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Abstract
Background: Microarray measurements are susceptible to a variety of experimental artifacts, some of which give rise 
to systematic biases that are spatially dependent in a unique way on each chip. It is likely that such artifacts affect many 
SNP arrays, but the normalization methods used in currently available genotyping algorithms make no attempt at 
spatial bias correction. Here, we propose an effective single-chip spatial bias removal procedure for Affymetrix 6.0 SNP 
arrays or platforms with similar design features. This procedure deals with both extreme and subtle biases and is 
intended to be applied before standard genotype calling algorithms.

Results: Application of the spatial bias adjustments on HapMap samples resulted in higher genotype call rates with 
equal or even better accuracy for thousands of SNPs. Consequently the normalization procedure is expected to lead to 
more meaningful biological inferences and could be valuable for genome-wide SNP analysis.

Conclusions: Spatial normalization can potentially rescue thousands of SNPs in a genetic study at the small cost of 
computational time. The approach is implemented in R and available from the authors upon request.

Background
Single nucleotide polymorphism (SNP) genotyping arrays
of continually increasing resolution allow unprecedented
levels of genetic information to be captured in a single
experiment. They enable the identification, on a genome-
wide scale, of genetic markers that may be associated
with various phenotypic traits, such as disease status and
drug response. However, a genotyping experiment [1,2] is
a sophisticated and time consuming undertaking with
many potential sources of systematic biases that are unre-
lated to the biological phenomena under study. These
biases include variations introduced by chip manufactur-
ing, DNA sample processing, as well as experimental con-
ditions. Such unwanted effects can induce inflated
dropped-call rates and/or genotyping errors, which in
turn can compromise the statistical power of detecting
association and, worse still, lead to the generation of
incorrect biological hypotheses.

One form of systematic biases pertains to regional
inhomogeneity of intensity measurements over the sur-
face of a single array. These location dependent biases

were first noted in two-channel microarray experiments
[3,4]. Various kinds of non-biological spatial artifacts
have been reported by the user community since then [5-
7], including fibers, droplets and scratches that render
measured intensity values useless, as well as uneven
washing and temperature gradient that have a more sub-
tle effect on intensity signals. Importantly, many of them
are expected to be present in fair abundance regardless of
microarray platforms [3,5,6,8,9]. The normalization
methods used in the current genotype calling algorithms
do not specifically address such spatial biases even
though these undoubtedly contaminate experimental
data and might hamper subsequent analyses. Older gen-
erations of Affymetrix SNP arrays use 20 perfect match
(PM) probe pairs scattered across the chip to interrogate
each SNP, so that spatial biases may be somehow miti-
gated by simple averaging. However, to make room for
more SNPs, Affymetrix 6.0 chips reduce the number of
PM probe pairs per SNP to as few as 3 (scattered across
the chip) and so are more susceptible to errors induced by
these biases.

Although not originally developed for the Affymetrix
SNP 6.0 arrays, many techniques can be adapted to reveal
the most flagrant physical defects [5,8,10]. These tech-
niques compare the intensity value of each location in an
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array to the corresponding signals aggregated across a set
of replicated chips or a large collection of similar type of
chips. Regional accumulation of probe-wise outliers indi-
cates the presence of physical artifacts. However, the
approach is indirect and not capable of unveiling subtle to
moderate spatial patterns and may overlook biases that
are consistent across the chips.

In this publication, we report the development of an
iterative method, designed to isolate both extreme (con-
sequent upon debris, scratches, etc.) and subtle (indica-
tive of uneven liquid flow rate, temperature gradient, etc.)
spatial biases from actual biological signals within indi-
vidual microarrays. Our spatial bias removal procedure
takes advantage of the technical replicate probes embed-
ded in the Affymetrix 6.0 chips but is equally applicable
to other experimental platforms with similar feature, for
instance the Illumina BeadArrays. The procedure is inde-
pendent of the downstream genotype calling algorithm.
We focus on assessing the effect of spatial bias on geno-
type calls in this manuscript although the Affymetrix 6.0
arrays can also be used to determine genomic copy num-
ber variation.

Methods
The design of Affymetrix SNP 6.0 array
The latest Affymetrix SNP Array 6.0 chip is a 2680 × 2572
oligonucleotide microarray, capable of simultaneously
interrogating more than 900 K SNPs as well as over 900 K
non-polymorphic (NP) loci that are dedicated for the
detection of chromosomal copy-number variation across
the human genome [11]. SNPs and NP sites are repre-
sented by clusters of identical 25-nucleotides oligomers
immobilized at specific location on the microarray. A
cluster of oligomers are commonly referred to as a probe.
Each probe is manufactured to perfectly match nucleic
acid sequences containing the corresponding SNP or NP
locus. Because only two alleles are observed in nature for
most SNPs, several pairs of SNP probes are used to exam-
ine a specific SNP. Probes in a probe pair differ by just
one nucleotide in the position that corresponds to the
SNP locus. Probes targeting the same SNPs or NP sites
constitute a probeset.

Our approach leverages two key features of the design
of the array. First, in contrast to some previous genera-
tions of Affymetrix SNP chips in which probes in a
probeset may have different orientation (forward or
reverse DNA strand) and offset (SNP resides at the centre
or shifted by -4 to +4 base pairs), probe pairs in the non-
control SNP probesets of the Affymetrix 6.0 arrays are
strict technical replicates. In other words, all probes of a
particular SNP allele have the same nucleotide sequences
and should therefore exhibit identical hybridization char-
acteristics. These probes are deposited on the chip in
either triplicate or quadruplicate. Secondly, pairs in a

probeset are distantly distributed on the chip, though the
members of each probe pair are located in adjacent posi-
tions. These arrangements enable one to statistically
identify location-dependent biases, and separate them
from real biological information and noise. Note that
SNP probe pairs used for quality control purposes and
probes querying NP sites are not replicated within the
Affymetrix 6.0 array. Strong heterogeneity in hybridiza-
tion responses makes measurements of nonreplicated
probes from the same probeset not directly comparable
and less useful for within-array spatial biases detection.
Nonreplicated probes are, therefore, not utilized in our
spatial normalization procedure.

Datasets
We shall make use of three publicly available sets of
Affymetrix 6.0 cell intensity files to train, test and validate
our methods. The first set consists of 5 replicated chips
for one of the HapMap Phase I + II sample [12-14]. These
files will be used for demonstration and training purposes
in the remainder of this manuscript. The second set
includes 270 chips for all HapMap Phase I + II individu-
als. Cel files for both Set 1 and Set 2 were obtained from
Affymetrix [15]. The last set, downloadable from the SNP
Affycomp website [16,17], refers to a single 'first-pass'
experiment with 96 HapMap Phase I + II samples. Sets 1
and 2 are considered to be of high quality whereas Set 3
represents 'typical' quality. Sets 2 and 3 will be utilized in
the Results Section for testing and validation.

Spatial normalization procedure
Affymetrix SNP 6.0 arrays uses fluorescent labeling to
quantify the amount of genomic DNAs hybridized to
each probe. The levels of fluorescent signals for each chip
are stored in a separate cell intensity file (.CEL) which is
used as input to the proposed algorithm. Our approach to
spatial normalization relies on two assumptions: 1.) that
any discrepancies in intensity values between replicates
are necessarily attributable to stochastic fluctuations in
conjunction with spatial biases, and 2.) that the same spa-
tial artifact affects many probes in close vicinity in a simi-
lar fashion. For probesets with replication, we decompose
the measured intensities Ixy, or their transformation, at
cell (x,y) for SNP j with allele k (k = 1, 2) into

where Ajk is the intensity resulting from both specific
and nonspecific hybridization. Fluorescence emitted by
the DNA molecules represented by the probe is specific,
while signals from other DNA molecules and background
are considered nonspecific. The second component Sxy
denotes the spatial bias effects. Additional sources of

I A S exy jk xy xy= + + , (1)
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experimental variation are captured by the spatially
uncorrelated error terms εxy assumed to obey a zero mean
symmetrical distribution.

Model (1) is meant to be array-specific since both allelic
intensities and spatial biases are likely to vary from sam-
ple to sample (see also Section 3.1). Our single-chip esti-
mation and correction scheme is briefly described below.
The motivation and justification of each step will be
detailed in the coming sub-sections.

(1) Apply a generalized logarithmic (glog) transforma-
tion on Ixy.

(2) For each SNP allele, initialize Âjk with the median
intensity of the replicates.

(3) Estimate Ŝxy = E(Sxy) by a two-dimensional wavelet
surface fitted to Ixy - Âjk.

(4) Update Âjk with the corresponding means of the
bias-adjusted signals, i.e. Ixy - Ŝxy.

(5) Iterate steps 2 and 3 until convergence.
(6) Remove outliers, i.e. probes with extreme local

biases and revise Âjk.
Glog transformation
As evidenced in Figure 1a, the variance of εxy in Model (1)
is not constant across the value of Âjk if the very first step
above is skipped. This implies that probes with more
noisy intensity levels would have a relatively larger impact
on the estimation of the spatial effects. The amount of
systematic information that can be borrowed across
neighboring probes would also be compromised.
Although the log transformation is often considered as a
method for achieving constant variance, it tends to pro-
duce high variance at low regions of intensity. Glog is a
family of transformations [18-20] that has been proposed
for addressing the problem of heteroscedasticity that
avoids this effect by bounding the logarithmic argument

away from zero. Following Durbin and Rocke [21], it is
defined as

We adopt the algorithm suggested by the authors for
estimating c. In order to reduce the computational bur-
den, we perform the estimation using only 50,000 ran-
domly selected SNP alleles. Visual inspection of Figure 1b
indicates that a satisfactorily stabilized variability is
achieved across the intensity range.
Median or mean adjustment
Dust particles, bubbles and scratches are typical contami-
nants that disturb intensity signals greatly but affect only
limited areas of a microarray. Hence it is reasonable to
assume that most of the replicates that are constructed to
be distant from each other on the chip are free from these
strong perturbations. As a first approximation, we choose
to calculate Âjk in Step 2 using the median because of its
robustness against outliers. However, once the fitting of
Sxy absorbs the spatial disturbances, we conjecture that
inferring Ajk with the mean intensity value will be much
more efficient since the probes are duplicated only 3 to 4
times. This motivates the use of the mean in Step 4.
Wavelet de-noising
Step 3 intends to reconstruct the spatial biases robustly
without assuming a particular structure for the underly-
ing signal. The justifications for choosing wavelet-based
methods [22] rely mainly on their theoretical properties
and computational efficiency. Regional defects can show
complex and discontinuous behaviors. Wavelets, a family
of nonparametric techniques, are particularly suited for
capturing abrupt local changes as well as smooth global
trends from noisy data. We utilize maximal overlap dis-
crete wavelet transform (MODWT) in this study.
MODWT is translation invariant (x-y origin is arbitrary),
can compute all coefficients in just O(N log2 N) multipli-
cations, and does not require the number of probes along
the x- or y-direction to be a power of 2. However, as with
other discrete wavelet transformations, it needs a com-
plete data array. Affymetrix 6.0 chips have 'holes' for the
locations that do not contain replicated SNP probes. For
example, probes allocated for alignment and control pur-
poses or the NP probes. As a solution, we fill in these
'holes' with the average of neighboring points (see Addi-
tional File 1). A large portion of the NP probes are allo-
cated into a horizontal and vertical stripes across the chip
(see Figure 2). Rather than interpolate across these broad
bands, the wavelet basis was fitted separately to each of
the four corners.

The reconstruction of regional biases is performed
using the 'denoise.mowdt.2d' function implemented in

f x x x ce( ) log .= + +( )2

Figure 1 Âjk against εxy scatterplots with smoothed densities col-
or representation. The plots correspond to the first array in Set 1 (see 
Method Section). Dark and light shades of blue indicate the presence 
of many and few points, respectively. (a) Higher Âjk is accompanied by 
larger residual variance on the raw scale. (b) Glog transformation 
makes Âjk and the variability of εxy approximately independent.
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the R package 'waveslim', version 1.6.1. Several parame-
ters need to be specified. We use the simple Haar wavelet
and enforce the universal soft thresholding rule as a way
of reducing the level of noise while preserving the signifi-
cant features of the true signal. In light of the hierarchical
nature of wavelet transforms, we select a decomposition
level (also known as resolution level or scale) that opti-
mized the overall reproducibility of Âjk across the repli-
cated samples in our training data, i.e. Set 1. To reflect the
symmetrical role played by these training arrays, we mea-
sure reproducibility in a pairwise manner through

in which λ1 denotes the major eigenvalue of each pair-
wise correlation matrix (see Additional File 2). Notice
that R2 is simply the coefficient of determination of a sim-
ple linear Deming's model [23]: the higher the R2, the bet-
ter the reproducibility. We set the level of decomposition
to 3 as additional resolutions did not lead to a better aver-
age R2 value - based on 10 possible pairings from Set 1
(data not shown). Other wavelet functions were also used

during the testing phase of the procedure but none gave
better results.
An iterative procedure
Figure 2a shows the pattern (or lack thereof ) of the glog
transformed intensities of a particular chip. It demon-
strates the point that strong differences in probe hybrid-
ization performances coupled with variation introduced
by true biological signals make the raw intensities useless
for detecting all but the most prominent defects. We need
to estimate Ajk first in order to isolate the effects of
regional biases. Figures 2b and 2c display the Âjk adjusted
intensities and the denoised results of applying wavelets,
Ŝxy, respectively. By updating in an iterative manner, each
new estimations of Ajk and Sxy should result in a more
accurate assessment of the other effects. Utilizing the
replicated chips from Set 1, we observed that almost all of
the improvement in average R2 value is achieved after
only one iteration (see Additional File 3). This is perhaps
not surprising since Ajk and Sxy are independent by
design. Notice in Model (1) that adding a constant to Âjk
would cause Ŝxy to reduce by a similar amount, i.e. Âjk +
Ŝxy = {Âjk + c} + {Ŝxy - c}. Thus the parameters Ajk and Sxy
are not 'identifiable'. One might consider imposing a con-
straint on Ŝxy to make Model (1) identifiable. We bypass
this in our applications because a shift in intensity values
would have no effect on the final genotyping algorithm -
specifically the quantile scaling procedure.
Outliers
An ideal experiment with no spatial bias would generate a
zero theoretical value for all Ŝxy. Non-balanced thermal
conditions, uneven distribution of fluids and curvatures
of chip surfaces would give rise to gradual perturbation of
intensity measurements. Conversely, extreme localized
deviations of Ŝxy from 0 are indicative of the presence of
physical artifacts such as debris, blobs and scratches.
Intensities of the areas affected by the latter may retain no
or very little biological information thereby making a
recovery of the original signals impossible. This suggests
the potential need for detecting and eliminating aberrant
probe signals. This can be achieved, for example, by con-
sidering Ŝxy lying n median absolute deviation (MAD)
away from the median (of all Ŝxy) as outliers. One could
also refine the grouping approach by reinstating spatially
isolated aberrations and discarding previously approved
probes that were surrounded by ≥50% immediate outli-
ers. The value of n was tested on Set 1 over the range of 2
to 10 with the increment of 1. On the basis of the repro-
ducibility measure R2, we estimated that n = 3 is sufficient
to filter out 'unreliable' probes. A more comprehensive
use of the neighborhood structure might improve the
grouping of outliers even further. The reader is referred
to Suárez-Farinãs et. al. [5] for an example of this

R2
10 5= . l

Figure 2 Image plots of glog transformed intensities against 
their locations on the array. The plots correspond to the first array in 
Set 1 (see Method Section). Colors are proportional to percentiles of 
the signals; white pixels correspond to non-replicated probes. (a) Raw 
data: no regional trend is apparent. Median (IQR) = 1150 (562, 2035). (b) 
Median-centered data: patterns of spatial biases become visible across 
the array. Median (IQR) = 0.0000 (-0.0360, 0.0362). (c) Wavelet denois-
ing strengthens the evidence for various sources of spatial imperfec-
tion. Median (IQR) = -0.0019 (-0.0315, 0.0285). Note: wavelet surface 
was independently estimated from 4 regions separated by the white 
bands.
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approach. Âjk can then be recalculated using all but these
unreliable probes and serve as input for genotyping anal-
yses. Notice that the exclusion of probes with outlying Ŝxy
from a certain region does not automatically lead to the
elimination of the corresponding SNPs, on account of the
scattered allocation of probe replicates on the array.

Results
We illustrate the presence of chip-specific spatial bias via
Set 1 and evaluate the influence of spatial bias on geno-
type calling through the use of Sets 2 and 3. Spatial and
allelic effects are calculated individually for each array
using the following parameters: Haar basis, three levels of
decomposition, universal soft thresholding and one itera-
tion. Relevant entries in the cel files are then updated
with the glog-back-transformed estimates of Ajk. Conver-
sion of intensity data into genotype calls is done by
Birdseedv2 [24], a two-dimensional clustering algorithm
using a Gaussian mixture model. We use the default
parameter settings of Birdseedv2 in the following applica-
tions, as would most users. Original and modified cel files
are genotype-called separately. The results are compared
in terms of call rate, call accuracy (calibrated against gen-
otypes acquired from the International HapMap Project
database [25] - release #22 mapped to NCBI build 36) or
Mendelian error. Forasmuch as Birdseedv2 cannot handle
cel files with missing intensities, the outlier removal step
(Step 6) of our procedure is not implemented in these
examples. So any potential alteration in genotype calls
must be a direct consequence of spatial effect adjustment
as opposed to the selection of 'well-behaved' probes. This
provides a more appropriate basis for comparison, as
removal of outlying probe intensities might create an
unfair advantage for the proposed approach, by eliminat-
ing problematic SNPs from both the numerator and
denominator of error rate calculations.

Set 1: five replicated chips
The byproduct of our procedure, Ŝxy, facilitates explor-
atory visualization of potential systematic spatial bias.
Figure 2c and Figure 3 show Ŝxy of 5 cel files arising from
the same biospecimen that were treated exactly alike. The
nonrandom trends suggest that all chips were affected to
some extent by extreme, highly localized artifacts as well
as subtle, more global biases. However, the spatial pat-
terns are not consistent across the chips. Since the cel
files were generated from the same sample, these differ-
ences must be coming from extrinsic sources indepen-
dent of the true biological signals. This justifies the need
of a chip-specific normalization. Although it is not the
focus of this presentation, graphical illustration of Ŝxy
may provide new insights about the root causes of biases
which, in turn, facilitate the optimization of experimental

protocols. Figures 2c and 3 for instance demonstrate
streaks that might indicate irregularities during the wash-
ing process.

Set 2: 270 high-quality HapMap samples
Genotype calls for many of the SNPs in the HapMap
database were independently made by two or more plat-
forms. Concordant calls of these SNPs can be regarded as
being close to the truth and, therefore, serve as a basis for
calibration. We focused on SNPs that were typed by more
than one non-Affymetrix platform across all 270 Hap-
Map samples. The exclusion of Affymetrix calls would
eliminate any potential platform-related bias. A strict rule
of consensus was enforced: missing values were assigned
to genotypes that were called differently or have at least
one failed call. After filtering out SNPs with greater than
5% missing genotypes and not represented by Affymetrix
SNP 6.0 arrays, a total of 96,765 SNPs (or equivalently
270 × 96,765 genotypes) were retained as benchmark for
accuracy assessment. Spatial bias correction followed by
the Birdseedv2 algorithm changed 34,922 genotypes in
19,602 of these SNPs as compared to running Birdseedv2
on the original cel files. Among these genotypes, the
failed call rate originating from the unadjusted intensities
was considerably higher (Table 1). Specifically accounting
for spatial biases improved the call rate among affected
genotypes from 44.0% to 67.4%. Furthermore, this
improvement was achieved without inflating the number
of calls discordant with the consensus HapMap calls. In
other words, our method was able to restore a large frac-

Figure 3 Image plots of Ŝxy for the replicated chips (Set 1). The im-
age of the first array in Set 1 is shown in Figure 2c. Medians (IQR) of ar-
rays 2-5 are -0.0001 (-0.0303, 0.0273), -0.0031 (-0.0294, 0.0279), -0.0013 
(-0.0201, 0.0237) and -0.0064 (-0.0316, 0.0269), respectively.
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tion of the missing genotypes with good accuracy. Nar-
rowing the results of Table 1 to 32,752 genotypes that has
a 'nonmissing' consensus HapMap call (Table 2), spatial
normalization converted 2,518 discordant calls into
agreement with HapMap, 2,716 discordant calls into no-
calls, and 16,887 no-calls into concordances. The number
of calls shifting to a better category was roughly twice the
number moving to a worse category in all 3 cases (all
McNemar's one-tailed test p values < 0.001 in favor of
using the spatial normalization, see Additional File 4).

Another way of illustrating the effects of spatial biases
is by exploiting family structure, as genotyping errors can
induce Mendelian errors. We directed our attention to
the genotypes obtained from the 30 parent-offspring trios
of the HapMap CEU samples. Because a different cel file
composition might influence genotype calling,
Birdseedv2 was reapplied to this subset of 90 of the mod-
ified and original cel files. Out of all the 906,600 SNPs
interrogated by the chips, the fraction of SNP trios avail-
able (i.e. no genotyping failure) for comparison based on

calls from Birdseedv2 with and without spatial normal-
ization were 99.62% and 99.50%, respectively (Table 3).
The overall rates of Mendelian inconsistency were 0.534%
for the standard Birdseedv2 calls and 0.525% for the
Birdseedv2 calls using spatially normalized cel files. The
lower rate in the latter was partly due to the conversion of
SNP trios violating Mendelian inheritance into indeter-
minate calls or ones that follow Mendel's laws, but was
best explained by the conversion of those with failed calls
to calls showing no Mendelian inconsistencies (all McNe-
mar's one-tailed test p values < 0.001 in favor of using the
spatial normalization, see Additional File 5). Thus our
conclusion was in line with the above, i.e. spatial bias
adjustment leads to higher call rate and lower rate of
genotyping error.

Set 3: 96 first-pass HapMap samples
The examples above were based on high quality hybrid-
ization chips. Here we demonstrate that the proposed
methods can also be beneficial to cel files of typical qual-

Table 1: Concordance between Birdseedv2 and consensus HapMap calls of 34,922 genotypes

HapMap Call Birdseedv2 call

Original Spatial normalization

0 1 2 Missing 0 1 2 Missing

0 3356
(9.6)

2002
(5.7)

19
(0.05)

7045
(20.2)

7451
(21.3)

960
(2.7)

11
(0.03)

4000
(11.5)

1 496
(1.4)

2040
(5.8)

550
(1.6)

4257
(12.2)

393
(1.1)

4340
(12.4)

428
(1.2)

2182
(6.2)

2 17
(0.05)

2157
(6.2)

3470
(9.9)

7343
(21.0)

14
(0.04)

1135
(3.3)

7614
(21.8)

4224
(12.1)

Missing 322
(0.92)

627
(1.8)

323
(0.92)

898
(2.6)

300
(0.86)

575
(1.6)

311
(0.89)

984
(2.8)

Entries are frequencies (percentages) out of the 34,922 genotypes from Set 2 (see Method Section). Spatial bias normalization improved the 
call rate without inflating the number discordances with the consensus HapMap calls.

Table 2: Contrasting Birdseedv2 results in Table 1 using 32,752 non-missing consensus HapMap calls

Original Spatial normalization

Agree Disagree Missing

Agree - 1,176
(3.6)

7,690
(23.5)

Disagree 2,518
(7.7)

7
(0.02)

2,716
(8.3)

Missing 16,887
(51.6)

1,758
(5.4)

0

Entries are frequencies (percentages) out of the 32,752 genotypes. Agreement and disagreement are with respect to the non-missing 
consensus HapMap calls. Separate one tailed McNemar's tests on the three pairs of discordant entries suggest significant improvement in 
favor of the use of spatial normalization: i.) z = 22.1 for agree versus disagree; ii.) z = 58.7 for agree versus missing; and iii.) z = 14.3 for disagree 
versus missing.
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ity with the use of data from the first-pass experiment.
Genotypes labeled as non-redundant by the HapMap
project were downloaded for comparison. After exclud-
ing SNPs not present in dbSNP and those having dissimi-
lar allelic forms (between annotations given by
Affymetrix and HapMap), a total of 899,208 SNPs were
available for validation. Upon correcting for spatial
biases, 261,267 genotypes of 129,053 SNPs were reas-
signed. As in the examples above, the proposed proce-
dure lowered the number of failed calls of Birdseedv2
without incurring a greater degree of disagreement with
results from the HapMap project (Table 4). If the com-
monly used 95% SNP-wise call rate threshold were to be
enforced, spatial bias adjustment would have 2363 more
SNPs passing the quality control.

Discussion
The quality of genotype calls will likely propagate to sub-
sequent statistical analyses including genotype imputa-
tion [26-28], haplotype estimation [29,30], and inferences
in linkage and association studies. Consequently, it is crit-
ical to further develop analytical methods to improve the

measurement of SNPs. We have designed an intra-chip
normalization procedure to quantify and correct for
undesirable systematic intensity biases that are linked to
the spatial layout of the Affymetrix SNP 6.0 array.
Although we took advantage of the design of this particu-
lar chip, the proposed approach is applicable to other
array platforms given the presence of randomly allocated
probe replicates.

The notion of using within-array replicated features for
spatial normalization is certainly not new. It has been uti-
lized in the context of TAG [31] and cDNA [32] microar-
rays. To the best of our knowledge, however, this is the
first study of Affymetrix SNP chips that capitalizes on
such technical duplicates for the purposes of localized
signal correction. The proposed procedure basically fol-
lowed Yuan and Irizarry [31]. Nonetheless, their method
is different from ours in two critical ways. First, in the
same spirit as the use of a glog transformation, they
adopted a model consisting of both additive and multipli-
cative bias terms so as to make neighboring 'features'
comparable. The two components are estimated sepa-
rately through an ad hoc subset selection of the features

Table 3: Comparison of Birdseedv2 results on the basis of Mendelian inheritance pattern

Original Spatial normalization

Consistent Inconsistent Missing

Consistent 26,877,547
(98.8)

2,969
(0.011)

35,887
(0.13)

Inconsistent 4,765
(0.018)

137,146
(0.50)

2,615
(0.010)

Missing 69,733
(0.26)

2,083
(0.008)

65,255
(0.24)

Entries are frequencies (percentages) of SNP trios from 90 CEU samples of Set 2 (see Method Section). Separate one tailed McNemar's tests 
on the three pairs of discordant entries suggest significant improvement in favor of the use of spatial normalization: i.) z = 20.4 for consistent 
versus inconsistent; ii.) z = 104.1 for consistent versus missing; and iii.) z = 7.75 for inconsistent versus missing.

Table 4: Concordance between Birdseedv2 and non-redundant HapMap calls of 261,267 genotypes

HapMap Birdseedv2 call

Call Original Spatial normalization

0 1 2 Missing 0 1 2 Missing

0 27,735
(10.6)

14,592
(5.6)

233
(0.09)

43,806
(16.8)

48,341
(18.5)

9,925
(3.8)

168
(0.06)

27,932
(10.7)

1 6,324
(2.4)

21,250
(8.1)

6,147
(2.4)

38,035
(8.1)

5,483
(2.1)

43,252
(16.6)

5,558
(2.1)

17,463
(6.7)

2 186
(0.07)

15,162
(5.8)

27,250
(10.4)

44,576
(17.1)

169
(0.06)

10,073
(3.9)

48,807
(18.7)

28,125
(10.8)

Missing 2,183
(0.84)

4,287
(1.6)

2,350
(0.90)

7,151
(2.7)

3,007
(1.2)

5,034
(1.9)

3,108
(1.2)

4,822
(1.8)

Entries are frequencies (percentages) out of the 261,267 genotypes from Set 3.
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where the influence of other term can be regarded as neg-
ligible. However, this procedure is quite time consuming
because it introduces more steps to the iteration and
requires higher memory storage. Secondly, they uncov-
ered regional biases by using a fast Fourier transform
convolution. Special treatment had to be applied on the
prominent defects in an effort to avoid overshadowing
the less obvious artifacts. The ability of wavelets in han-
dling sharp local structures seen in the SNP arrays is an
advantage over the Fourier methods. Other smoothing
techniques such as lowess and thin plate splines might
also have been considered, but display drawback similar
to the Fourier transform while being even less efficient
computationally.

Affymetrix SNP 6.0 arrays are designed to interrogate
SNPs along with genomic copy number changes. In its
current form, the proposed approach only applies to SNP
probes. Lack of technical replicates precludes explicit
modeling of spatial effects on NP probes. Some sort of
interpolation, such as a two-dimensional loess (locally
weighted polynomial regression), is needed to extend the
bias estimation to the entire microarray. We speculate
that, because detection of copy number variation requires
measurement of more subtle intensity changes, it may be
even more affected by removal of spatial biases, an area
that will be the focus of a future study.

Conclusions
Our spatial normalization method operates indepen-
dently on each array, making it possible to treat cel files in
parallel on different processors. The usefulness of the
approaches was demonstrated by the analysis of high-
and typical-quality HapMap cel files. We showed that,
even though only a small fraction (<1%) of all genotypes
might be affected by spatial artifacts, adjusting for such
biases can potentially rescue thousands of SNPs in a
genetic study at the small cost of computational time. As
mentioned above, the improvement in genotype call rate
with equal or improved accuracy were achieved without
omitting probes with outlying intensity. Exclusion of
these probes might enhance the outcomes further, but
this awaits further investigation.
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