expression profiles.
Golden standard genetic interaction dataset
Using the Synthetic Genetic Array (SGA) technology,
Tong et al. screened 132 query strains (carrying muta-
tions in genes with diverse functions in cell polarity, cell
wall biosynthesis, chromosome segregation and DNA

synthesis and repair) against the complete library of
~4700 viable haploid deletion strains, and ~650,000 gene
pairs were experimentally tested and identified a total of
~4,000 synthetic lethal synthetic sick interactions, at
0.65% frequency [3]. We used this dataset as golden stan-
dard dataset to investigate synthetic genetic interaction in
S. cerevisiae.
Protein-protein interaction dataset
To computer network properties associated with protein-
protein interaction in S. Cerevisiae, we download protein
interaction data from the BioGrid database [37]. This net-
work contains 12,990 unique interactions among 4,478
proteins.
Protein complexes dataset
For protein complex, we assigned binary interactions
between any two proteins participating in a complex.
Thus in general, if there are n proteins in a protein com-
plex, we add n(n - 1)/2 binary interactions. We get the
protein complex data from [38,39]. Altogether about
49,000 interactions are added to the protein interaction
network.
Microarray gene expression data
Four sets of time course data from the DNA microarray
of S. cerevisiae are used in this study. These datasets have
also been used to study the genetic interactions in previ-
ous work [40]. The first set contains 17 time points dur-
ing the mitotic cell cycle [41]. The second set contains 6
time points during heat shock and the third set contains 9
time points during sporulation [31], and the fourth set
contains 32 time points during cell cycle [42]. Altogether
64 experimental conditions for all the genes in S. cerevi-
siae related to cell cycle are used. For the missing values
in each experiment, we substituted its gene expression

Figure 3 Comparison of the ROC curves for Semi-supervised 
learning and SVM algorithm (unknown genetic interaction and 
non-interaction gene pairs: 50%). The horizontal axis is 1-Specificity 
and vertical axis is the corresponding Sensitivity. The diagonal line de-
notes random prediction.

Figure 4 Comparison of the ROC curves for Semi-supervised 
learning and SVM algorithm (unknown genetic interaction and 
non-interaction gene pairs: 80%). The horizontal axis is 1-Specificity 
and vertical axis is the corresponding Sensitivity. The diagonal line de-
notes random prediction.

Figure 5 Semi-supervised Learning performance comparison be-
tween the weighted functional gene network and the binary net-
work (unknown genetic interaction and non-interaction gene 
pairs: 50%). The horizontal axis is 1-Specificity and vertical axis is the 
corresponding Sensitivity. The diagonal line denotes random predic-
tion.



You et al. BMC Bioinformatics 2010, 11:343
http://www.biomedcentral.com/1471-2105/11/343

Page 7 of 13
ratio to the reference state with the average ratio of all the
genes under that specific experimental condition.

Construction of functional gene networks
Linkages of the FGN carry confidence scores to represent
the functional coupling between two biological entities
they represent. In this section, we calculated the confi-
dence score of each linkage following the previous works
[25,26].

For the gene expression data, the clustering analysis is
carried out to identify functionally related groups of
genes. We denote a gene expression data set as X = {x1,
x2,...,xM}, where xi = {xi1, xi2,...,xiN} is a N dimensional vec-
tor representing gene i with N conditions. We use the
clustering algorithm to group the M genes into S,(S ≤ M -
1) different clusters C1, C2,...,Cs.

As proposed in [43], the Pearson Correlation Coeffi-
cient (PCC) is employed as a measure of similarity to
cluster genes with similar or different expression pat-
terns, which means genes with co-expressed pattern are

assigned to same cluster and vice versa. A positive PCC
value means that two genes are co-expressed, while nega-
tive value denotes that they are the opposite expressed
gene pairs. Let us consider genes xi and xj and the PCC
can be calculated as

where xikand xjkare the expression values of the kth con-

dition of the ith and jth genes respectively.  and  are
the mean values of the ith and jth genes respectively. PCC
is always in the range of (-1, 1).

At first, all genes of the gene expression profiles are
considered as a single cluster and the cluster is parti-
tioned into two disjoint clusters. Partitioning is done in
such way that xi and xj which have the most negative value

PCC x x
xik xi x jk x jk

N

xik xi x jk x jk
N

k

i j( , )
( )( )

( ) ( )
=

− −=∑

− −=∑=

1
2 2

11
NN∑

(1)

xi x j

Figure 6 The distribution of the absolute difference of (a) degree centrality, (b) closeness centrality, (c) betweenness centrality, (d) cluster-
ing coefficient across a pair of genes in case of the synthetic genetic interaction pairs (blue line) and Non-Synthetic genetic interaction 
pairs (red dashed line) in the weighted network (functional gene network). Numbers in each plot indicate the D-statistic associated with the 
Kolmogorov-Smirnov test for the difference between the two distributions and the corresponding P-value.

a b

c d
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of PCC will be assigned into two different clusters. Genes
having larger PCC value with xi compared with xj are
assigned in the cluster that contains xi. Otherwise, they
are placed in the cluster that contains xj. In the next itera-
tion, a cluster having a gene pair (xi, xj) with the most
negative PCC value will be selected and the above parti-
tioning procession is repeated until there is no negative
PCC value present between any pair of genes inside any
cluster. This kind of cluster method ensures that all pairs
of genes in any cluster are only positively correlated. It
has been proven that this method is able to obtain clus-
ters with higher biological significance than that obtained
by some other algorithms such as Fuzzy K-means, GK
and PAM clustering methods [43].

Based on the above obtained gene expression profile
which has been partitioned into a couple of clusters, we
calculate the weighted confidence scores of the interac-
tions between two proteins as below:

where xi and xj represent genes i and j with N conditions

respectively.  and  denote the centroids of the

clusters in which genes xi and xj located respectively. ||·||2

denotes the Euclidean distance. In equation (2), the con-
stant L1 is a tradeoff parameter used to tune the ratio of
the first and second term in the weight function. Accord-
ing to [44], we choose L1 = 0.3 because we assume that the
distance between centroids of two cluster more signifi-
cant comparing with the distance of each gene from its
centroid. The outcome of the integration method is a
weighted undirected graph, i.e. functional gene network.

The properties of functional gene network for predicting 
SGI
For using as input feature vector of the SSL classifier, we
compute the following topological properties of FGN for
each protein or protein pair. Here we report a total of 18
features representing 10 network properties. These net-
work properties reflect the local connectivity and global
position of the nodes in the network and are assumed to
be correlated to its functional properties. Table 2 lists the
10 types of topological properties used in this paper. The
details can be seen as below.
(1) Centrality degree
A network can be expressed by its adjacency matrix aij,
whose elements take the value 1 if an edge connects the
node vi to the node vj and 0 otherwise. In an unweighted
graph, the degree of node vx is equivalent to the number
of neighbors of node vx , which can be denoted as

W x x L x C x C

L C C

i j i x j x

x x

i j

i j

, - -

( - ) -

( ) = × +⎛
⎝⎜

⎞
⎠⎟

+ ×

1
2 2

1

2
1

(2)

Cxi
Cx j

Table 1: The statistics of network properties for SGI vs. non-SGI gene pairs

Gene pair characteristic KSStat P-value

Binary
Network

Weighted
Network

Binary
Network

Weighted
Network

Average Degree 0.0364 0.0261 0.9 0.0011

Closeness 0.0212 0.0385 0.0108 1.48E-07

Betweenness 0.0319 0.0529 1.55E-05 7.05E-14

Clustering Coefficient 0.0679 0.0691 1.41E-23 2.365E-24

Absolute
Difference

Degree 0.0587 0.0715 1.00E-17 5.71E-25

Closeness 0.0587 0.0441 1.00E-17 9.365E-10

Betweenness 0.0313 0.0414 2.35E-05 1.56E-08

Clustering Coefficient 0.0615 0.0571 1.97E-19 4.435E-26
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However, the weighted degree of node vi is the sum of
the weights of the edges between vi and its neighbors [45].

where ω is the weight between two nodes, in which ωij
is greater than 0 if node vi is tied to node vj , and the value
is the weight of the tie, which represents the strength of
the relation between the two nodes.
(2) Clustering coefficient
The clustering coefficient of a node in a network quanti-
fies how close the node and its neighbors are to being a
clique. Let Ccl(i) denote the clustering coefficient of node
vi , and it is given by the proportion of links between the
nodes within its neighbourhoods divided by the number
of links that could possibly exist between them. For an
unweighted graph, the clustering coefficient can be
defined as:

where ei is the number of the links between the neigh-
bourhoods of node i and ki is the number of the neigh-
bourhoods of node vi . For a weighted graph, the
definition of the clustering coefficient is defined as [45]

(3) Weighted Shortest Path
Both the closeness centrality and betweenness centrality
rely on the calculation of shortest path in a network.
Therefore, a first step towards extending these measures
to weighted networks is to generalize how shortest path is
defined in weighted networks.

In weighted networks, the shortest path is a path
between two nodes with the minimal sum of the weights
of its constituent edges. Since all edges have the same
weight in unweighted networks, the shortest path
between two nodes is through the smallest number of
intermediary nodes. However, a complication arises
when the ties in a network do not have the same weight
attached to them. There have been several attempts to

calculate shortest distances in weighted networks in pre-
vious work [46,47]. In our work, we applied Dijkstra's
algorithm to the weighted biological network by inverting
the positive weights in the network [47]. Thus, high val-
ues represent weak ties, whereas low values represent
strong ties.
(4) Betweenness centrality
Betweenness is a centrality measure of a node within a
networks. Nodes that occur on many shortest paths
between other nodes have higher betweenness than those
that do not. For an unweighted network, to calculate the

betweenness  of node vi, we firstly count the num-
ber of shortest paths between two nodes passing the node
vi . Let bi be the ratio of this number to the total number
of shortest paths existing between these two nodes. Then
the betweenness of node vi is the sum of bi over all pairs of
nodes in the network. We normalize it to lie between 0
and 1 by dividing above value by the total number of pairs
in the network. The betweenness for node vi is as follow

where gjk is the number of shortest geodesic paths from
node vj to vk. gjk(i) is the number of shortest geodesic
paths from vj to vk which pass through the node vi.

In the case of weighted network, we assume that the
flow in the network occurs over the paths that Dijkstra's
algorithm identifies and use this algorithm to find the
nodes that funnel the flow in the network. Then the
weighted betweenness centrality is extended by counting
the number of paths found by Dijkstra's algorithm on a
weighted network instead of the number found on a
binary network [48].
(5) Closeness centrality
Closeness is a centrality measure of a node within a net-
work. Nodes which tend to have short geodesic distances
to all other nodes within the network have higher close-
ness. In unweighted network, closeness centrality is
defined as the inverse of the average distance from one
node to all other nodes. For a weighted network, this def-
inition changes slightly. Within the adjacency matrix, for
any two nodes, vi and vj , if dij is the shortest distance from
vi to vj, then the closeness centrality of node vj is defined
as [49]
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where n is the total number of nodes in the network.
(6) Eigenvector centrality
Eigenvector centrality is a measure of the importance of a
node in a network. It assigns relative scores to all nodes in
the network based on the principle that connections to
high-scoring nodes contribute more to the score of the
node in question than equal connections to low-scoring
nodes.

Let xi denotes the score of the ith node. Let Aij be the
adjacency matrix of the network. In weighted network,
the entries of A are real numbers representing connection
strengths. For the ith node, let the eigenvector centrality
score be proportional to the sum of the scores of all nodes
which are connected to it. It can be formulated as [49]:

where λ is a constant. Defining the vector of centralities
x ={x1,x2,...,xn}, we can rewrite this equation in matrix
form as

Hence we see that x is an eigenvector of the adjacency
matrix with eigenvalue λ. In our work, we used the free
software package named igraph to calculate the eigenvec-
tor centrality of weighted network [50].

In addition to above six weighted network properties,
we also calculated several other binary network proper-
ties, such as stress centrality [51], information centrality
[52], flow betweenness centrality [53], the number of
mutual neighbors between proteins vi and vj. All of the
above ten network properties can reflect the local net-
work structure around the node or the global network
topology.

Graph-based semi-supervised classifier
The SSL is halfway between supervised and unsupervised
learning, which is very active and has recently attracted a
considerable amount of research [7,54]. In essence, there
are three different kinds of SSL algorithms being applied,
i.e., Generative models, Low density separation algo-
rithms, and Graph-based methods. In our study, we use
graph-based SSL method because of its solid mathemati-
cal background, their relationship with kernel methods,
visualization, and good results in many areas, such as
computational biology [32], web page classification [54],
or hyperspectral image classification [7]. We here present
the whole formulation of the graph-based SSL algorithm.

Consider the whole dataset being represented by χ = (χl,
χn) of labelled inputs χl = {x1, x2,...,xl} and unlabelled
inputs χn = {xl+1, xl+2,...,xn} along with a small portion of
corresponding labels {y1, y2,...,yl}. Consider a connected
weighted graph G = (V, E) with vertex V corresponding to
above n data points, with nodes L = {1, 2,...,l} correspond-

x A xi ij
j

n

j=
=∑1
1l

. (9)

lx A x= . (10)

Table 2: Features for representing synthetic interaction

Gene pair characteristic Reference Graph Type

1 Centrality degree Barrat et al. (2004) Weight

2 Clustering coefficient Barrat et al. (2004). Weight

3 Betweenness centrality Brandes. (2001) Weight

4 Closeness centrality Newman. (2001) Weight

5 Eigenvector centrality Csardi G. (1965) Weight

6 Stress centrality Freeman LC. (1977) Binary

7 Information centrality Stephenson K. (1989) Binary

8 Shortest path length Newman. (2001) Weight

9 Flow between centrality Newman. (2001) Binary

10 Mutual neighbor Newman. (2001) Binary
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ing to the labelled points with labels y1, y2,...,yl and U = {l
+ 1, l +2,...,n} corresponding to unlabelled points. For
SSL, the objective is to infer the labels {yl+1, yl+2,...,yn} of
the unlabelled data {xl+1, xl+2,...,xn}, typically l << n.

Firstly, the n × n symmetric weight matrix W on the
edges of the graph can be

where xi and xj denote the different points in the graph
G. The constant σ is a length scale hyperparameter.
Therefore nearby points in Euclidean spaces are assigned
large edge weight, and vice versa.

Then let F denotes a series of n × l matrices with non-

negative elements. A matrix 
corresponds to one certain classification on χ = (χl, χn) by
assigning each point xi a label yi = argmax xj≤l.Fij. We
define an n × l matrix Y F with Yij = 1 if xi is labelled as yi
= j and Yij = 0 otherwise.

Secondly, we build the matrix S = D-1 2WD-1 2 where D
is a diagonal matrix with the (i, i) -elements equal to the
sum of the ith row of W. Then take the iteration F(t + 1) =
αSF(t) + (1 - α)Y until the similarity matrix F converges,
where α is a predefined constant which ranges from
0 to 1.

Thirdly, let F* represent the limit of the sequence {F(t)}.
Label each point xi as a label yi = argmax xj≤C.F*ij. Because
0 <α < 1 and the eigenvalues of S ranges from -1 to 1.

Then the classification matrix can be calculated as: F* =
(1 - αS)-1Y. As in [8], F* can be obtained without iteration.
After the above steps, the labels of unlabelled data {xl+1,
xl+2,...,xn} will be assigned.

Support vector machines classifier
SVM algorithm has been proposed by Vapnik as an effec-
tive and increasingly popular learning approach for solv-
ing two-class pattern recognition problems [55]. SVM as
a typical supervised machine learning method is attrac-
tive because it is not only well founded theoretically, but

also superior in practical applications. Intuitively, SVM
classifier is based on the structure risk minimization
principle for which error bound analysis has been theo-
retically motivated. The method is defined over a vector
space where the problem is to find a decision surface that
"best" separates the data points in two classes by finding a
maximal margin. SVM has been widely applied to a num-
ber of pattern recognition areas like text categorization
[56], object recognition [57], etc. In most of these cases,
the performance of SVM is significantly better than that
of other supervised machine learning methods, including
Neural Network and Decision Tree classifier [17]. The
SVM has a number of advanced properties, including the
ability to handle large feature space, effective avoidance of
overfitting, and information condensing for the given
data set, etc. A brief introduction about SVM is given in
the Additional file 1.

Here, we describe the use of the LibSVM provided by
Chih-Chung Chang. LibSVM is an integrated software
for support vector classification [58]. It is much easy to
construct a SVM classifier. We only need to choose a ker-
nel function and regularization parameter to train the
SVM. In this study, we adopt the radial basis function
(RBF) as the kernel function whose parameters were opti-
mized by taking a n-fold cross-validation on the training
set [55]. Specifically, the grid search was used to find opti-
mal kernel parameters such as C, Gamma, which tries
values of each parameter across the specified search
range using geometric steps. Although grid search
method is computationally expensive, it is computation-
ally feasible in our cases.
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