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Abstract

Background: DNA sequence comparison is a well-studied problem, in which two DNA sequences are compared using
a weighted edit distance. Recent DNA sequencing technologies however observe an encoded form of the sequence,
rather than each DNA base individually. The encoded DNA sequence may contain technical errors, and therefore
encoded sequencing errors must be incorporated when comparing an encoded DNA sequence to a reference DNA

sequence.

Results: Although two-base encoding is currently used in practice, many other encoding schemes are possible,
whereby two ore more bases are encoded at a time. A generalized k-base encoding scheme is presented, whereby
feasible higher order encodings are better able to differentiate errors in the encoded sequence from true DNA
sequence variants. A generalized version of the previous two-base encoding DNA sequence comparison algorithm is
used to compare a k-base encoded sequence to a DNA reference sequence. Finally, simulations are performed to
evaluate the power, the false positive and false negative SNP discovery rates, and the performance time of k-base
encoding compared to previous methods as well as to the standard DNA sequence comparison algorithm.

Conclusions: The novel generalized k-base encoding scheme and resulting local alignment algorithm permits the
development of higher fidelity ligation-based next generation sequencing technology. This bioinformatic solution
affords greater robustness to errors, as well as lower false SNP discovery rates, only at the cost of computational time.

Background

DNA sequence comparison is a well studied problem in
biology and bioinformatics [1-4]. Recently, a new DNA
sequencing technology (ABI SOLiD sequencing) has
been developed which does not measure each base
directly, but instead measures DNA bases in pairs in an
encoded form [5-7]. This technology has the potential to
have greater error tolerance by differentiating biological
variants from sequencing errors. In this manner, Homer
et al. (2009) previously developed an algorithm to com-
pare an encoded DNA sequence to a target reference [8],
with a similar method independently derived in Rumble
et al. (2009) [9]. These two algorithms do not significantly
differ and therefore the proposed algorithm is compared
to the algorithm presented in Homer et al. (2009). This
two-base encoding and resulting local DNA sequence
comparison algorithm can be utilized with global search
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strategies [9-12] for whole-genome sequencing with next-
generation sequencing technology [13].

The central advantage of the two-base encoding
scheme is that the false discovery rate of a single nucle-
otide polymorphism (SNP) is reduced, since two specific
adjacent errors are required to produce a SNP call. In
fact, only one-fourth of all adjacent errors would result in
a false call. This significantly reduces the probability of
falsely observing a SNP, with current machines exhibiting
a color read error rate less than 5%. Nevertheless, the cur-
rently implemented two-base encoding is not the only
possible encoding. Therefore a generalized k-base encod-
ing scheme is presented, whereby k consecutive bases are
simultaneously observed. The algorithm of Homer et al.
(2009) is extended to solve the DNA sequence compari-
son problem of comparing a k-base encoded DNA
sequence and a target reference DNA sequence. Intui-
tively, with greater k, the number of errors required to
falsely discover a SNP also becomes greater, thus allowing
machine errors to be accurately identified, and even cor-
rected, while retaining sensitivity to detect real base
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changes. Simulations are performed to explore the
improved power of higher order k-base encoding
schemes, as well as the performance time when utilizing
these encodings. These simulations explore the case for
adapting k-base encoding schemes in ligation-based next
generation sequencing technology.

Results and Discussion

Simulations were performed to explore the power and
performance of k-base encoding as well as the k-base
encoding local alignment algorithm (see Methods). Reads
were simulated using sequences both with a uniform
error-rate, as well as using sequences with an error-rate
modeled after real-world data. In this discussion,"1-base
encoding" and "no encoding" are used interchangeably.
The power to align a sequence with or without SNPs is
defined as the fraction of reads where the read sequence
is aligned to the reference with the same alignment score
as if the sequence were aligned to the correct location
(see Methods). The fraction of reads where the read is
aligned to call a SNP, and where the original sequence
had no SNP, defines the false positive SNP discovery rate.
Similarly, the fraction of reads where the read is aligned
not to call a SNP, and where the original sequence had a
SNP, defines the false negative SNP discovery rate.

Plotted in Figure 1 is the power to align encoded
sequences of varying length (25, 50, and 75 bp) with 0-2
SNPs or base substitutions given a fixed uniform error
rate for k = 1...5 (see Methods). The power decreases sim-
ilarly for all read lengths as the error-rate increases given
a fixed number of SNPs. Furthermore, the power
decreases substantially when the number of SNPs in the
sequence is increased at a fixed error-rate and read
length. The power of 1-base encoding, observing each
base directly, does not diminish as much as k-base
encoded sequences (k > 1) when more SNPs are intro-
duced. This is due to SNPs and observational errors being
equivalent in the 1-base encoding case. In these simula-
tions, k-base encoding is more powerful when k > 2 for 0
SNPs, when k > 3 for 1 SNP, and when &k > 4 for 2 SNPs
and longer read lengths. It is important to note that in
many cases when the alignment score between the best
alignment and correct alignment differ, the decoded base
sequences match. Therefore, the false positive and false
negative SNP discovery rates are examined later.

To assess the power of k-base encoding utilizing real-
world error rates, the color error (encoding error) rates
were estimated from a previous run of an ABI SOLiD v2
sequencer (see Methods). The power of aligning such
sequences was assessed in the presence of 0-2 SNPs for k
= 1...5 (Table 1). For sequences with no SNPs, the power
of k-base encoding increases as k increases. However in
the context of an increasing number of SNPs and for k > 1
the power of k-base encoding is more ambiguous. For one
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SNP, k = 2 performs more poorly than no encoding, while
k > 2 improves on the lower width encodings. For two
SNPs, both k = 2 and k = 3 perform more poorly than no
encoding, with only k > 3 having better power than no
encoding. Thus, error correction is increased with
greater kK when no SNPs are present. However, if the goal
is to find variants, a large enough k must chosen carefully
to justify the penalty in performance.

The false positive SNP discovery rate is evaluated for
25, 50, and 75 base-pair reads (Figure 2). With no encod-
ing, SNPs and errors are not distinguishable, and there-
fore k = 1 is omitted from this discussion. As expected,
the false positive SNP discovery rate decreases as k
increases. Nevertheless, only above a five percent error
rate does 2-base encoding begin to find false SNPs, and at
approximately ten percent error rate do all encodings
considered begin to falsely discover SNPs. Assessed in
Figure 3 is the false negative SNP discovery rate. Similarly
to Figure 2, the false positive SNP discovery rate, the false
negative SNP discovery rate decreases as k increases. For
low error rates, both of the above metrics are either zero
(for Figure 2) or are less than 20% (for Figure 3). Thus, the
settings can be interpreted as being conservative, sacrific-
ing power to find true SNPs for decreasing the false posi-
tive SNP discovery rate.

To illustrate the flexibility of k-base encoding to be
tuned for specific scenarios, the power of 5 base encoding
is examined when the score for a color substitution is var-
ied, and for 25, 50, and 75 base-pair reads with 0 - 2 SNPs.
Intuitively, the various color substitution scores corre-
spond to preferring a given number of color errors over a
SNP and possibly fewer color errors (see Methods). As
the color error score decreases, the encoding begins to
prefer decoding with SNPs rather than with color errors.
The various scoring schemes allow for a clear trade off in
power to detect color errors over the power to detect
SNPs (Figure 4). For example, the color substitution score
of -25 allows the full correction of 50 bp reads with up to
a 20% error rate. However, once a SNP is introduced it
has zero power. Alter-natively, the color substitution
score of -200 finds SNPs in the low error case, but with
higher error data the power to detect only the given
SNP(s) is confounded as more SNPs are falsely detected.
With zero SNPS, color scores of -25, -50, and -75 have
almost perfect power.

The performance time of k-base encoding scales expo-
nentially with increasing k (see Methods). This is con-
firmed by plotting the timing information from the
previous uniform error-rate simulations (Table 2). Since
the optimizations found in Homer et al. (2009) [10] are
not pursued, increased variability was observed when the
number of SNPs increased. However, an exponential
increase in running time occurs as the encoding width (k)
increases. This has practical implications, whereby pro-
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Figure 1 Power of k-base encoding. Power calculated as the fraction of reads that correctly align. 10, 000 simulated reads from the E. Coli genome

ducing empirical data that is k-base encoded is possible,
but is computationally infeasible to decode as the number
of short-reads is in the millions, if not billions for typical
experiments.

Nevertheless, this exponential increase in running time
could be significantly reduced at the cost of completeness
by using methods initially adopted for protein similarity
search and sequence comparison [14,15]. A global search
strategy is employed to put constraints on the possible
search paths thereby significantly reducing the search

space. Typically these constraints force the alignment
path to proceed along diagonals in the dynamic program-
ming matrix, reducing the dimensionality of the problem.
These constraints are specifically used in the implemen-
tation of BFAST for both 1-base and 2-base encoded data
[10]. The positions where the read and reference match
during the BFAST's global search strategy are annotated
and aggregated such that in the local alignment the read
and reference must match (i.e. constraining the solution
path to pass through a diagonal). In BFAST's case, the
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Table 1: Power of k-base encoding assuming a real-world per-base error-rate

k (encoding width) Power (0 SNPs) Power (1 SNP) Power (2 SNPs)
1 0.877 0.847 0.820
2 0.931 0.824 0.706
3 0.963 0.876 0.784
4 0.964 0.911 0.834
5 0.965 0.911 0.840

Power calculated as the fraction of reads that correctly align. 10, 000 simulated 50 bp reads from the E. Coli genome were generated with an

estimated real-world error rate.

global search strategy searches over an 2-base encoded
reference for k = 2 constraining the color transitions. The
constraints employed by BFAST could be applied for k
greater than two, yielding significant but unknown speed
improvement.

Conclusions

The generalized k-base encoding scheme and resulting
local alignment algorithm presented here have the ability
to more powerfully differentiate between encoded
sequencing errors and true DNA variants. These schemes
can be used in practice to tolerate high error rates in the
raw data. Alternatively, the per-base accuracy of sequenc-
ing can be improved. The goal in most sequencing proj-
ects is to sensitively and specifically detect variants. The
technology and encoding scheme must not only have suf-
ficient power to detect variants but to also not over-
whelm the true variants with false variants. The results
demonstrate that higher encoding schemes not only

improve the power of detecting variants, but also signifi-
cantly reduce the false positive SNP discovery rate. Hav-
ing multiple observations of a specific variant or genomic
co-ordinate (higher coverage) is in most cases able to
overcome sequencing error. Nevertheless, these encoding
schemes could allow low coverage data to accurately
detect variants. Furthermore, for cancer specific studies,
where the sample may be a heterogeneous population of
cells, these encodings could reduce the minimum detec-
tion level (allele frequency) in the cancer cell population
as the fewer observations can be more confidently
trusted.

Currently a two-base encoding system is used by ABI
SOLID sequencing technology. Some other next-genera-
tion sequencing technologies could also adopt an encod-
ing system to improve their performance and accuracy.
Furthermore, algorithms that perform multiple sequence
alignment or local reassembly could also utilize the
power of the encoding scheme presented here. It is inter-
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Figure 2 False SNP discovery rate for k-base encoding. False positive SNP discovery rate calculated as the fraction of reads that have a SNP call
after alignment when no SNP call is expected. 10, 000 simulated reads from the E. Coli genome were generated.
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Figure 3 False negative SNP discovery rate for k-base encoding. False negative SNP discovery rate calculated as the fraction of reads that do not
call a SNP after alignment when a SNP call is expected. 10, 000 simulated reads from the E. Coli genome were generated.

esting to note that error correction utilizing encoded
DNA sequence could be performed if single bases or sets
of bases were observed more than once. Utilizing various
encoding schemes, this error correction would necessar-
ily not rely on a target DNA reference comparison,
thereby eliminating the expensive exponential increase in
time for higher order encodings (larger k). Future investi-
gation of such pre-alignment error correction schemes
and algorithms is intended.

Methods
Generalized k-base encoding
Given an k-base encoded DNA sequence ¢ = ¢y, ..., ¢,, it is
the goal of the proposed algorithm to minimize the edit
distance between c and some regular DNA sequence y =
Y1 - Vo iven a set of valid edit operators £. The DNA
alphabet is assumed to be A = {4, C, G, T} and the valid
edit operators include a color substitution, base substitu-
tion, a deletion, and an insertion. Similar to Homer et al.
(2009), the color substitution operator is required to be
applied before applying the insertion, deletion, or base
substitution operators. Each operator is assigned a score,
with I1(C;, C,) and A(B,, B,) corresponding to the color
substitution scoring and base substitution scoring func-
tions respectively. To model insertions and deletions,
affine gap penalties are used whereby a score of p is
applied for the first insertion (or deletion), with € applied
for any consecutive insertion (or deletion) that extends
the insertion (or deletion). It is assumed that for any bases
B, # B, and for any colors C; # C, that 0 < A(B,, B,), A(B,,
B,) <0,0<TII(Cy, Cy), II(Cy, Cy) <0, p < € <0. These scor-
ing assumptions penalize edits that change the encoded
or decoded DNA sequence relative to the reference,
thereby ensuring their similarity.

To illustrate the encoding and decoding method used
by this technology, let x = x,, ..., x, be a DNA sequence. To

encode a DNA sequence, the function ®XB;, .., By) is
’ Bk}
where B, ; occurs before B, in the sequence. For example,

defined to return a color Cj using the bases B, ...

to encode the DNA sequence x = xy, ..., x,, first a known
start adaptor p = p;, ..., pr; € AFlis assumed. Next, the
function @Fis iteratively applied to the concatenation of p
and x. ¢ In this case, ¢; = O(py, ..., pry> %), €3 = DK (py, ...,
Pre1r X1 X)y oer €, = OK(xx, 4,1, %,). The adaptor sequence p
is known in practice and is used in the physical chemistry
of the sequencer (for k = 2), not the DNA sequence in
question [5-7].

The encoding function ®* (B;, ..., B;) transforms each
base B;into an integer representation (i.e. A=0,C=1,G
=2, T = 3), sums the integer values, and returns the result
modulo four. Let § return the integer representation of a
base as described above, then ®XB;, .., B)) =

2:;5(31-) mod |A|. Modulo four is chosen since four

colors are used in current technologies. The properties of
the modulo-four-specific encoding are discussed after
how a k-base encoded sequence is decoded.

To decode an encoded sequence, the function I'*(B;, ...,
By, C) is defined to return the decoded base B, using the
encoded color C and the previous bases B, ..B; ;. To
compute IT%(By, .., By_;, C), B must be solved for in the

equation C =(6(B) + 2::115(31')) mod |A|, which is eas-
ily solved. For example, to decode the encoded sequence ¢
= ¢y, ..., ¢, with a known start adaptor p = p;, ...p;; € A%,
Tkis iteratively used. The decoded sequence will be x, =
TPy oo Prrs €05 %0 = TP, oo Py #15 €2)s o % = TR, g1
%,.1 ¢,)- Without the start adaptor p, there would be |A|*
I possible decodings of the encoded sequence.
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Figure 4 Flexibility of scoring systems for 5-base encoding. Power of scoring system evaluation for 5 base encoding. 1, 000 simulated reads from
the E. Coli genome were generated.

This encoding function has two useful properties. First,
if one base in x is changed to obtain a new DNA sequence
x', then the new k colors that encode the changed base in
x" will differ from the corresponding k colors in x. For
example, if k = 5 then changing one base in x to obtain
new DNA sequence x’will cause there to be 5 color differ-
ences between the encoded version of x and the encoded
version of x". A second useful property is if one color in
the encoded version of x is changed to obtain a new

encoded version, say ¢, then every base in the decoded
version of ¢’ that occurs after the changed color will be
different from the corresponding bases in x. The first
property defines the signature of base substitutions in the
encoded sequence, which becomes pronounced as k
increases. The second property tells us that an encoding
error will modify all bases after the encoding error. Intui-
tively, one can simplify by observing that for any base
substitution there exists a set of k consecutive errors that
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Table 2: Performance of k-base encoding
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k (encoding width) Time in s (0 SNPs)

Timeins (1 SNP) Time ins (2 SNPs)

1 7 7 7

2 65 65 65

3 403 346 403
4 2178 2166 2178
5 23464 23460 23466

Performance time (in seconds) of k-base encoding assuming a real-word per-base error-ate on 50 bp reads presented in Table 1.

can be applied to achieve the same base substitution, and
therefore if variants are being searched for (base substitu-
tions in particular) then constraints should be placed on
the scoring system to prefer calling base substitutions
rather than color substitutions when comparing to a ref-
erence. An example of such a constraint is given that
removes the above ambiguity. Suppose there exists a sub-

sequence of the encoded read Ci, ..., Citk-1, such that
they all encode a base Bi. Next, consider the reference

base B; = Bi and the k "colors" that encode B:C, ..., Cipte

15

1- Let the ith DNA base be Bi such that Ci,...,Citi
encode B,. The following constraint is made to prefer a

base change and k color matches to a base match and k
consecutive color mismatches:

H(Cl, Ct) +...+ H(Ci+}e—1, Ci+k—1) + A(Bl’ Bt)

<I(C;, Cy) +... + I(Cyy 1, Ciypa) + A(Bi, B)
(1)

In this case, it is assumed that C; = é]‘ and B, # B (Vi
<j<i+ k-1). Numerous other constraints based on real-
world requirements are possible but not explored here.

The Algorithm

Suppose that a color sequence ¢ = ¢, ..., ¢, with a known
adaptor p € A*1is to be aligned to a reference sequence y
= Y1, - ¥, T search over all possible base substitution,
base insertion, base deletions, and color substitutions,
define a recursive formula that is the repeated calculation
in the dynamic programming algorithm.

Vo =04...,04,4€ AR
o
S +p
o _ i,j-1
hi:j = max hO’
i,j—l + €

k
sy +TI(@ (¢, 00),c) + p

vy, = max v?—l,j +T(@"(p,0-) ;) + €
where¢ =¢,,04,...,0},_,
and ¢, € A

(st + @G o)) (2)

+A(0)-1,7)
hiy i +TH@(9,00),¢)
+A(C)-1,7§)

STj=man gt TN g o). 6)
+A(0)-1,7)
where¢ =¢,,0,,...,04,_,
and ¢, € A

Intuitively, Equation 2 is filling in an # by m matrix,
with each cell in the matrix containing 3 x A% sub-cells.

It is interesting to observe for k > 2 when computing s;;

and vy j that 2 considers only previous sub-cells that are

consistent with the current sub-cell. In other words, the
first k - 2 bases of ¢ (the current sub-cell) must corre-
spond to the last k - 2 bases of @ (the previous sub-cell).
In this formula, the /& sub-cells represent bases present in
y but not in x, while v sub-cells represent bases present in
x but not in y. The s sub-cells represents a base x; aligning

to a base y;in the reference sequence y.
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An alignment that begins or ends with a deletion is
ignored, since a sequence must span the break-point for
the deletion to be observable (with respect to x). This is a
valid assumption when x is the observed sequence, and y
is a fixed reference. An insertion followed by a deletion
(or vice versa) is ignored since this is rare for short DNA
sequences, although to consider such an event would
require minimal changes to the above formula.

If the color match scores are the same (Vi # j, [1(c; ¢;) =
H(cj, c}-)) and all color mismatch scores are the same (Vi #
j k= 1, (¢, cj) =I(¢y ¢)), then Equation 2 can be simpli-

fied. The recursive rule for the vf,’ j term becomes:

¢
Si,jte

(e}

i; =max vfﬂlr- +€ (3)

j
whereo = l"k(qb,ci)

v

This modification forces any color substitution to be at
the beginning or end of any inserted bases in x and can
reduce the complexity of the algorithm dramatically. The
intuition behind this simplification stems from not hav-
ing any reference bases to which to compare the inserted
bases. This forces the maximum score path through the
insertion to have no color errors

Various initializations are possible, and the alignment
of the entire encoded DNA sequence x to some subse-
quence of y is presented here. Therefore, the initialization

H [ o o .
becomes for i > 057y =hy =, v{y = p if o =Tk(p, c)

and Vf,O = —oo otherwise, and for i >1v{, = V?—l,o +e

if 0 = Tk(g, c;), so that the local alignment spans the entire
encoded sequence and insertions are allowed at the
beginning of any alignment. Notice that if there were any
color errors within the beginning an insertion, they are
aligned such that they occur at the end of the insertion.

hg, j =—c° for j > 0 is initialized so that the alignment

does not begin with a deletion. The remaining initializa-

tions are: vg,]» =—co for j > 0 0 = p and 0 € AF!, and

$0,j = V0, =0 if o =p, 55 ; =~ otherwise, for j > 0 and

0 € A¥L These initializations enforce that the starting
adaptor is p. To find the optimal local alignment, the cells

o

sy and vy ; are searched over for a cell with maximum

score, again ignoring the case where the alignment ends
with a deletion. Backtracking is used to recover maxi-
mum scoring alignment.

This algorithm is in fact finding the shortest path on a
graph with the nodes defined by the sub-cells of the
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matrix, and the edges weighted and defined by the recur-
sive rules. To analyze the time complexity, it is observed
that given the k-base encoding scheme for each sub-cell

of type &, v, and s there are |A[F1 sub-cells. For each h};

sub-cell it is required to calculate the maximum over two

values. For each s7; and v{; sub-cell it is required to cal-

culate the maximum over 3 x |A| values. Therefore for
each cell, various maximum must be computed over 2 x
[AJFL+ |Al*1x 3 x |A| + |[A]JF1x 3 x |A] =2 x |A|F1(1 +3
x |A|). In practice, |A| = 4 and therefore various maxima
must be computed over 26 x 4%1values. From this analy-
sis, it is clear that the running time of this algorithm is
O(nm|A[¥), which unfortunately scales exponentially with
respect to the length of the encoding k.

Simulations

Simulations were performed to assess the power and per-
formance of k-base encoding, for k = 1...5. Sets of 10, 000
test sequences were randomly sampled from E. Coli
(DH10B, NC_010473, CP000948). All sequences in a
given set had a fixed read length (25, 50, 75), a fixed error-
rate (0, 0.01, ..., 0.2), and a fixed number of SNPs (0, 1, 2).
For the case of the 1-base encoding (k = 1), the standard
Smith-Waterman algorithm was used, where errors were
modeled as base changes, requiring that SNPs and base
errors do not co-occur. For the case of k-base encoding
with k > 1 errors were modeled as color substitutions
(encoding errors). Similar to Homer et al. (2009), an
alignment is defined to be accurate or correct if the
returned alignment has the same score (or likelihood
when the scores represent log- likelihoods) as the true
alignment, which is known by the nature of these simula-
tions.

To allow for insertions and deletions, the original
sequence is used (before applying errors and variants)
with an additional 10 bp before and after as the reference
or target DNA sequence. In accordance with Equation 1,
€=-50,p=-175TI(C,, Cy) = -125 (C, = C,), TI(C,, C;) =
0, A(B,, B,) = - 150(B, = B,) and A(B,, B,) = 50. Due to
these initializations, the optimization in Equation 3 is
able to be performed. To model real-world error-rates,
the simulated error-rates are learned from a run of an
ABI SOLiD sequencer (50 base pairs), utilizing the
aligned reads to calculate the 2-base encoding error,
which is inherently dependent on the decoding algorithm
used Homer et al. (2009). The error-rate was not uniform
by sequencing position, therefore producing a color-
error-rate for each position in the 50 color sequence
reads. The observed error rate for each sequencing posi-
tion was: 0.014, 0.005, 0.006, 0.007, 0.006, 0.006, 0.006,
0.008, 0.008, 0.008, 0.007, 0.006, 0.009, 0.009, 0.009, 0.009,
0.008, 0.015, 0.015, 0.012, 0.012, 0.011, 0.021, 0.021, 0.018,
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0.019, 0.014, 0.037, 0.033, 0.031, 0.029, 0.022, 0.055, 0.052,
0.051, 0.043, 0.036, 0.087, 0.084, 0.076, 0.071, 0.060, 0.125,
0.118, 0.118, 0.108, 0.092, 0.179, 0.175, 0.184. To evaluate
various scoring schemes of 5-base encodings, simulations
of only 1, 000 test sequences were used due to running
time limitations. For these evaluations a dual quad-core
Intel Xeon E5420 machine at 2.5 GHz, with 32 GB of
RAM and 2TB of RAID 0 disk space, was used, although
the actual hardware requirements of the algorithm itself
beyond CPU power are negligible relative to any modern
computer.

Scoring constraints 5-base encoding
Various scoring schemes were evaluated for 5-base
encoding. For notational convenience, for all colors C; =
C,and bases B, = B,let CE= (C,, C,),CM = (C,;, C,), BE
= A(B,, B,), and BM = A(B,, B;). Consider the scoring sce-
narios that satisfy one of the following constraints:
1. 5CE + BM > 5CM + BE (-25)
2.5CE + BM < 5CM + BE and 4CE + CM + BM > CE
+4CM + BE (-50)
3.4CE + CM + BM < CE + 4CM + BE and
3CE+2CM+BM > 2CE+3CM+BE (-75 and -150)
4.3CE +2CM +BM < 2CE +3CM +BE and
2CE+3CM+BM > 3CE+2CM+BE (200)
5.2CE +3CM +BM < 3CE +2CM +BE and ICE +
4CM + BM > 4CE + CM + BE
6. CE + 4CM + BM < 4CE + CM + BE

Intuitively, these scenarios try to decide if a given set of
color errors should be preferred if they can be explained
by a SNP and possibly other color errors. For example,
the first scenario always prefers calling color errors over
anything that can be explained by a SNP. The second sce-
nario will prefer to explain the encoding with a SNP if it
results in no color errors, but does not prefer to explain
the encoding with a SNP if it is accompanied by any color
errors. In the extreme, the last scenario would prefer to
explain all color errors as a combination of a SNP and
possibly color errors.

Nevertheless, given the assumptions that BM > 0, CM >
0, BE < 0, and CE < 0, it is observed that scenarios 5 - 6
are not possible. For example, constraint is equivalent to
the following constraint: CM + BM < CE + BE and 4CE +
BM > 3CE + BE. Intuitively, our assumptions prefer to
penalize color errors and nucleotide variants, rewarding
color matches and nucleotide matches, thereby making
the left-side of the above constraint without a solution. If
scenarios 5-6 are truly desired, instead of considering
color errors, color matches, base errors, and base
matches separately, a joint function could be considered
conditional on the various combinations of events over
the k base and color window. This would also allow for
the incorporation of any specific experimental bias for
the combinations of events, or even specific bases.
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In the above constraints color error scores are given
that satisfy the constraints given the previously defined
base match, base substitution, and color match scores.
The score -150 is also included, which was previously
used, to illustrate that there is flexibility even within these
constraints to tune the scoring scheme.
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