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Abstract

better precision for most values of the parameters.

Background: High-throughput methods for detecting protein-protein interactions enable us to obtain large
interaction networks, and also allow us to computationally identify the associations of proteins as protein complexes.
Although there are methods to extract protein complexes as sets of proteins from interaction networks, the extracted
complexes may include false positives because they do not account for the structural limitations of the proteins and
thus do not check that the proteins in the extracted complex can simultaneously bind to each other. In addition, there
have been few searches for deeper insights into the protein complexes, such as of the topology of the protein-protein
interactions or into the domain-domain interactions that mediate the protein interactions.

Results: Here, we introduce a combinatorial approach for prediction of protein complexes focusing not only on
determining member proteins in complexes but also on the DDI/PPI organization of the complexes. Our method
analyzes complex candidates predicted by the existing methods. It searches for optimal combinations of domain-
domain interactions in the candidates based on an assumption that the proteins in a candidate can form a true protein
complex if each of the domains is used by a single protein interaction. This optimization problem was mathematically
formulated and solved using binary integer linear programming. By using publicly available sets of yeast protein-
protein interactions and domain-domain interactions, we succeeded in extracting protein complex candidates with an
accuracy that is twice the average accuracy of the existing methods, MCL, MCODE, or clustering coefficient. Although
the configuring parameters for each algorithm resulted in slightly improved precisions, our method always showed

Conclusions: Our combinatorial approach can provide better accuracy for prediction of protein complexes and also
enables to identify both direct PPIs and DDIs that mediate them in complexes.

Background

Recently developed high-throughput methods such as
yeast two-hybrid or mass spectrometry to obtain protein-
protein interactions (PPIs) have provided a global view of
the interaction network [1-5]. As a PPI network grows, it
becomes increasingly important to detect functional
modules for understanding cellular organization and its
dynamics [6]. Protein complexes are clusters of multiple
proteins, and they often play a crucial part in basal cellu-
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lar mechanism. Therefore, computational methods to
predict protein complexes are becoming important.
There are four steps in characterizing a protein com-
plex [7]. The first step is to identify its member proteins.
The second step is to determine its topology by identify-
ing pairs of proteins which have direct interactions. The
third step is to identify DDIs that mediate these direct
interactions, and the final step is to specify the complete
3D structure of the complex. Most of the previous
research on computational prediction of protein com-
plexes has focused on the first step and various methods
such as MCODE, MCL, and RNSC were developed,
mainly based on graph theory [8-14]. The candidate com-
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plexes predicted by these first-step methods contain a
non-negligible number of false positives [14]. One of the
reasons for these errors is that all of these methods just
extract locally dense regions as protein complexes on the
assumption that proteins in complexes are highly inter-
connected to each other and do not consider structural
limitations of interactions in the complex. Therefore
methods focusing on higher steps are also important in
terms of improving accuracy of the predictions. However
there are few methods focusing on the second step [15-
17] and there is no effective and comprehensive method
for the third or fourth step [7,15]. In the present report,
we use a combinatorial approach focusing not only on the
first step but also on second and third steps. Our method
analyzes complex candidates predicted by the first-step
methods. It searches for optimal combinations of
domain-domain interactions within the candidates based
on an assumption that proteins in the candidates can
form a true protein complex if each of the domains is
used by a single protein interaction [18,19]. This optimi-
zation problem was mathematically formulated and
solved via binary integer linear programming. As a result,
our method can eliminate false positives in the first-step
methods, and predict the detailed DDI/PPI organization
of the protein complexes (i.e. it can identify both the
direct PPIs and the DDIs that mediate them in a given
complex).

Methods

Overview of protein complex prediction

The predicted results of existing methods to predict pro-
tein complexes include significant numbers of false posi-
tives [14], because they merely extract locally dense
regions of the network as protein complexes, assuming
that all of the proteins in complexes are highly intercon-
nected to each other, without considering any structural
limitations against interactions within the complex.

The key idea of our approach is to eliminate the false
positives by considering the exclusiveness of the binding
domains. Figure 1(i) is a clique that consists of three pro-
teins that seem to form a densely connected protein com-
plex. However there are two primary possibilities for the
actual clique if the domain-level interactions are exam-
ined. One possibility is that each protein has enough
domains to bind to each other as shown in Figure 1(ii).
The other possibility is that there are too few domains
and the proteins cannot simultaneously bind to each
other, as shown in Figure 1(iii). The latter case, which
might be predicted by existing methods, is regarded as a
false positive that our method can filter out.

An overview of our analytic approach is shown in Fig-
ure 2. The prediction mainly consists of two parts, extrac-
tion of the protein clusters and verification of the protein

Page 2 of 12

U}
Protein clusters with
protein level interactions

Protein clusters with
domain level interactions

A valid candidate An invalid candidate

Figure 1 An overview of protein complex prediction that consid-
ers the physical binding domain. The key idea of our approach is
shown in Figure 1. A densely connected protein cluster in the protein-
level interaction (i) is not always the protein complex in which the
member proteins can bind to each other at the same time when we
consider the domain-level interactions (i and iii); In case (ii), each pro-
tein has a sufficient number of domains to bind to each other whereas
in case (iii), there are too few domains for each protein and the proteins
cannot simultaneously bind to each other. Figure 2 is an overview of
our method with its two main steps, extraction of protein clusters and
verification of the protein clusters based on the physical binding do-
mains.

clusters, where each PPI is mediated by the DDIs based
on the exclusiveness of the binding interfaces.

First, the dense regions in the PPI network are
extracted by using existing graph algorithms, assuming
that nodes and edges correspond to proteins and interac-
tions, respectively. Since proteins participating in the
complex are likely to interact with each other frequently,
dense regions are likely to correspond to protein com-
plexes [8,9]. Thus, dense regions that are extracted by
using existing methods can be assumed to be initial can-
didates for protein complexes.

Second, the initial candidates are verified by integrating
the DDIs into the candidates by considering the physical
binding domains based on two assumptions: (1) a protein

Dense region

PPI Network Extracted complex

Figure 2 An overview of protein complex prediction that consid-
ers the physical binding domain. Our method mainly consists of two
steps, extraction of protein clusters and verification of the protein clus-

ters based on physical binding domains.
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participating in the candidate can bind to another protein
within the same candidate if there is a potential DDI
between these two proteins, and (2) each domain can
participate in only one DDI at a time. The second
assumption is based on the tendency of the binding inter-
faces to be exclusive [18,19], since we roughly equate a
single domain with a single binding interface. Although
there are cases where a single domain binds multiple
domains simultaneously, we can greatly simplify our cal-
culations by discounting those cases.

The initial candidate will be accepted as a final complex
prediction if three or more proteins in the candidate are
predicted to be connected by DDIs. In this way, we can
consider the physical bindings in the protein complex.

Formulation of the second step as a binary integer program
Time complexities are problematic when adopting a brute
force approach to determine the physical binding
domains for protein complex prediction. The most naive
approach is the enumerations of all 2” possible combina-
tion of the DDIs in a predicted protein cluster, where # is
the total number of DDIs in the candidate protein com-
plex. To verify the candidates much more efficiently, we
formulated this step as a problem in binary integer pro-
gramming. Binary integer programming is a restricted
form of linear programming in which each variable in the
constraints is required to be 1 or 0. Let P;; € be the
potential PPI between protein p; and p; in the candidate
where Py=1 denotes the case in which the PPI actually
takes place and otherwise 0. The symbol Q denotes the
set of all potential PPIs that are obtained from PPI exper-
iments. Our objective is to maximize the number of total
PPIs denoted by this equation:

Maximi ez P. .
z Pi'jeQ 2 (1)

This maximization is rationalized by the fact that the
proteins in the complexes are generally densely con-
nected [8,9]. Then we consider two types of constraints,
PPI-based constraints and DDI-based constraints. The
PPI-based constraints represent the relationships
between PPI variables and DDI variables. Let D;,; = {D,,;,,

Dy, ... } be the potential DDIs that connect a pair of pro-

teins, p; and p;. The value of D, = 1 if the pair of

i
domains in D, actually interact. A PPI variable P,
becomes 1 if any of the DDIs in D;; is 1, as described by

this equation:

Pij = ZDHED Diju (2)

ik
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Domain-based constraints guarantee that each domain
participates in a single DDI. Let d, be one of the domains

in the candidate and D(d)) be a set of DDIs, where each
DDI contains domain 4, and another domain. This con-
straint is denoted as:

2

For example, in the case of the candidates in Figure 3,
the PPI-based constraint is P; , = D;,, + D;,,and P 3 =

D)3, + D, 3,. In this example, both D, ,, and D, 3, con-

D.., <1
i,j,kED(dl) ik (3)

tain domain d; but can only participate in one of the
DDIs. Therefore the DDI-based constraintis D, 5 ; + D, 5,
<1 and, similarly, D, ,, + D, 3, <1. From this, we suggest
that proteins p;and p;actually interact if there are combi-
nations of variables that satisfy P;,; = 1. This implies that
there is exactly one k such that D;;,, = 1 and this value of k
denotes the domain-domain interaction Di,j,k which con-
nects the protein pair. Any subgraphs that contain more
than two proteins connected by more than one domain-
domain interaction are assumed to be verified protein
complexes.

PPl and DDI datasets
We downloaded 35,353 yeast PPIs from the BioGrid data-
base [20]. We used only the PPIs that were derived from
mass spectrometry and two-hybrid experiments, since
these PPIs represent physical interactions.

Three types of DDI datasets were used. The first data-
set was taken from the iPfam database. We used the
Pfam-A dataset, which contains 4,498 interactions [21].

Figure 3 Protein complex prediction based on PPl and DDI infor-
mation. An example of a protein complex candidate with two PPIs and
four DDIs. The thick and thin lines denote PPIs and DDlIs, respectively.

The complex consists of three proteins namely p;, p,, and p;. The pro-
tein p; has two domains d, and d,. The proteins p, and p; have the do-
mains d,and ds, respectively.
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The second and third datasets were from the InterDom
database [22]. The second dataset is a reduced dataset
from the entire InterDom DDI dataset using a flag that
indicates a potential false positive. The flag becomes true
if a DDI is derived from multi-domain protein interac-
tions and if at least one of these conditions is satisfied: (1)
the confidence score assigned by Interdom is lower than
1.5; (2) one of the domain partners is a low-occurrence
domain; or (3) one of the domain partners is a promiscu-
ous domain. We extracted DDIs whose flags were true
from the entire dataset and used them as the second data-
set. The third dataset of 167,516 interactions is the entire
dataset that was available in InterDom. The second data-
set has more confidence than the third dataset. Summa-
ries of these datasets appear in Table 1. To evaluate how
the performance of our method is influenced by DDI
dataset, these datasets were further combined as (A), (A
+B),and (A + C).

Known complex datasets

To evaluate prediction performances of protein com-
plexes, we used 763 known yeast protein complexes from
the EMBL database http://yeast-complexes.embl.de/
because it is the most comprehensive yeast protein com-
plex database.

Uncharacterized proteins

The Gene Ontology annotations that were downloaded
from ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/ on October
28, 2008, were used to find proteins whose functions are
unclear. Proteins that have "GO:0003674" or
"G0:0005554" for their ID are regarded as uncharacter-
ized proteins, since they indicate "molecular function
unknown" in the Gene Ontology annotations.

Parameters for prediction algorithms

We used two existing algorithms, MCL and MCODE, to
detect dense regions in given PPI networks as a first step
for our method. Clustering coefficients were also calcu-

Table 1: Overview of PPl and DDI datasets
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lated to detect dense regions. We selected configurable
parameters optimized for precision for MCODE and the
clustering coefficient (Table 2). For MCL, we selected a
value optimized for recall, because it showed the same
degree of precision at any inflation value in our experi-
ments.

Evaluation of the predictions

To evaluate the predictions, precision recall analysis and
functional enrichment analysis were used. The precision
and recall of each method were computed according to
these equations:

(4)

Precision =matched / predicted

Re call = matched / known, (5)
where "predicted”, "known", and "matched" are the
numbers of predicted protein complexes, known com-
plexes, and predicted protein complexes that match with
known complexes, respectively. Unlike conventional pre-
diction problems, predicted complexes rarely match per-
fectly with known complexes. We therefore used the
matching criterion V as defined by Bader et al. to evaluate
the overlapping protein components of two complexes:

INp N[

(6)
INpHN,

V(P,K) =

where N, and Nj are sets of proteins in a predicted com-
plex P and a known complex K, respectively. We regarded
a predicted complex as matching with a known complex
if the overlapping criterion was greater than the threshold
of 0.25, which was taken from the work of Chua et al.
[13]. In this evaluation approach, multiple predicted
complexes may match the same known complex.

Datasets Nodes Edges Source

PPI (BioGrid Release 2.0.40) 4,621 35,353 http://www.thebiogrid.org/

A: DDI (iPfam) 2,147 4,498 http://ipfam.sanger.ac.uk/

B: DDI (InterDom v2.0 : High Confidence) 2,295 14,854 http://interdom.i2r.a-star.edu.sg/
C: DDI (InterDom v2.0 : All) 3,990 167,516 http://interdom.i2r.a-star.edu.sg/
DDI (A + B) 3,382 18,207 -

DDI (A + Q) 4,483 169,737 -

The column 'Datasets' indicates the name of each dataset. Numbers of nodes included in each dataset are shown under 'Nodes' and numbers
of edges included in each dataset are shown under 'Edges'. 'Source' indicates the source of each dataset. PPl dataset release 2.0.40 was
downloaded from www.thebiogrid.org. The DDI dataset was from ipfam.sanger.ac.uk (release 20.0), and from http://interdom.i2r.a-

star.edu.sg/ (v2.0).
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Table 2: Configurable parameters for each algorithm and

their optimal values

Algorithm Parameter Optimal Value*
MCL Inflation 3.6
MCODE Include Loops FALSE
Degree Cut-off 2
Haircut TRUE
Fluff FALSE
Node Score Cut-off 0
K-Core 2
Max. Depth 100
Clustering Coefficient - 04

* For MCODE and clustering coefficient, the values are optimized for
precision. For MCL, the inflation parameter is optimized for recall,
because it showed the same degree of precision at all inflation
values.

To investigate the enriched level of specific protein
function in each predicted complex, we calculated the
ratio of the protein pairs that have the same function for
each predicted result with our method. We regarded a
protein pair as having the same function if their molecu-
lar functions are the same in the Gene Ontology annota-
tions.

Results

Protein complex prediction and its performance

In our approach, protein complexes are predicted by
combining a graph algorithm to find dense regions fol-
lowed by a verification of the detected protein clusters.
The results of protein complex prediction are summa-
rized in Table 3. These protein complexes were predicted
with the optimized parameters shown in Table 2. For
comparison, the results without verification are also

Table 3: Summary of protein complex predictions
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shown. The numbers of verified complexes with our
approach were smaller than those predicted by MCL,
MCODE, or clustering coefficients since our approach
filters the initial candidates predicted by these algorithms
by considering physical binding domains. Our method
reduced the number of candidates by 95% to 60% from
the initial candidates. However, the reduction rates
decreased as the number of DDIs used for verification
increased.

As the complex size increases, the number of interac-
tions among the member proteins in the complex may
also increase. Such large complexes require many
domains to bind to each other simultaneously if the
bonding capability of the domains is limited. In other
words, a cluster that contains many proteins is unlikely to
have all of the possible interactions simultaneously active
because the ability of each protein to bind is limited by
the binding interfaces [18]. Therefore, it is more unlikely
that larger complexes will be verified by our approach
since it assumes that each domain can participate in only
one DDI at a time. In fact, both the maximum size and
the average size of complexes that are predicted by our
method are smaller than those predicted by existing
methods (Table 1, Additional File 1), indicating that our
approach is more successful with smaller complexes.

Figure 4 shows the performances of the three existing
algorithms (MCL, MCODE, and clustering coefficient)
and when combined with our verification method, where
the x-axis is the recall and the y-axis is the precision. Both
values change depending on the parameters (as described
below). The performances of the three algorithms (MCL,
MCODE, and the clustering coefficient) are shown as
"Original" and the performances of our approach are
shown as "DDI verified". We tested this procedure for
three datasets, (A), (A + B), and (A + C). We changed the
configurable parameters of each algorithm as shown in
Table 2 to investigate their effects on the performance.
The inflation parameter in MCL was changed from a
minimum value to 1.2 to 4.8 in increments of 0.6, and
MCL was also executed at the maximum value of 5.0. The

Algorithm/ Original output of Verified with DDI (A) Verified with DDI (A +B)  Verified with DDI (A + C)
Verification algorithm*
Numbers Averagesize Numbers Averagesize Numbers Averagesize Numbers Average size
MCL 487 4.49 12 4.17 25 4.56 42 443
MCODE 920 5.87 1 5.00 23 5.35 34 5.71
Clustering Coefficient 434 8.23 47 4.55 104 5.25 178 5.88

* Original results of each algorithm that are not verified with the physical binding domain
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Figure 4 Performance of existing algorithms and our method for the prediction of protein complexes. Each graph is a precision-recall graph
in which the vertical axis indicates the precision and the horizontal axis indicates the recall. Red lines (denoted as "DDI verified") show the results of
our method and blue dotted lines indicate the results of existing algorithms (either MCL, MCODE or clustering coefficient, denoted as "Original"). Each
algorithm was executed with three DDI data sets, DDI dataset (A), DDI dataset (A + B) and DDI dataset (A + C). The inflation parameter, which is only
a configurable parameter in MCL, was changed from a minimum value to 1.2 to 4.8 in steps of 0.6, and MCL was also executed at a maximum value
5.0. The Node Score Cut-off parameter, which is the most influential parameter in MCODE, was changed from 0.0 to 1.0 in steps of 0.1. The threshold
in the clustering coefficient was changed from 0.1 to 1.0 in steps of 0.1.
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threshold for the clustering coefficient was changed from
0.1 to 1.0 in steps of 0.1. The node score cutoff parameter,
which is the most influential parameter in MCODE, was
changed from 0.0 to 1.0 in steps of 0.1.

On average, our approach was twice as precise as the
existing algorithms. Although configuring parameters for
each algorithm resulted in slightly improved precision,
most of the precision values remained lower than the pre-
cision of our approach. Our approach showed better pre-
cision with all parameter values except when the number
of predicted candidates was 0. In contrast, the recalls of
our approach were lower than those of the existing algo-
rithms (31% for the existing algorithms on average). In
fact, our approach drastically reduced the number of can-
didates (87% of the candidates). However, the reduction
for recall was comparatively small (a 69% reduction). Spe-
cifically, the recall reduction of our method applied after
performing MCL analysis (Inflation = 3.6) was only 80%,
whereas the reduction rate of candidates was 98%. In
addition, the recall of our approach improved as the
number of DDIs used for the verification increased
(Additional file 2). In contrast, the precision of our
method was almost constant, regardless of the number of
DDIs used.

Proteins in a reliable protein complex are shown to
share the same function and thus the functional identities
of proteins in the predicted complexes may be an alterna-
tive index to assess the reliability of predictions [23]. Fig-
ure 5 shows the ratio of the pair of proteins that share the
same function in each output of the methods where the
x-axis is the configurable value of each method. Our
approach had a better ratio than the existing methods for
most parameters with all of the datasets (A), (A + B), and
(A + C). Particularly with the optimized parameters
shown in Table 2, our approach showed more than 25%
better performance than existing methods for DDI set
(A). The average performance was best with dataset (A),
second with dataset (A + B), and third with dataset (A +
C), which seems reasonable since the confidence of the
datasets was ranked in the same order.

Estimation of false negative rates of our method

Although the assumption that a single binding domain
can participate only in a single DDI at a time is used for
the simplification of the calculations for the predictions,
this may result in overlooking of some of the complexes
in which a single domain does bind to multiple domains
at the same time, and these complexes would be the part
of false negatives. To infer how often such overlooking
occurs, the rate of false negatives among true positives of
existing methods was calculated (Table 4). Since our
method works as a filter for existing methods, we calcu-
lated the number of known protein complexes which
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were predicted by existing methods but were missed by
our method to estimate the "net" false negatives of our
method. Also since we want to estimate the rate of the
overlooking by the assumption, we subtracted the num-
ber of complexes which have no DDI annotations from
the number of "net" false negatives (Some known com-
plexes were missed by our method because of the lack of
DDI annotations.). Our method combined with MCODE
showed the best performance among the three existing
methods in terms of false negative rate, and our method
combined with MCL showed the worst result. All algo-
rithms had their best performance with DDI dataset (A +
C). This means there is a tendency that more DDI data
lowers the ratio of false negatives. In summary, the ratio
of false negatives, part of which may be due to the
assumption, ranged from about 20% to 45%.

Functional analysis of predicted protein complexes

A total of 233 protein complexes were predicted with
optimized parameters with our approach. Among them,
three complexes fully matched known complexes: pyru-
vate dehydrogenase, which consists of PDB1, LPDI,
LAT1, PDA1, and PDX1; the COPI complex, which con-
sists of SEC28, SEC27, SEC26, COP1, SEC21, RET3 and
RET2; and the DNA polymerase alpha-primase complex,
which consists of POL1, PRI2, POL12 and PRI1. The
other three examples of predicted complexes are shown
in Figure 6. The first example consists of three proteins
and a part of a known protein complex, AP-1 adaptor
complex. AP-1 is a clathrin adaptor complex that is a
major structural component of clathrin coated vesicles
functioning in clathrin coat assembly and cargo selection
[24,25]. The second example consists of three proteins
and part of a known complex, the vacuolar proton-trans-
porting V-type ATPase V1 domain, which functions in
the acidification of intracellular compartments in eukary-
otic cells [26,27]. The function of the last complex is cur-
rently unclear.

Functional prediction of uncharacterized proteins is
possible from the prediction of protein complexes,
because proteins in a complex are likely to share the same
function. In the results of our predictions, 64 complexes
contain uncharacterized proteins. The four-protein com-
plex shown at the bottom of Figure 6 contains an unchar-
acterized protein, SIF2. We suggest that SIF2 has a
protein transporter activity function, because the other
proteins in the complex have the same function. Com-
plexes that contain a single uncharacterized protein and
other characterized proteins that have the same function
are shown in Table 5. The uncharacterized proteins may
have the same function as the other proteins in the com-
plexes.
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Figure 5 Rate of protein pairs having the same functions in the predicted complexes. Each graph represents the ratio of the protein pairs with
the same function in each output of the methods. The vertical axis is the ratio and the horizontal axis is the configurable parameters for each method.
The red, orange, and green lines (denoted as "DDI verified") indicate the results of our method and the blue lines indicate the results of the prior al-
gorithms (MCL, MCODE, or clustering coefficient, denoted as "Original”).
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Table 4: Number of false negatives for each method
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Number of false
negatives of our

Number of false
negatives of

a:Number of "net"
false negatives

B:Number of true Ratio (a/B)
positives of existing

method existing methods caused by the methods
assumption *

Clustering coefficient verified 683 514 102 249 41.0%
with DDI (A)

MCL verified with DDI (A) 726 554 76 209 36.4%
MCODE verified with DDI (A) 739 636 58 127 45.7%
Clustering coefficient verified 636 514 76 249 30.5%
with DDI (A + B)

MCL verified with DDI (A + B) 722 554 85 209 40.7%
MCODE verified with DDI (A + B) 714 636 42 127 33.1%
Clustering coefficient verified 590 514 51 249 20.5%
with DDI (A + C)

MCL verified with DDI (A + Q) 707 554 78 209 37.3%
MCODE verified with DDI (A + C) 689 636 27 127 21.3%

*Number of "net" false negatives indicates known protein complexes which were predicted by existing methods but were missed by our method,
since our method works as a filter for existing methods. Because some known complexes were missed by our method for the lack of DDI
annotations, we calculated number of net false negatives caused by our assumption, which indicates the number of the net false negatives that

have DDI annotations (See text).

Discussion

We introduced a combinatorial approach for the predic-
tion of protein complexes focusing not only on determin-
ing member proteins in complexes but also on the DDI/
PPI organization of the complexes by integrating our
newly developed method with existing methods. Our
method allows us to identify both direct PPIs and DDIs
that mediate them in a given complex. As a result of the
identification, our method can eliminate false positives in
the first-step methods and can provide more accurate
predictions. Also for an efficient prediction, we formal-
ized the protein complex prediction problem by consid-
ering the physical binding domain as a binary integer
programming problem so that the heuristic approaches
for integer programming can be applied if the computa-
tional complexity is problematic [28,29]. Although the
assumption that each binding domain is exclusive
resulted missing some of the complexes in which a single
domain binds to multiple domains at the same time, the
restriction allows for an efficient formation of the prob-
lem. The rate of false negatives related to the assumption

was at most 45.7%, but it was reduced to 20.5% with the
largest DDI dataset.

Our approach predicted protein complexes with about
twice the accuracy of the original output of the existing
methods, and our approach always showed better preci-
sion for all of the values of the configurable parameters
except for the point where the number of predicted can-
didates was 0. Also, our approach showed better concor-
dance rate of the functions of the protein pairs compared
to existing methods. Particularly with the optimized
parameters, our approach showed more than 25% better
performance than existing methods for the DDI dataset
with the highest confidence.

Although the recall of our approach was lower com-
pared to the existing methods, it improved as the number
of DDIs used for verification was increased. Thus, we
believe that the recall of our approach will be improved as
the number of available DDIs is increased. The number
may be increased not only by biochemical experiments
but also by computational predictions. For comparison,
Katia et al. developed a prediction method for DDIs with
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Figure 6 Examples of predicted complexes. Solid lines indicate PPIs and dotted lines indicate DDIs. The upper examples consist of three proteins
and four domains. The lower example consists of four proteins and six domains. A protein with diagonal lines indicates a protein with unknown func-

SIF2

Function
unknown

a parsimony approach that economizes as much as possi-
ble on the use of DDIs [30]. They formulated the problem
as a linear program for which the objective function is to
minimize the number of DDIs necessary to justify the
underlying PPIs. There are also some computational

Table 5: Complexes that contain an uncharacterized protein

methods to predict DDIs that could enhance the results
of our approach [30-33].

To predict protein complexes, several methods employ
algorithms to detect densely connected regions in a PPI
network. However, the average density of real protein

Protein Complex Members

Uncharacterized Protein

Function of other members

APL1, APS2, APM4, APL3 APM4
SWM1, CDC27, CDC16, CDC23 SWM1
SKP1, DAST, YLR352W YLR352W
PWP2, NOP14, MPP10 MPP10
PWP2, UTP18, NOP58 NOP58

protein transporter activity
protein binding
protein binding
snoRNA binding
snoRNA binding

Complexes that include a single uncharacterized protein and other characterized proteins having the same function are shown. The column
'Members' indicates the list of protein names in each protein complex. The column 'Uncharacterized Protein' indicates the name of
uncharacterized protein included in each protein complex. The column 'Function of other members' indicates the function of the other

characterized proteins in each protein complex.
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complexes is not particularly high. For example, the den-
sity of protein complexes in yeast is around 0.55 [14].
Thus, the extraction of dense regions in the interaction
network is not sufficient for accurate predictions of the
protein complexes, and pre- or post-processing of the
interaction network must be combined with these graph
methods.

There are several methods to extract a high confidence
network from the PPI network by pre-processing [34,35].
These methods should also be useful for predictions. For
example, Chua et al. filtered a PPI network with a value
called the FS weight prior to protein complex prediction
and improved the accuracy of their predictions [13,35].
Moschopoulos et al. developed a tool called GIBA that
provides a post-processing capability for individual filters
or combinations of 4 different heuristic filters and this
also improved the accuracy of the predictions [36]. In
contrast, our method can be used for post-processing,
and it can also be combined with other methods to pre-
dict protein complexes more accurately. A key difference
between our method and these other methods is that our
method not only improves the accuracy of the predic-
tions, but also reveals the organization of the protein
complex including the DDIs that mediate the PPIs. Pro-
tein complexes are predicted more accurately by our
method and reflect the structural characteristics of the
complexes in the cells and may provide deeper insights
into how proteins are organized to function in the cells.

Conclusions

We introduced a new approach for the prediction of pro-
tein complexes. It provides both accurate predictions of
protein complexes and deeper insight into each protein
complex by identifying the direct PPIs and DDIs that
mediate the complexes.

Additional material

Additional file 1 Size distribution of the predicted protein complexes.
Each graph represents a distribution of the protein complex sizes in which
the horizontal axis indicates the size of the protein complexes and the verti-
cal axis indicates the number of protein complexes for each size. Distribu-
tion graphs for MCL, MCODE, and clustering coefficient are shown. Each
graph includes the result of existing algorithms and our method for all
three types of DDI datasets, (A), (A + B), and (A + C). Each algorithm ran with
the optimized parameters shown in Table 2.

Additional file 2 Performance of existing algorithms and our method
with three types of datasets. Each graph is a precision-recall plot in which
the vertical axis shows the precision and the horizontal axis shows the
recall. Precision-recall graphs for MCL, MCODE and clustering coefficient.
Each graph includes the results of existing algorithms and our method for
all three types of DDI datasets, (A), (A + B), and (A + C). Each algorithm used
the optimized parameters shown in Table 2.
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