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Abstract

Background: Protein-protein interactions are fundamental for the majority of cellular processes and their study is of
enormous biotechnological and therapeutic interest. In recent years, a variety of computational approaches to the
protein-protein docking problem have been reported, with encouraging results. Most of the currently available
protein-protein docking algorithms are composed of two clearly defined parts: the sampling of the rotational and
translational space of the interacting molecules, and the scoring and clustering of the resulting orientations. Although
this kind of strategy has shown some of the most successful results in the CAPRI blind test http.//www.ebi.ac.uk/msd-
srv/capri, more efforts need to be applied. Thus, the sampling protocol should generate a pool of conformations that
include a sufficient number of near-native ones, while the scoring function should discriminate between near-native
and non-near-native proposed conformations. On the other hand, protocols to efficiently include full flexibility on the
protein structures are increasingly needed.

Results: In these work we present new computational tools for protein-protein docking. We describe here the RotBUS
(Rotation-Based Uniform Sampling) method to generate uniformly distributed sets of rigid-body docking poses, with a
new fast calculation of the optimal contacting distance between molecules. We have tested the method on a standard
benchmark of unbound structures and we can find near-native solutions in 100% of the cases. After applying a new
fast filtering scheme based on residue-based desolvation, in combination with FTDock plus pyDock scoring, near-
native solutions are found with rank < 50 in 39% of the cases. Knowledge-based experimental restraints can be easily
included to reduce computational times during sampling and improve success rates, and the method can be
extended in the future to include flexibility of the side-chains.

Conclusions: This new sampling algorithm has the advantage of its high speed achieved by fast computing of the
intermolecular distance based on a coarse representation of the interacting surfaces. In addition, a fast desolvation
scoring permits the screening of millions of conformations at low computational cost, without compromising
accuracy. The protocol presented here can be used as a framework to include restraints, flexibility and ensemble
docking approaches.

Background

Protein-protein interactions are essential for living organ-
isms. They are involved in most of the key biological and
biochemical processes, such as signal transduction, redox
reactions, immune response and protein transport,
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among many others. Thus, understanding protein-pro-
tein association is the object of an increasing interest, not
only from a basic physico-chemical point of view, but also
for biotechnological and therapeutic reasons, with prom-
ising applications for drug design. However, experimental
data on complex formation is scarce. Although in recent
years techniques like NMR or X-ray crystallography have
fuelled the field of structural biology, the number of
known protein-protein complex structures remains low.
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Therefore, the prediction of protein-protein interactions
have become one of the most active and creative fields in
computational physico-chemistry and biology. Strictly
the native complex consists of an ensemble of structures
belonging to the free energy minimum of the system
formed by the receptor, the ligand, and the water and ions
surrounding them. Thus, in principle, using molecular
simulations via molecular dynamics or Monte Carlo
strategies, one should calculate the free energy of the sys-
tem, and discriminate between native and non native
conformations (for a recent review of free energy calcula-
tions we refer the reader to [1]). However, the amount of
calculation that must be carried in a system with a pair of
medium-sized proteins is prohibitive. In this way, dock-
ing strategies follow two main simplifications. On the one
hand the native state of the complex is not seen as the
ensemble of structures referred below, but as a single
structure. On the other hand, free energy calculations are
replaced by a scoring function which should distinguish
the native structures in a pool of conformations.

Most of the docking algorithms are clearly divided in
two fundamental parts: the search of conformations, and
the scoring function. The first stage should generate a
pool of conformations with a sufficient number of them
similar to the native complex; the latter should discrimi-
nate between the near-native and non-near-native pro-
posed conformations. One of the limitations of current
docking simulations is precisely the conformational
search phase, which is not able to produce sufficient
number of near-native docking solutions within the dock-
ing pool that can be correctly identified in subsequent
scoring or refinement steps.

There are many available search methods, but most of
them can be classified in two basic types: systematic and
heuristic. On the one side, systematic sampling methods
try to explore the whole or a subspace of the available
conformations of the system. The large number of
degrees of freedom makes unfeasible a complete confor-
mational search in a reasonable time, so most of the
reported docking algorithms treat both proteins of the
complex as rigid bodies. This dramatic approximation
has worked reasonably well for a significant number of
protein-protein complexes, especially those with neither
hinge-motions nor disorder-order transitions and where
the conformational changes are limited to the side-
chains. On the basis of this approach, protein docking has
benefited from Fast Fourier Transform (FFT) [2-7],
Spherical Polar Correlations [8] or Geometric-Hashing
[9] algorithms for a fast search of the position of the
interacting molecules, so these have always been the most
popular docking methods. However, challenging cases
involve major conformational changes upon binding, in
which rigid-body docking methods often struggle to find
any reasonable solution. Another major limitation is that
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these methods have difficulties in including sophisticated
scoring functions to evaluate the docking orientations
and thus are mostly based on geometrical criteria such as
surface complementarity. A last (but not least) problem is
that, in most of FFT-based methods, one monomer is
fixed while the other is translated and rotated. This sam-
pling strategy is obviously not the one that uses nature to
face up the interacting proteins, but was chosen for prac-
tical issues of implementation. However, as recently
reported [10], other sampling techniques based on orien-
tational changes of both molecules can provide a more
natural sampling and lead to an improvement of compu-
tational efficiency.

On the other side, heuristic searching methods do not
need to exhaustively sample the whole conformational
space, which presents some advantages, such as being
able to include flexibility during the conformational
search and use more sophisticated scoring functions. For
instance, the ICM-DISCO docking method was based on
a Monte-Carlo search of the ligand molecule using the
binding potentials pre-calculated in a 3 D grid for the
receptor, followed by the optimisation of the ligand inter-
face side-chains in the torsional space [11]. These meth-
ods can provide more accurate geometries, but they are
usually much slower than the systematic FFT-based
search approaches.

In this paper we will try to overcome the limitations of
current docking search methods, and propose an algo-
rithm to uniformly generate docking orientations for a
two rigid body system in a fast manner, with potential
inclusion of flexibility. The method, to which we refer as
RotBUS (Rotation Based Uniform Sampling) generates
orientations in such a way that subspaces can be easily
explored, which would allow to combine the speed of
FFT-based systematic approaches with the traditional
advantages of heuristic methods with no extra cost. The
method has been applied to an 84 complex benchmark
set [12], widely used to evaluate docking algorithms.
After filtering the generated conformations with a resi-
due-based solvation potential, they are scored with atom-
based pyDock scoring function [13].

Methods

We describe here new procedures to generate different
configurations in a two-protein system, based on uniform
sampling of the rotational space of the two interacting
proteins and fast calculation of their optimal distance.
The two proteins are considered as rigid bodies. In this
work, the larger protein is defined as the receptor, and the
smaller one the ligand. First we will define uniform distri-
butions of points over the spheres around the interacting
molecules. This will be used later to uniformly sample
orientations by three different methods, inspired by early
work on uniform random rotations [14]. Finally, for each
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orientation the optimal distance between these molecules
will be calculated.

Uniform sampling of molecular orientations

Uniform distribution of points around the molecule

In order to define the different molecule orientations (as
described later), we first needed to generate a uniform
distribution of N points around each molecule. The total
number of points N depended on the desired sampling
resolution, and was calculated as follows. A triangular
mesh (with equilateral faces of size p) was generated on
the expanded molecular surface (figure 1A). In this way,
the number of vertices of the mesh defines the number of
points N that we need to distribute to get a sampling res-
olution p. The expanded molecular surface helped to
overcome details on the molecular surface that could oth-
erwise introduce error in the mesh generation, and was
calculated by using MMTK module MolecularSurface
[15] with a probe of radius 14 A. This value is roughly the
radius of gyration for a medium-sized protein, so the res-
olution p can be visualized as the distance between the
center of mass of different positions of a medium-sized
protein in contact with the given molecule. Once we cal-
culated the number of points N that we needed to gener-
ate in order to do the sampling at a given resolution p and
according to the geometrical characteristics of the pro-
tein, the next step was to distribute the N points over a

Figure 1 Initial distribution of points. A) A triangular mesh of points
on the expanded surface of the barnase protein (PDB code 1bgs). B) On
the left, a naive distribution of points over a sphere based on uniform
sampling of polar coordinates. On the right, a uniform distribution
based on the method used in this work [18].
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sphere around the molecule, so that the orientations gen-
erated from these points could be uniformly distributed
in the rotational space (on the contrary, the rotations
directly based on the mesh points would not be uniformly
distributed).

The problem of uniformly distributing a given number
of points over a sphere has been studied over centuries,
and constitutes one of the mathematical challenges of the
XXIst century [16]. In spite of being of critical impor-
tance in many scientific disciplines, such as physics,
chemistry, and biology, no analytic solution is possible. A
naive approach, based on a uniform exploration of the
spherical coordinates, generates a distribution strongly
biased to the poles, as can be seen in figure 1B. However,
there are geometric algorithms that produce asymptoti-
cally correct solutions (i.e. they provide uniform distribu-
tions when the number of points tends to infinite) [17].
For the sake of simplicity, we have used here previously
reported tables containing the distribution of point unit
charges that minimizes the potential energy over a unit
sphere (tables are available for N < 133, and N = 192, 212,
272, or 282) [18]. When these tables were not available,
we used an algorithm based on geometrical consider-
ations [19]. The method supposes that when the number
of points is high, there is one set of points uniformly dis-
tributed that defines a tiling of the sphere by identical
squares. Considering that each square edge has a certain
Euclidean length, the method is able to distribute almost
uniformly any number of points. This can be seen in fig-
ure 1B (on the right).

We used these uniform distributions of points around
receptor (P, ) and ligand (P,,) to generate uniformly sets
of rigid-body docking orientations by using three differ-
ent methods, as explained below.

Rotational sampling method RRT ( R[;, R}, Ty;, )

The first method we devised to generate uniform orienta-
tions for receptor and ligand molecules is described as
follows. We first generated a series of rotations for the
ligand from a distribution of points over a sphere Py,
using a method based on Arvo's work [20]. Each ligand
rotation R, was generated by i) first performing a rota-

tion of the molecule by a specific angle y around the z
axis that went through the center of mass of the molecule,
and i) then rotating the molecule so that the north pole
pointed towards a point p € Py, (figure 2A). In order to
ensure a uniform distribution of such defined rotations,
the distributions of the angle ¢ € [0, 2] and the points p
€ Py, must be uniform, and the number of sampled angle
values must correspond to the square root of the number
of points in Py, We have generated uniform orientations
for receptor and ligand molecules as follows. Once the
rotations for the ligand Ry, were generated as above
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Figure 2 Orientational sampling strategies used in this work. (A) RRT method; (B) TRR method; (C) RRR method. See text for details.

described, then, for each of them the ligand was trans-
lated around the receptor using a uniform set of spherical
coordinates (r, ¢, 8) computed from the uniform set of
points P, around the receptor (figure 2A). Thus, the
direction of the translation was defined by the pair of
angles ¢, 0 (i.e. the center of mass of the ligand was placed
in the axis defined by each point in P,,. and the center of
mass of the receptor), and then the value of the radial
coordinate r that brings both molecules in contact was
computed by a new method described later (see section
"Optimal distance between interacting molecules").
Rotational sampling method ( T;;, R}, Rjiy')

In this second method, the ligand was first translated
using the pairs of polar angles ¢, 6 defined from the uni-

form set of points P,,,around the receptor (i.e. the ligand

was translated so that its center of mass was placed in
every axis defined by the receptor center of mass and

each receptor point p € P,, ). For each ligand position, the

ligand was rotated around its center of mass so that every
ligand point p € Pj,ended in the axis that joined the cen-
ters of mass of the two molecules (figure 2B). Finally, the
ligand was rotated around the axis that joined the centers
of mass of both molecules. In order to ensure a uniform
sampling, as in the first method, the distribution of the

angle y € [0, 277] and the number of sampled angle values
must correspond to the square root of the number of
points in P, (in a previously described method based on
ICM software, http://www.molsoft.com, surface points
around receptor and ligand were used in a similar man-
ner to define the translation and orientation of the ligand,
but a fixed angle of 60° was used there for the final set of
rotations [21]). Finally, for each orientation, the value of
the radial coordinate r that brings both molecules in con-
tact was computed as described later (see section "Opti-
mal distance between interacting molecules”).

Rotational sampling method RRR ( R%,, .R}} Ri%y')

rectlig
In this last method, both receptor and ligand were rotated
so that each one of their surface points p,,. € P, and Py,
€ Py, were placed in the axis that joined their centers of

mass (Z axis), being thus each molecule facing towards
the other one. Then, the ligand was rotated around the
mentioned axis (figure 2C). In order to ensure a uniform
sampling, as in the other two methods, the distribution of
angle ¢ € [0, 27] must be uniform, and the number of
sampled angle values ¥ must correspond to the square
root of the number of visited ligand points (those in Py).
Finally, the distance r between the centers of mass of the
two molecules was computed as described in section
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"Optimal distance between interacting molecules". This is
in practice very similar to method TRR, but it reproduces
in a more "natural” way the actual rotational movement of
both molecules when they are interacting.

We have to note that there are other reported methods
to sample rigid-body docking orientations [8,22]. For
instance, Mitchell's method [22] is implemented in well-
known FFT-based docking programs like ZDOCK [6].
However, these programs usually keep a fix number of
rotations for all proteins, which implies that large inter-
faces are sampled with lower efficiency in Euclidean dis-
tance. With our approach (i.e. defining uniform points
over a sphere and then using them to generate rotations)
we wanted to explore the possibility of uniform rotational
sampling with fixed Euclidean resolution at the sampled
interfaces independently on the size of the molecules.
Our RRR rotational sampling is very similar to the
method of ref [8], but they do not include the mutual
receptor-ligand twist angle (y) in the formalism for uni-
form sampling. For instance, in their manuscript they
perform a test using 492 vertices and 72 twist increments
of angle y (about 5° angular resolution). However, for a
uniform rotation plan given 492 vertices (around 10°

angular resolution) only +/492 ~ 22 twist increments
would be required.

Optimal distance between interacting molecules

For each receptor/ligand orientation, we had to compute
the optimal distance r between the centers of mass of the
molecules. For this, we projected the molecular surfaces
of the molecules as 2 D grids on the planes defined
through the geometric center of receptor and ligand,
respectively, both perpendicular to the axis that joined
the geometric centers of the two molecules. The distance
from each grid point to the molecular surface was calcu-
lated, thus generating a distance-to-surface matrix that
represents the grid-projected surface for each molecule.
Then, the resulting distance r was obtained by the maxi-
mum element of the sum of the distance to-surface matri-
ces of receptor and ligand (figure 3). In order to speed up
calculations, we computed these simplified grid-pro-
jected surfaces without transforming the molecular coor-
dinates. This made the practical implementation for the
last rotational sampling method slightly different from
that of the other two methods. The details are explained
below.

For the first two rotational sampling methods, RRT and
TRR, rotations and translations were applied only to the
ligand, so the receptor was kept fixed. We first generated
a grid representation of the molecular surface for the

receptor, as follows. Let v,,. be the direction that points

rec
from the center of mass of the receptor to a given point p

€ P, (ie. it is the direction that joins the centers of mass
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of both molecules when ligand is translated to that given

point p as described before). We defined ¥, and ¥7,, to

form a basis of the perpendicular plane to v, , so that we
generated an equilateral triangular lattice of step A with
them (fig. 3A). The equilateral triangular lattice provided
a closer packing than a square one, and hence a better
resolution. We used a lattice of size 17 x 15 cells, with A =
3.5 A. Then, for each grid point we took the farthest sur-
face backbone atom (defined as those with a non-zero
accessible surface area) inside the cylinder of radius 1/2,

(fig. 3A)
(the mathematical condition is that the cross product

centered at that point with axis parallel to v,,,

between v,,. and the vector that points from the grid

point to the atom has a value smaller than %\/5 ). The

distance between the grid point and the selected atom is
calculated for each grid point, so that we obtained a dis-
tance matrix that mimicked the shape of the receptor
from each grid point (fig. 3B).

Applying the algorithm to the ligand is analogous.
Given the rotation matrix Ry, the ligand has its interac-

tion on the direction given by:
— 1=
Vig = _Rligvrec (1)

To find a basis ¥;, and v, of its perpendicular plane,

7

rec and

we used the transformation in equation 1 over v

17, . Then we generated a grid defined through the cen-
ter of masses of the ligand and the corresponding dis-
tance matrix for the ligand (as explained before for the
receptor).

Finally we summed both matrices, selected the maxi-
mum element that had both summands no null and
added € = 4.7 A (arbitrary value selected from previous
tests; data not shown) to this quantity in order to account
for the extra volume required to include the side-chains
of both proteins. The resulting value was assigned as to r,
accounting for the distance between centers of mass that
kept the surfaces in contact (figure 3C).

For the third rotational sampling method, RRR, both
receptor and ligand molecules were rotated so that the

interaction was always on the z axis. Then, in order to
generate the grid-projected surface of the receptor we
took the direction v,,, (the direction from the geometric
), and the

difference with the other two methods for generating
rotations is that now we need to generate the vector basis
depending on R, as:

rec(

center of the receptor to the given pointp € P,,,



Solernou and Fernandez-Recio BMC Bioinformatics 2010, 11:352
http://www.biomedcentral.com/1471-2105/11/352

Page 6 of 14

Figure 3 New method for determining the optimal separation between the interacting molecules, for each sampled orientation. (A) A tri-
angular grid (orthogonal to the direction of the interaction v,) is used to generate a 2 D projection of the receptor (in blue ribbon) surface, by com-

puting the distance from each grid point to the furthest surface backbone atoms (grey spheres). B) The grid points are shown here coloured according
to the distance to the surface backbone atoms from black to red (red indicates maximum distance to the surface). C) This process is repeated for the
ligand molecule, and the two grids are summed up. The value of the maximum element of the sum matrix (plus some fixed extra space e to account
for the volume of the side chains) will define the final separation distance r between the centers of mass of the molecules.

=  _ p-lz = _ p-lz
Urec - Rrecx' Urec - Rrecy' (2)

Similarly, for the ligand, we had v, as the direction

corresponding to the given point p € Py, and the vector
basis:

-~ _ p-l= A
vlig_Rlig'x' vlig_Rligy~ (3)

The rest was computed as above described.

Scoring the conformations

We have used pyDock [13] for the final scoring of the ori-
entations generated by RotBUS. The function, based on
electrostatics and desolvation, with weighted van der
Waals term, is specially suited to study rigid-body pro-
tein-protein docking. In the original pyDock benchmark
[13], a weight of 0.1 for van der Waals term was optimal
to tolerate the small number of atomic clashes found in
the FFT-generated rigid-body docking poses. However, in
RotBUS docking orientations might not have such good
geometric complementarity as in FFT-based approaches.
Thus, in order not to filter out acceptable orientations,
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we had to consider lowering van der Waals weight (see
Results for further details).

Given the large amount of docking orientations gener-
ated by RotBUS, pyDock evaluation became computa-
tionally too expensive at high resolution (e.g. p = 9 A).
Thus we devised a fast residue-based desolvation scoring.
Using the atomic parameters o; in a previous work [21],
we have first calculated the contribution of each surface
residue to the desolvation energy in the individual pro-

teins, E]r-es :

E]r'es= Z Efmmz z 0 ;ASA; (4)

ieres ; ieres -

J J

Then, for each docking orientation the total desolvation
energy was computed by summing up the residue contri-
butions in all intermolecular contact residue pairs (i.e.
residues from each molecule that have at least one atom
within 8 A distance), as in the following equation:

E = S ETeS 4 gTes S, = L rjk <8A
= iR(Ei” +E°), S = .
ik 0, r5>8A

(5)

The contribution of each residue thus depended on its
intrinsic contribution (precomputed in the individual
proteins) and on the number of contact pairs formed with
residues from the partner molecule. The concern with
this approach was that the residues involved in several
pairs might be over-represented and thus could contrib-
ute excessively to the desolvation energy. However, we
checked that in this method (as opposed to that of con-
sidering each interface residue only once) the resulting
energy correlated better with the originally described
atom-based desolvation energy. The main advantage is
that accessible surface area was calculated only once (on
the individual proteins), and thus during the scoring pro-
cess only distances needed to be computed. This scoring
method showed to be much faster than pyDock and
therefore was used as a pre-pyDock scoring filter.

Data set for benchmarking

We analyzed the predictive capabilities of RotBUS, using
a standard benchmark for docking formed by 84 protein-
protein cases with known X-ray structures both for the
unbound and the bound subunits [12]. In order to per-
form a test as much realistic as possible, the orientation
of the initial structures was randomized (the structures in
the benchmark are provided as superimposed to the x-ray
structure of the complexes, which could yield artificial
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better results). The success rates of the predictions were
defined by the percentage of test cases in which at least
one acceptable docking solution was found within the top
N solutions. A nearnative or acceptable docking solution
was defined as the one that had below 10 A of RMSD of
the ligand C-alpha atoms with respect to the correspond-
ing ones in the reference structure, after superimposing
the receptor molecules. In order to focus our test onto
the rigid-body results, for the first test regarding the
number of near-native solutions at different sampling
conditions, the complex reference was formed by the
unbound subunits superimposed onto the complex struc-
ture (thus avoiding the high RMSD values that cases with
large unbound-bound differences could have even with
correct docking orientations).

Results and Discussion

Sampling efficiency by the different rotation methods

We have devised three different methods for rigid-body
sampling (see Methods), based on uniform rotations, and
have evaluated the quality of the generated docking ori-
entations on a widely-used benchmark set formed by 84
protein-protein complexes [12].

First we analyzed the percentage of cases with near-
native docking solutions (defined with respect to a refer-
ence structure formed by superimposing the unbound
subunits onto the complex structure) generated by each
method, at different levels of resolution (see table 1). The
resolution value p indicated the minimal distance
between the grid points on the expanded surface that
were used to define the number of rotations, as described
in Methods. The resolution value can be intuitively
related to the distance between the geometrical centers of
the different ligand orientations sampled during the pro-
cedure. For instance, a 14 A resolution means that, for
standard-sized molecules, the docking orientations
would be uniformly sampled so that the minimal distance
between the geometrical centers of the ligands (after
superimposing the receptors) would be 14 A, while the
contacting surfaces would be approximately 9 A sepa-
rated (on the other side, at 9 A resolution, the contacting
surface would be approximately 6 A separated). In order
to compare with standard angular resolution units, a res-
olution of 14 A would be equivalent to 14.0° for a big pro-
tein (1de4 ligand, 1278 residues) and to 28.4° for a small
one (leaw ligand, 58 residues). On the other side, a reso-
lution of 9 A is equivalent to 8.5° for a large protein (1de4
ligand, 1278 residues) and 17.5° for a small one (leaw
ligand, 58 residues). In this way, for the largest cases, at 9
A resolution we have better surface sampling than with
the standard 12° resolution used in FFT-based
approaches.

The three methods had similar results. In all of them,
the number of cases with near-native docking solutions
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Table 1: Docking results with different rotational sampling methods.

P (A) % of cases with solution # conformations
RRT TRR RRR

9.0 100.0 100.0 100.0 1196123
125 98.8 100.0 100.0 187110

13.0 95.2 94.0 97.6 152156

13.5 92.8 90.5 95.2 123687

14.0 92.8 88.1 91.7 100902

14.5 88.1 88.1 90.5 82903

15.0 84.5 84.5 84.5 69395

155 81.0 78.6 81.0 57643

Resolution (p), percentage of cases with near-native solutions generated by each method and average number of generated conformations.

increased at higher resolution values (i.e. those with
smaller grid cell size), but obviously the number of total
docking poses also increased. Given that the RRR method
gave slightly best results for high +resolution (below 14
A), and since it was more intuitive (as it directly
described the docking orientations based solely on
molecular rotations without needing any translation), we
decided to use it in this work.

Because of the systematic sampling, the number of
near-native solutions was proportional to the total num-
ber of docking poses, and this in turns depended on the
resolution. At 9 A, all cases had near-native conforma-
tions, although the total number of generated docking
poses was quite high in average (circa 1.2 million). On the
other side, at 12 A resolution, the average total number of
docking poses was more reasonable (below 100,000),
while the percentage of cases with near-native solutions
was still high (77 out of 84 cases). Moreover, we can see in
figure 4A that the concentration of near-native solutions
at 14 A at 12.5 A and at 9 A resolution are very similar.
This is important, as we have recently reported that the
concentration of near-native solutions is a key factor for
pyDock scoring success [23].

For the only purposes of exploring the number of near-
native solutions found at the different sampling condi-
tions, as described in this sub-section, the ligand RMSD
of each docking pose was calculated with respect to a ref-
erence formed by the unbound structures superimposed
onto the complex structure (although we have to note
that for all the success rate results given later, we have cal-
culated the ligand RMSD with respect to the X-ray struc-
ture of the complex, as standard). In this way,
conformational changes in the subunits were ignored so
that we could focus on the capability of the sampling
algorithm to find correct orientations. There are 77 cases
that had near-native solutions at 14 A resolution, but we

needed to increase resolution up to 12.5 A in order to
have near-native solutions for all the remaining 7 cases.
When RMSD was computed with respect the complex
structure, the only case in the combined set (14 A/125A)
that did not have any near-native solution (i.e. RMSD <
10 A) was 1h1v (one of the set of cases run at 12.5 A reso-
lution), in which the unbound ligand was 14 A from the
bound one. For these 83 complexes with near-native solu-
tion, there was an average of 15.3 near-native conforma-
tions (with a standard deviation of 13.2). Moreover, 53 of
these cases had 10 or more acceptable solutions (defined
with respect to the complex structure). For comparison,
FTDock (12° angular resolution, 0.7 A grid size, with
electrostatics, generating 10,000 conformations per com-
plex) failed to find a near-native solution in 17 cases,
found only one nearnative solution in 11 other cases, and
found 10 or more acceptable solutions in only 15 cases.
All these data indicate that the method presented here
can properly sample the 2-rigid body conformational
space, with optimal parameters for the number of rota-
tions, radial distance r and resolution.

Scoring with pyDock

Having proven the efficiency of the new sampling method
in generating rigid-body docking orientations, we next
focused on the scoring, with the goal of accurately identi-
fying the near-native docking solutions (based on ligand
RMSD computed with respect to the complex structures,
as standard). Figures 4B,C show the performance of
pyDock scoring on the solutions generated by the RRR
method at 14 A resolution (except for the 7 cases with no
near-native solution, in which we used 12.5 A resolution).
We checked the use of van der Waals and there was a lit-
tle improvement with 0.02 weight. As can be seen in fig-
ure 4B,C a weight of 0.02 gave the best success rate for
top 10 solutions, and it gave better results for all rank val-
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Figure 4 Analysis of the RotBUS orientational sampling. A) Per-
centage of cases with concentration of near-native solutions (9 Ali-
gand RMSD with respect to a reference formed by the unbound
molecules superimposed on the complex structure) above the value
indicated in abscissas for the rigid-body docking sets generated by RRR
method at 9 A (blue), 12.5 A (green) and 14 A resolution (red). B) Suc-
cess rates (i.e. percentage of cases with near-native solutions -10 A [i-
gand RMSD with respect to the complex structure- within the top
ranked docking poses indicated in abscissas) after scoring by pyDock
the docking sets generated at 14 A resolution, using weighting factors
for the van der Waals term 0 (red), 0.02 (green), and 0.1 (blue). C) Same
as in B but in logarithmic scale.
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ues. This small van der Waals contribution was sufficient
to remove false positives in which electrostatics was arti-
ficially high. Moreover, imposing a van der Waals cutoff
to avoid cases with high van der Waals values did not
change the results (data not shown). On the other side,
higher van der Waals weights were not helping either,
probably because of the noise derived from the rigid-
body assumption (as discussed in previous work [13]).
The main problem is that at 14 A resolution, the number
of docking poses was too high for the practical applica-
tion of pyDock (the average computational time was
more than 130 hours per case). For this reason, we fur-
ther explored the use of a fast residue-based desolvation
(see Methods) as a first filtering step in order to reduce
the number of docking poses to be scored by pyDock.

Filter with fast solvation energy

First we studied the most efficient filtering protocol with
the new residue-based desolvation in terms of recovery of
near-native solutions. When we applied the fast desolva-
tion to the sets derived at 9 A and 12.5 A/14 A resolution,
we could keep a similar number of total docking poses by
selecting the top 1% in the 9 A resolution set (yielding an
average of about 11800 docking poses) or the top 10% in
the 12.5 A/14 A resolution set (yielding an average of
about 11300 docking poses). However, although the final
number of selected conformations was similar, we saw an
important difference: the concentration of near-native
solutions (defined with respect to the unbound subunits
superimposed on the complex structure) was higher after
selecting the top 1% lowest-desolvation orientations in
the 9 A resolution set (figure 5A). In these conditions, the
number of near-native solutions found in the top 2000
conformations generated by RotBUS is in many cases sig-
nificantly higher than when generated by FTDock (see
[Additional file 1]).

In figure 5B,C we can see that filtering the set at 12.5 A/
14 A resolution with the new residue-based desolvation
permits a fast removal of 90% of the docking poses, with-
out losing too much efficiency in the pyDock scoring.
Computational times for a small case like PDB leaw were
less than 2 minutes for the orientation search and 40 sec-
onds for the residue-based solvation calculation on a 2.4
GHz Dual Core AMD Opteron CPU. For one of the larg-
est cases (PDB code 1de4) these times increased up to 32
and 52 minutes, respectively. In any case, given that most
of the time is spent in pyDock scoring, removal of 90% of
the poses makes the total procedure around ten times
faster.

Besides, given that selecting the top 1% at 9 A resolu-
tion seemed more efficient in terms of recovery of near-
native solutions, we have analyzed pyDock success rates
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Figure 5 Analysis of the residue-based desolvation filtered sub-
sets. A) Percentage of cases with concentration of near-native solu-
tions (10 A ligand RMSD with respect to a reference formed by the
unbound molecules superimposed on the complex structure) above
the value indicated in abscissas at 9 A (green) and 12.5 A/14 A resolu-
tion (red), when only the top 1% and 10% docking poses with the best
residue-based desolvation values are considered. B) Success rates
(near-native solutions defined with respect to the complex structure)
after scoring by pyDock (w4, = 0.02) the top 1% docking poses with
the best residue-based desolvation of the docking sets generated at 9
Aand 12.5 A/14 A resolution (in red and green, respectively), and the
top 10% docking poses with the best residue-based desolvation of the
docking sets generated at 9 A resolution (blue). C) Same as in B but in
logarithmic scale.
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using this strategy (from now on, near-native solutions
are defined based on ligand RMSD computed with
respect to the complex structures, as standard). In figure
5B,C (and in [Additional file 2]) we can see the results for
9 A resolution after selecting the 1% docking poses with
the lowest residue-based desolvation plus final scoring by
pyDock (with van der Waals 0.02). For low ranks, 9 A res-
olution (1% filtering) was clearly better than 14 A resolu-
tion (10% filtering).

When selecting instead the top 10% (9 A resolution),
the results were slightly better at high rank values, but
they were worse at low rank values (figure 5). At 9 A reso-
lution, computational times for a small case like PDB
leaw were 10 minutes for the orientation search and 3
minutes for the residue-based solvation calculation on a
2.4 GHz Dual Core AMD Opteron CPU. For the excep-
tionally large case PDB 1de4 these times dramatically
increased up to 5 and 10 hours, respectively. In any case,
these times were smaller than those of FTDock (for 1eaw
and 1de4, 6 and 60 hours respectively) and pyDock (the
latter depending on the number of solutions to score).
Considering that pyDock scoring is 10 times faster with
1% filtering than with 10% filtering, this is clearly the
strategy of choice.

Integration of RotBUS and FTDock sets

In figure 6 and [Additional file 1] we have compared the
results of RotBUS plus pyDock with those obtained from
FTDock plus pyDock. For rank values of 10 or below, the
results are very similar. However, for larger rank values
the success rates are better in FTDock. We have explored
whether both methods could be complementary and thus
generate good solutions in cases in which the other one
could have difficulties, and vice versa. We have checked
that in many cases the number of near-native solutions in
the top 2000 conformations is high when generated by
RotBUS or by FTDock, but not by both simultaneously
(see [Additional file 1]). Figure 6A,B shows the success
rates of the combined docking sets from i) 9 A resolution
plus 1% filtering, scored by pyDock with 0.02 van der
Waals, with the final value weighted by a factor of 0.5, and
ii) FTDock, scored by pyDock with 0.1 van der Waals.
Other weighting factors for the pyDock scores of the Rot-
BUS poses did not improve the results (see [Additional
file 3]). With 9 A filtered at 10%, the results did not
improve (figure 6C,D). We checked that considering a fix
number of top solutions (e.g. 10,000) after solvation fil-
tering gave similar results (data not shown).

RotBUS with residue-based desolvation filtering in
combination with FTDock gave better general results
than each method on their own, especially for rank values
over 50. However, we saw specific examples that were
very dependent on the choice of the method. For
instance, there were cases that had poor results with Rot-
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Figure 6 Analysis of the combined RotBUS and FTDock sets. Success rates for RotBUS (generated at 9 A resolution and scored by pyDock with

0.02 van der Waals weight; in red), FTDock (scored by pyDock with 0.1 van der Waals weight; in green), and the combined sets from RotBUS and FT-
Dock, in which the scoring values of the RotBUS docking poses have been weighted by a factor of 0.5 (in blue). A) For RotBUS, only the top 1% docking
poses with the best residue-based desolvation values were considered. B) As in A but in logarithmic scale. C) For RotBUS, only the top 10% docking
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BUS (9 A resolution) filtering at 1% residue-based desol-
vation, but had good results with FTDock, such as those
with PDB code lay7, 1b6¢, 1buh, 1ml0, 2btf, and 2jel.
These cases can improve the results if we apply 10% filter-
ing, which indicates that for them, geometrical comple-
mentarity rather than desolvation is the important factor
to detect the near-native solutions. On the contrary, there
were cases that had good results with RotBUS at 1% filter-
ing, but not with FTDock, such as those with PDB code
1de4, 1n2c, 2hmi, and 2gfw. Moreover, the results did not
further improve with 10% filtering. In these cases, desol-
vation seems to be determinant (indeed, in all of these
cases, except the ligand of 1n2c, the interacting molecules
had highly significant ODA values [24]), and thus our res-
idue-based desolvation is helping to identify the near
native solutions even if they do not have optimal geomet-
rical complementarity or are too large for FTDock sam-
pling. For these cases, the FTDock results could improve
by inclusion of some solvation descriptor during the FFT-
based search. Indeed, we have checked that the program

ZDOCK 3.0 [25], which includes solvation, gives for
these cases much better results than FTDock (rank 21,
72, 544, 1 for 1de4, 1n2c, 2hmi and 2qfw, respectively),
which suggests that FFT-based approaches can cover the
same sets of orientations of RotBUS with appropriate
inclusion of solvation. In general, in order for RotBUS
sampling to have the same success rates as FTDock (espe-
cially at high rank values), we would need to use 9 A reso-
lution at 10% filtering. However, it seems much more
efficient to combine RotBUS at 1% filtering with FTDock
if we need to produce more near-native solutions in a
selection of docking poses for further refinement, for
instance.

Success rates by size...does it improve FTDock?

We have studied the success rates of FTDock and RotBUS
according to the size of the proteins. To be consistent
with previous studies we have used the size of the grid, s,
generated by FTDock [23], according to:
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where 75" is the maximum radius of the receptor (dis-

tance from the center of coordinates of the receptor pro-

max

tein to its farthest atom), 7" maximum radius of the

ligand, and § the resolution of the grid used by FTDock
(0.7 A in our case). As we recently saw, pyDock had very
good results on the docking poses generated by FTDock
for small cases (s < 150), but very bad results for the large
cases (s > 250). The reason was that for these cases,
FTDock had problems in generating a sufficient number
of acceptable docking solutions. We have found here that
FTDock is giving slightly better pyDock success rates
than RotBUS for small cases (s < 200). But for large cases
(s > 250), top 100 success rates were by far much better
when docking poses were generated by RotBUS (33.3%)
than by FTDock (0%). Some interesting examples are the
cases with PDB code 1de4, 1n2c¢ and 2hmi, which had
pyDock ranks between 12 and 32 when docking poses
were generated by RotBUS, although they did not have
any acceptable solution generated by FTDOCK. It is clear
that the limitations of FTDock with respect to the large-
sized cases can be overcome with RotBUS efficient sam-

pling.

RotBUS and beyond

When external information about the protein-protein
interaction is provided, e.g., computationally predicted
hot spots, residue conservation or experimental data, the
search can be restricted to defined sub-zones of the sub-
units. With RotBUS, this can be easily done by checking
whether the vectors point to the expected interacting sur-
faces for receptor and/or ligand, respectively. If they do
not, the distance r is not calculated and the orientation is
disregarded. This dramatically reduces computational
costs, making possible the study of larger cases.

As an example of practical application, we have per-
formed this restricted search on two CAPRI http://
www.ebi.ac.uk/msd-srv/capri[26] targets, T26 (TolB/Pal)
and T27 (Ubc9/E2-25K). We first projected the spherical
uniform set of points (which represents all the directions
to be explored a priori) on the surface of each subunit.
For each residue expected to be at the interface, we have
selected the direction corresponding to the closest pro-
jected point (figure 7A). We selected also the nearest
neighbours of the corresponding direction in order to
ensure a wider sampling. The expected interface residues
(easily obtained from previous literature knowledge) for
CAPRI target T26 receptor TolB were His246, Ala249
and Thr292, while for ligand Pal were Ala88 and Glu102
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Figure 7 Restricted sampling with RotBUS. A) Diagram of the cho-
sen points to be explored, when there is available external information
on the expected binding regions. Red dot is the expected interface res-
idue. Red lines represent the directions selected for sampling (the one
corresponding to the expected interface residue, and the neighbour
directions). B) CAPRI target 26 receptor and ligand respectively. The
residues depicted in red are expected to be in the interface, the arrows
in blue account for the selected directions to be explored in both re-
ceptor and ligand molecules.

[27]. For target T27, the expected interface residues in
receptor Ubc9 were GInl126, GIn130, Alal31, Glul32,
Tyr134, and T135 [28], while the ones for ligand E2-25K
were Arg8, Lys10, Argll, Phel3 and Lys14 [29]. For target
T26, the residue restraints reduced the number of
explored docking poses from about 780,000 to only 1,300
orientations, at a sampling resolution of 9 A (no filtering
with residue-based desolvation). For target T27, the orig-
inal sampling of about 820,000 orientations was reduced
to only 6,000 ones with the restricted search. When
pyDock was applied to these restraint-filtered sets of
docking poses, a near-native solution was detected at
rank 1 for T26, as can be seen in figure 8A (for compari-
son, in our CAPRI submission, unrestricted docking
obtained a near-native solution at rank 19, which was
improved to rank 6 with pyDockRST). For T27, a near-
native solution was found at rank 25 using the same
restricted-search method (for comparison, in our CAPRI
submission, unrestricted docking obtained a near-native
solution at rank 977, which was improved to rank 5 with
pyDockRST) [30].

Similarly, our sampling method could be easily
extended or adapted to other algorithms. For instance,
flexibility can be implemented by loading several struc-
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Figure 8 Results of restraint-filtered RotBUS for the CAPRI targets
T26 and T27. A) Near-native solution (rank 1) for the complex T26, with
RMSD;,= 6.9 A. Receptor in magenta, ligand in cyan and reference li-
gand in green. B) Near-native solution (rank 25) for the complex 727,
with RMSDy;,=7.6 A Same colour code as in A.

tures of the proteins when the radial coordinate is being
computed. These structures could be generated, for
example, from a molecular dynamics ensemble. In this
way, future implementations of this method may provide
an efficient approach to the problem of flexibility in pro-
tein-protein docking, especially for cases in which large
conformational changes invalidate other more standard
algorithms such as FFT-based methods. Moreover, this
method could be implemented in combination with any
other conformational search protocol, for example as part
of a Monte Carlo strategy to perform simple minimiza-
tions or thermodynamic calculations.

Conclusions

We have presented here a new systematic approach to
generate rigid-body orientations of a receptor-ligand sys-
tem, based on three novel algorithms: i) uniform defini-
tion of rotations of receptor and ligand; ii) fast computing
of optimal distance between proteins; and iii) fast filtering
with residue-based desolvation. The method generates
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docking orientations at low computational cost and good
efficiency, and can be complemented with those gener-
ated by other methods (e.g. FFT-based). The final scoring
with the previously developed pyDock function yields
competitive success rates and opens the door to efficient
treatment of flexibility by using pre-sampled ensembles
or on-the-fly conformational search methods.

Additional material

Additional file 1 Number of near-native structures in the top 2000
conformations generated by RotBUS and FTDock. We show the num-
ber of near-native structures in the top 2000 conformations generated by
the method presented here (RotBUS 9A resolution, 1% lowest residue-
based desolvation), as compared to when generated by the well-known
FFT-based method FTDock. For the sake of completeness, we have also
shown in brackets the number of near-native structures in the top 2000
conformations generated by each method after scoring by pyDock.
Additional file 2 Benchmark results for the RotBUS+PyDock protocol.
Docking results after scoring with PyDock the set of rigid body poses gen-
erated by RotBUS at 9 A resolution and filtered up to 1% with best residue-
based solvation. RMSD is calculated for ligand C-alpha atoms with respect
to the complex structure.

Additional file 3 Extra weight values for the analysis of the combined
RotBUS and FTDock sets. Success rates for RotBUS (generated at 9 A reso-
lution and scored by pyDock with 0.02 van der Waals weight; in blue dia-
monds), FTDock (scored by pyDock with 0.1 van der Waals weight; in green
triangles), and the combined sets from RotBUS and FTDock, in which the
scoring values of the RotBUS docking poses have been weighted by differ-
ent factors from 0.1 to 1. A) For RotBUS, only the top 1% docking poses with
the best residue-based desolvation values were considered. B) As in A but
in logarithmic scale.
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