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Abstract

Background: The availability of various “omics” datasets creates a prospect of performing the study of genome-
wide genetic regulatory networks. However, one of the major challenges of using mathematical models to infer
genetic regulation from microarray datasets is the lack of information for protein concentrations and activities.
Most of the previous researches were based on an assumption that the mRNA levels of a gene are consistent with
its protein activities, though it is not always the case. Therefore, a more sophisticated modelling framework
together with the corresponding inference methods is needed to accurately estimate genetic regulation from
“omics” datasets.

Results: This work developed a novel approach, which is based on a nonlinear mathematical model, to infer
genetic regulation from microarray gene expression data. By using the p53 network as a test system, we used the
nonlinear model to estimate the activities of transcription factor (TF) p53 from the expression levels of its target
genes, and to identify the activation/inhibition status of p53 to its target genes. The predicted top 317 putative
p53 target genes were supported by DNA sequence analysis. A comparison between our prediction and the other
published predictions of p53 targets suggests that most of putative p53 targets may share a common depleted or
enriched sequence signal on their upstream non-coding region.

Conclusions: The proposed quantitative model can not only be used to infer the regulatory relationship between
TF and its down-stream genes, but also be applied to estimate the protein activities of TF from the expression
levels of its target genes.

Background
Transcription of genes is generally controlled by a regu-
latory region of DNA located mostly up-stream of the
gene transcription start site. This regulatory region con-
tains a short sequence that the regulatory proteins bind
to in order to enhance/inhibit the gene expression [1].
Current advance in high-throughput technologies such
as DNA microarrays, together with the availability of
whole genome sequence for several species, enable us to
study the genome-wide genetic regulatory networks.
These heterogeneous functional genomic datasets have
been used to acquire, catalogue and infer genetic regula-
tory networks in a “top-down” fashion. It focuses on the
reverse-engineering of genetic networks by identifying
the regulatory interactions, inferring the transcriptional
modules and predicting the combinatorial regulation of

transcriptional factors (TFs) [2-5]. On the contrary,
another principal research method, namely the “bottom-
up” approach, builds detailed mathematical models for
small-scaled genetic regulatory networks based on
extensive experimental observations. To accomplish that
goal, various types of models have been proposed to
describe the genetic regulation. These models include,
for example, differential equation models with continu-
ous-time and continuous-variables, Bayesian network
models with discrete-time and continuous-variables and
Boolean network models with discrete-time and dis-
crete-variables. Particularly, many differential equation
models (e.g. linear systems, neural networks, S-systems
and nonlinear models) have been used to investigate the
dynamic properties of genetic regulation [6-9].
One of the major challenges of using a “bottom-up”

approach to infer genetic regulation from microarray
datasets is the lack of information for protein concentra-
tions and activities. Most of the previous researches
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were based on the assumption that the expression levels
of a gene are consistent with its protein activities,
though we know that is not always the case. An earlier
practice to rectify above assumption is a hidden variable
dynamic modelling (HVDM) method, which is a linear
dynamic model designed to estimate the activities of a
TF by using the expression activities of its target genes
[10]. Later, the HVDM method was extended to a non-
linear one by using the Michaelis-Menten function [11].
In addition, mathematical models with time delay were
also used to elucidate the time difference between the
activities of TFs and the expression profiles of target
genes [12,13]. Nevertheless, a more sophisticated infer-
ence method, which considers both the time delay and
protein-DNA binding structure, is needed to accurately
describe the genetic regulation in a “bottom-up” fashion.
The development of such methods still remains as one
of the major challenges in the computational study of
genetic regulatory networks by the integration of
“omics” datasets and experimental results [14,15].
In earlier works, several “bottom-up” researches used

the “master” gene networks to validate their proposed
inference methodologies, as well as to investigate the
regulatory function of the “master” gene [9,10]. Among
them, tumour suppressor gene p53 has been described
as “the guardian of the genome” highlighting its role in
conserving stability by preventing genome mutation.
Since a point mutation within the p53 gene occurs in
over half of all human tumours, an elucidation of the
regulatory mechanisms of p53 gene will contribute tre-
mendously to the development of strategies for treating
cancer [16]. Although many experimental methods have
been employed to identify the transcriptional target
genes of p53 (e.g. the clustering analysis of microarray
data [17], protein expression profiles [18] and Chip-PET
identification of transcriptional-factor binding sites [19]),
it is imperative to develop more sophisticated mathema-
tical models that precisely describe the p53 regulation.
In this work, we propose a nonlinear differential equa-
tion model, which considers both the protein-DNA
binding structure and the effect of time delay, to infer
genetic regulation from microarray gene expression

datasets. The proposed method is then applied to pre-
dict the p53 target genes.

Results
Microarray data analysis
Preprocessing of raw microarray data
By using a previously published dataset [10], we selected
1,312 probes (e.g. the top 15% of the most responsive to
the p53 activation, [Additional file 1]) from the prepro-
cessed microarray dataset (~8,737 probes) by using the
pair-wise Fisher’s linear discriminant method [20]. To
assess the robustness of such selection, we compared
the gene selections between the pair-wise Fisher’s linear
discriminant method and the maSigPro method [21].
The maSigPro method is an R package especially
designed for analyzing time-course microarray experi-
ments, which was applied to the same preprocessed
microarray dataset. The parameter settings of the
maSigPro method are a false discovery value (Q) that
equals to 0.05 and an R-squared threshold (R) whose
value ranges from 0.3 to 0.9. Table 1 suggests that both
methods converged when a higher R-squared threshold
(e.g. R > 0.5 represents a good model fitting in the origi-
nal paper of the maSigPro method [21]) is used. Particu-
larly, with a higher R-squared threshold, genes provided
by the maSigPro method overlap more (> 85%) with
that selected by the Fisher’s method. Thus, the defined
top 15% of the most relevant response probes is consid-
ered to be a robust selection.
Clustering analysis
Consequently, the selected 1,312 probes were assigned
to 40 co-expressed gene modules by using a published
computational approach [5,20] that combines the stress
function, neuron gas algorithm and K-nearest neighbour
method. Each gene module represents a set of co-
expressed genes that are stimulated by either a specific
experimental condition or a common trans-regulatory
input. From a functional analysis of the 40 gene mod-
ules, we found that the co-expressed gene modules
might contain genes with either heterogeneous or
homogeneous biological functions, which are irrelevant
to the number of genes in each module. Rather, it may

Table 1 A comparison of significantly differential gene selections between the pair-wise Fisher’s linear discriminant
method and maSigPro method.

(Q, R) Genes selected by maSigPro Genes overlap with our selection Percent of overlapping

(0.05, 0.3) 1165 646 0.55

(0.05, 0.4) 1084 616 0.57

(0.05, 0.5) 661 455 0.69

(0.05, 0.6) 306 263 0.86

(0.05, 0.7) 139 131 0.94

(0.05, 0.8) 43 40 0.93

(0.05, 0.9) 14 12 0.86
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reflect the complex mechanisms that control the tran-
scription regulation. Therefore, in the subsequent analy-
sis, we applied our nonlinear dynamic model on the
profile of each individual gene instead of the mean cen-
tre of each gene module. Detailed information of 1,312
probes and the corresponding 40 co-expressed gene
modules are available in [Additional file 1].

Validation of mathematical model
Predicting protein activity from microarray gene expression
profiles
Based on the p53 protein-DNA binding structure, we
developed a nonlinear dynamic model (5) with a Hill
function to represent the expression process of p53 target
genes. The Hill coefficient was chosen to be 4 because
p53 is in the form of tetramer as a transcription factor
[22]. In addition, the proposed nonlinear model enables
us to infer target genes that are negatively regulated by
p53. In an earlier work, a linear model provided good
estimation of p53 activities by using five known p53 tar-
get genes [10]. To evaluate the performance of our non-
linear model, we used the same p53 targets (i.e. DDB2,
PA26, TNFRSF10b, p21 and Bik which are all positively
regulated by p53) to predict the activities of p53. Here
the time delay was assumed to be zero due to performing
a consistent comparison study between the two models.
Ten sets of unknown model parameters together with
the p53 activities at 6 time points were estimated from
each replicate of the 3 microarray experiments and also
from the average of these 3 microarray time courses. Fig-
ure 1A presents the mean and 95% confidence interval of
the 30 sets of the predicted p53 activities from 3 microar-
ray experiments, and Figure 1B shows the results of the
10 predictions from the averaged time courses of 3
microarray experiments. The relative error of the esti-
mate in Figure 1B is 2.70, which is slightly larger than

both that in Figure 1A (2.70) and that obtained by the
linear model (1.89). From Figure 1, we found that the
new nonlinear model achieves the same goal as the linear
model for predicting p53 activities.
Accessing the predicted protein activity from various
training genes
To determine the influence of training genes on the
estimation of p53 activities, we selected various sets of 5
training genes to infer the p53 activities. Although the
obtained p53 activities in one test are similar to those
presented in Figure 1, in which 5 training genes [23] are
negatively regulated by p53, there is slight difference
between the estimated p53 activities by using different
sets of training genes. One of the tests is shown in Fig-
ure 2, where the estimated p53 activities were based on
5 training genes (RAD21, CDKN3, PTTG1, MKI67 and
IFITM1) that are negatively regulated by p53 [24-26].
Similar to the study presented in Figure 1, ten sets of
the p53 activities were estimated from each replicate of
the 3 microarray experiments and also from the average
of these 3 microarray time courses. The mean and 95%
confidence interval of both estimates are presented in
Figures 2A and 2B, respectively. The relative error of
the estimate in Figure 2B is 1.28, which is very close to
that in Figure 2A (1.30) but smaller than that obtained
by the linear model (1.89) in Figure 1. In this case, the
estimated p53 activities are very close to the measured
ones. It suggests that our proposed nonlinear model is
capable of making reliable predictions for the TF activ-
ities from the training genes that are all either positively
or negatively regulated by the TF p53, though the
dependence between the training genes and predicted
TFs activities may exist.
Sensitivity analysis of model parameters
For the proposed nonlinear model (5), we also tested the
variation of system dynamics by changing one of the
four reaction rates (ci, ki, Ki, di). In this test, we used

Figure 1 Estimated p53 activity and the 95% confidence
intervals based on five training genes (DDB2, PA26,
TNFRSF10b, p21 and Bik) that are positively regulated by P53.
(A) Estimates from the three replicates of microarray expression
data. (B) Estimates from the mean of the three-replicate expression
data. (Dash-dot line: p53 activities measured by Western blot [10].
The protein level p53 activation come a time-course immunoblot
examination of p53 phosphorylated on S15; dash line: estimate of
the HVDM method; solid line: prediction of the nonlinear model.)

Figure 2 Estimated p53 activity and the 95% confidence
intervals based on five training genes (RAD21, CDKN3, PTTG1,
MKI67 and IFITM1) that are negatively regulated by P53. (A)
Estimates from the three replicates of microarray expression data. (B)
Estimates from the mean of the three-replicate expression data.
(Dash-dot line: p53 activities measured by Western blot [10]; dash
line: estimate of the HVDM method; solid line: prediction of the
nonlinear model.)
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the predicted p53 activities and the corresponding
model parameters to simulate the expression levels of
gene DDB2 in Figure 3A. By tuning one of the four
parameters (e.g. either increasing or decreasing its value
by 10%), we measured the ratio of simulation errors,
defined by

Ratio 
 


x x
x x
12 12

12 12
( )
( )

, (1)

where x(12) is the microarray expression level at t =
12, x12 is the simulated expression level from the esti-
mated model parameter, and x12

 is the simulated
expression level from the perturbed model parameter.
Figure 3A indicates that an increasing of the basal
expression rate ci and a decreasing of the degradation
rate di will cause considerable changes in the simula-
tions (e.g. error ratios 3.84 and 4.19, respectively.) In
addition, modification of maximal expression rate ki
induces similar changes in the simulation; and a
decreasing in parameter Ki causes an error ratio 1.44.
Furthermore, we used the Khalil method [27] to investi-
gate the influence of parameter variations on the system
dynamics at the other time points. Simulations in Figure
3B represent the variation of system dynamics induced
by a unit perturbation of model parameter, which is
similar to the defined ratio (1). The results of the sensi-
tivity analysis in Figure 3B are consistent with those in
Figure 3A. Therefore, a variation of any parameter in
the proposed nonlinear model may have considerable
influence on the system dynamics.

Prediction of p53 target genes
Effect of time delay in p53 target gene prediction
In order to make a new prediction rather than repro-
duce the published results, we used the newly inferred

p53 activity in Figure 2B and the nonlinear model (5) to
study the genetic regulation of p53 target genes. In the
new model, the maximal possible time delay was set to
2.5 hours because the experimentally determined time
delay for p53 target genes is up to 2 hours [17,28]. We
used the genetic algorithm to infer the p53 mediated
genetic regulation (see Methods for detailed informa-
tion). In different implementations of the genetic algo-
rithm, the additionally unknown parameter of time
delay may cause the estimates to vary across a wide
range of values. To reduce such parameter variation, we
used a natural spline interpolation to expand the mea-
surements from the original 7 time points to 25 time
points, by adding three equidistant measurement points
between each pair of measured time points. In addition,
we estimated the genetic regulation twice for each gene
(e.g. either with or without time delay), and selected a
final regulation result which has the smallest model esti-
mation error.
Comparison of predicted regulation states of p53 target
genes across three different methods
Subsequently, both the event method [29] and correla-
tion approach [5] were used to infer the activation/
inhibition of the p53 regulation. By comparing the
consistency of inferred regulation relationships among
the three methods (i.e. the nonlinear model, event
method and correlation method), we found that 657
and 423 of 1,312 probes from the estimation of the
nonlinear model overlap with the results by the corre-
lation method and event method, respectively. How-
ever, only 241 genes have the same p53 regulation
state across all three methods. For the top 656 probes
(50%) that with smaller model estimation errors, the
number of overlapping probes among the three meth-
ods is reduced to 414, 265 and 166, respectively. If we
reduced the probe number further by considering the
top 328 genes (25%) only, then the overlapping num-
ber is reduced to 206, 130 and 80, respectively. Thus,
by reducing the probe number from 1,312 to 656, the
proportions of gene numbers with the same predicted
p53 regulation was increased (e.g. 414:656 is greater
than 657:1312). However, by reducing the probe num-
ber further to 328, we did not find such change.
Therefore, in subsequent data analysis, we only focused
on the top 656 (~50%) predicted genes. Among these
putative p53 target genes, ~64% are positively regu-
lated by p53 while the rest are negatively regulated. A
GO functional study of these 656 putative p53 target
genes indicates that ~16% of them have unknown
functions and these genes are excluded from our
further study.
Binding motif information of predicted p53 target genes
To provide more criteria for identifying putative p53
target genes, we searched for the p53 binding motif on

Figure 3 Sensitivity analysis of the nonlinear mathematical
model. (A) Ratios of the simulation errors obtained by varying one
of the model parameters (index 1: parameter c; 2: k; 3: K; 4: d. Left
bar: the parameter is decreased (k = 0.9k); right bar: the parameter
is increased (k = 1.1k)). (B) The drift of the solution with a unit
perturbation of one model parameter obtained by using the Khalil
method (solid-line: parameter a; dash-line: k; dash-dot line: K; dot-
line: d).
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the upstream non-coding region of the top 656 genes.
This is because a physical interaction between p53 and
its targets is essential for its role as a controller of the
genetic regulation [1]. Particularly, p53 has a well docu-
mented 10 bp consensus binding motif
(RRRCWWGYYY) and a DNA sequence with two
copies of such monomer is strongly bound by the p53
protein [1]. Thus, for each putative target, we extracted
the corresponding 10 kb DNA sequences located
directly upstream of the transcription start site from
Refs [30]. Among the 656 putative p53 target genes, we
found the upstream DNA sequences for 511 of them.
Then a motif discovery program MatrixREDUCE [31]
was applied to search for the p53 consensus binding
site. The results indicate that ~72.0% (366 out of 511
genes) of putative p53 targets have at least 2 copies of
the p53 binding motif (perfect match counts of p53
binding site), while only ~10% (47 out of 511 genes) and
~20% (98 out of 511 genes) of them have zero and one
p53 monomer, respectively. Based on the model estima-
tion error and upstream TF-binding information of the
656 putative p53 target genes, we further narrowed
down the number of possible p53 targets. In addition,
for any gene that has more than one probe, we chose

only the probe that has the smallest estimation error.
We also excluded genes with very small parameter ki in
model (5) because p53 may not have much influence on
them [10]. A final list containing ~317 putative p53 tar-
gets [Additional file 2] covers around ~24% of the total
studied probes (~1312). Table 2 presents 50 of these
predicted putative p53 target genes.
Discrepancies between different predictions
It is interesting to explore whether the putative p53 tar-
get genes identified above correspond to sets that have
been discovered by other methods. For that reason, we
collected four lists of putative p53 targets from different
studies. They are 45 unique genes from 50 predicted
p53 target probes which were obtained by applying the
linear HVDM method on the Affymetrix microarray
time-series data [10]; 317 unique genes which were
detected by applying our non-linear dynamic model on
the above same dataset; 76 unique genes which were
identified by analysing p53-regulated gene expression
profiles of oligonucleotide arrays [17]; and 205 unique
genes which were suggested by Chip-PET analysis of
human genome-wide p53 transcription-factor binding
sites [19]. As shown in Table 3, the overlapping among
the different predictions is quite poor.

Table 2 Putative p53 target genes predicted by our method.

Order Probe Set ID Gene Symbol error/regulation Order Probe Set ID Gene Symbol error/regulation

1 1 217732_S_AT ITM2B 0.0382 (+) 26 87 202431_S_AT MYC 0.6894 (-)

2 2 205347_S_AT TMSL8 0.0828 (+) 27 91 203509_AT SORL1 0.7450 (+)

3 3 211630_S_AT GSS 0.1100 (+) 28 125 219863_AT HERC5 1.0149 (+)

4 4 201202_AT PCNA 0.1148 (+) 29 132 205692_S_AT CD38 1.0689 (+)

5 5 208812_X_AT HLA-C 0.1216 (+) 30 141 213204_AT PARC 1.1296 (+)

6 6 202649_X_AT RPS19 0.1396 (+) 31 145 209375_AT XPC 1.1468 (+)

7 7 211714_X_AT TUBB 0.1495 (+) 32 147 201834_AT PRKAB1 1.1574 (+)

8 9 201761_AT MTHFD2 0.1848 (-) 33 152 209849_S_AT RAD51C 1.2028 (+)

9 10 202605_AT GUSB 0.1933 (+) 34 159 219361_S_AT ISG20L1 1.2623 (+)

10 11 209140_X_AT HLA-B 0.1956 (+) 35 178 204958_AT PLK3 1.4262 (-)

11 12 210968_S_AT RTN4 0.1996 (-) 36 185 205266_AT LIF 1.5033 (+)

12 13 201476_S_AT RRM1 0.2046 (+) 37 202 202729_S_AT LTBP1 1.6431 (+)

13 14 204026_S_AT ZWINT 0.2087 (+) 38 203 213293_S_AT TRIM22 1.6431 (+)

14 18 216705_S_AT ADA 0.2235 (+) 39 205 204321_AT NEO1 1.6711 (+)

15 20 202503_S_AT KIAA0101 0.2318 (+) 40 215 205043_AT CFTR 1.7426 (+)

16 21 218740_S_AT CDK5RAP3 0.2382 (+) 41 234 213523_AT CCNE1 1.9631 (+)

17 23 213060_S_AT CHI3L2 0.2785 (+) 42 244 218611_AT IER5 2.0564 (-)

18 24 221943_X_AT RPL38 0.2858 (+) 43 257 202284_S_AT CDKN1A 2.1920 (+)

19 25 218883_S_AT MLF1IP 0.2891 (+) 44 275 208478_S_AT BAX 2.3018 (+)

20 30 201721_S_AT LAPTM5 0.3121 (+) 45 277 202095_S_AT BIRC5 2.3172 (-)

21 31 208149_X_AT DDX11 0.3408 (+) 46 279 204009_S_AT KRAS 2.3263 (-)

22 32 209773_S_AT RRM2 0.3454 (+) 47 290 203752_S_AT JUND 2.4195 (+)

23 33 218403_AT TRIAP1 0.3500 (+) 48 306 217373_X_AT MDM2 2.5517 (-)

24 36 201577_AT NME1 0.3645 (+) 49 309 211725_S_AT BID 2.5805 (-)

25 38 210774_S_AT NCOA4 0.3703 (+) 50 312 203725_AT GADD45A 2.6107 (+)

The first 25 genes have minimal model error and the other 25 genes are known p53 target genes. (+: gene is activated by p53; -: gene is inhibited by p53)
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Target gene bias from microarray datasets
To find out the reason for these discrepancies, we
examined the 76 target genes that were identified in
reference [17]. Among these 76 target genes, 31 of
them were firstly removed in our pre-processing step
due to the weak signals, bad quality or less variation
across all time points. Secondly, another 31 of them
were removed in the later selection of the most rele-
vant response probes by using the Fisher’s linear dis-
criminant method because of their weak response to
the ionizing radiation. In the end, only 14 of the 76
genes were entered into our nonlinear model and we
finally identified 10 of them as our putative p53 target
genes (e.g. CDKN1A, MST1 and BIRC5 in [Additional
file 2]). The remaining 4 genes such as HSD17B1 were
not included in our prediction because of the relatively
large model estimation errors. The large errors may be
a by-product of the noise in the microarray gene
expression data.
Target gene bias from inference models
We also investigated the 50 putative target genes that
were provided by the linear model [10]. First of all, 48
of them were included in the top 15% of the most rele-
vant response probes (~1,312 probes). Secondly, 36 of
them were within the top 50% of the 1,312 probes and
we removed 12 genes due to the relatively larger model
estimation errors. Finally, we further discarded probes
with duplicate gene names (~2) and genes without p53
binding site on the regulatory region (~7). Therefore in
the final list in [Additional file 2], we presented only 27
of the remaining 36 genes. Figure 4 shows both the pre-
dicted and measured expression profiles of 4 genes
which were selected in reference [10]. Taken together,
we conclude that the discrepancy of p53 target gene
predictions among various studies may be mainly caused
by either pre-processing of microarray data or condi-
tion-specific gene regulation.
In silico validation of putative p53 targets
Although a wet lab experiment may be the best way to
validate the whole list of predictions, other external
information such as DNA sequence analysis could be
used to support the computational predictions [32].
For example, we found ~80% of the top 317 putative

p53 targets have at least 2 perfect matches of p53 con-
sensus sequences (RRRCWWGYYY) on the 10 Kb
upstream region. This may support the hypothesis that
the predicted target genes may be strongly bound by
p53 in vivo [1]. A short list of these p53 target genes
is shown in Table 2, where we found many known p53
target genes including p21, Bax, Bik and Mdm2. How-
ever, a number of the top ranked putative target genes,
such as the 4 genes (RPS19, RPL38, RPS27L, and
RPL37A) that encode ribosomal proteins and several
major histocompatibility complex genes (e.g. HLA-C
and HLA-B), seem to have no obvious connection to
p53. These ribosomal proteins have been shown to
activate p53 by inhibiting oncoprotein MDM2, leading
to inhibition of cell cycle progression [33]. Thus, the
ribosomal proteins can regulate the p53-MDM2 feed-
back loop in response to different stresses and provide
a general pathway for p53 activation from perturbation
of ribosome biogenesis. For major histocompatibility
complex genes, they are involved in the major histo-
compatibility complex (MHC) class I antigen presenta-
tion pathway which plays a key role in host tumour
surveillance. Experimental data suggest that p53 acti-
vates the MHC class I pathway by inducing TAP1,
which would assist the process [34].

Figure 4 Expression profiles of four p53 target genes that
were identified by the HVDM method. (A) Gene DENND2D
(probe ID 221081_S_AT) was also predicted in this work. (B) Gene
RRM1 has two probe set ID 201477_S_AT (dash-line, predicted by
the HVDM method) and 201476_S_AT (solid-line, not listed in [10]).
Probe 201476_S_AT has smaller model error and thus is listed in
[Additional file 2]. Probe 201477_S_AT was removed from our
prediction. (C) Gene CROT (probe ID 204573_AT) was removed from
our consideration because it has no p53 binding motif on its
regulatory region. (D) Gene GAL3ST4 (probe ID 219815_AT) was
excluded from our consideration because it has relatively larger
model estimation error. (Line: simulation of the nonlinear model,
star: microarray gene expression profiles.)

Table 3 The number of overlapping genes between the
predicted putative p53 targets from the MVDM method
[10], gene expression analysis (GRA) [17], Chip-PET
analysis [19] and our nonlinear model in this work.

MVDM GRA Chip-PET Nonlinear

MVDM 45 4 14 27

GRA 4 76 13 10

Chip-PET 14 13 205 21

Nonlinear 27 10 21 317
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Protein binding motif analysis for putative p53 target
genes
Binding site distribution of putative p53 target genes
The lack of common p53 targets among four different
predictions generated a few interesting questions to us.
Will the four lists of putative p53 targets share the same
p53 binding motif distribution on the upstream non-
coding region? Will the genes predicted from these four
studies share the same functional categories too? To
answer these questions, we collected the p53 binding
motif counts on the gene upstream regions for the four
predictions and listed the results in Table 4. It indicates
that putative targets predicted by the gene expression
analysis, the Chip-PET analysis, and our nonlinear
model, share a similar p53 binding preference. For
example, there is an even distribution (~20%) of zero,
one, two, and more than two p53 binding sites on the 5
kb region. However, there are more p53 binding motifs
on the 10 kb upstream region than those on the 5 kb
region. In addition, ~46-58% of putative p53 targets
have more than two p53 binding sites on the 10 kb
upstream region but only ~16-20% of targets have mul-
tiple binding sites on the 5 kb region. Furthermore, less
than 10% of targets do not have p53 binding sites on
the 10 kb region. The similar binding preference among
various predictions suggests that the majority of putative
p53 targets (~70%) may be directly controlled by remote
p53 transcription factors but less than 30% of them may
be the second effect targets.
Functional analysis of putative p53 target genes
A functional analysis of above four lists of putative p53
targets also reveals interesting information such as the
fact that all works identified the same core biological
functions of p53 (e.g. cell cycle, cell death, cell prolifera-
tion and response to DNA damage stimulus). However,
there are a few gene functional categories that were only
predicted by individual studies. For example, the lists
from the gene expression analysis and Chip-PET

analysis contain blood coagulation, body fluids, response
to wound, muscle and signal transduction genes. How-
ever, only the list from the Chip-PET analysis is
enriched by cell motility, cell localization and enzyme
activity genes. In addition, high enrichment of metabo-
lism, biosynthetic process and immune system process
exclusively appear in our prediction. Although our
results indicate that most of the p53 targets share the
same p53 binding preference, their functional roles are
conditionally specific and their biological functions span
to various functional categories with the dependence of
intrinsic and extrinsic conditions. The functional differ-
ences among the four lists of putative p53 targets may
partially explain the reason for the poor overlapping
among them. In addition, the poor overlapping may be
caused by the putative p53 target genes that were
induced by different types of event such as different cell
types or different treatments of p53 regulation. For
example, the target genes identified by microarray time-
series data [10] was under g-irradiated Human MOLT4
cells; but the target genes predicted from oligonucleo-
tide arrays [17] and ChIP-PET analysis [19] were
induced by zinc-induced p53 in EB-1 cells and 5-fluor-
ouracil treated HCT116 cells, respectively. Thus, the
results suggest that the nature of p53 response is condi-
tionally dependent. Different experiments form distinct
sets of putative target genes and a subset with a few tar-
get genes in common to all p53 responses [17].
Combinational regulation of putative p53 target genes
Furthermore, we looked for the potential p53 co-regula-
tors on the upstream non-coding region of the putative
p53 target genes. By collecting 409 weight matrixes of
human transcription-factors, which represent 254
unique human TFs from the TRANSFAC database [35],
and transforming the weight matrices to the position-
specific affinity matrices, we used the MatrixREDUCE
program [31] to compute the transcription factor bind-
ing affnities on the upstream of all putative p53 targets
[Additional file 3]. A clustering analysis of the relative
sequence affinity profiles for human TFs was also per-
formed [Additional file 4], which suggests the predicted
sequence signals of several human TFs are either com-
monly enriched or depleted in all targets related to the
expected occurrence on random sequences. For
instance, the top two most depleted sequence signals
are E2F and CREB, which rarely appear on the 10 k
upstream region of all putative p53 target genes. It sug-
gests that these two TFs may not directly interact with
p53 target genes. Such hypothesis is consistent with the
literature information, which claims that both E2F and
CREB often interact with other proteins directly and
form a protein complex to regulate the transcriptional
activity (e.g. the E2F-p53 complex stimulates the apop-
totic function of p53 [36] and CREB modulates p53 by

Table 4 Comparison of the p53 consensus motif
distributions in the four sets of putative p53 target
genes obtained by the MVDM method [10], gene
expression analysis [17], Chip-PET analysis [19] and our
nonlinear model in this work.

# of Perfect match MVDM GRA Chip-PET Nonlinear

0 p53 motif (5 k) 0.41 0.24 0.28 0.22

1 p53 motif (5 k) 0.22 0.38 0.32 0.33

2 p53 motif (5 k) 0.24 0.20 0.25 0.23

> 2 p53 motif (5 k) 0.14 0.18 0.16 0.20

0 p53 motif (10 k) 0.25 0.08 0.06 0.05

1 p53 motif (10 k) 0.14 0.19 0.24 0.15

2 p53 motif (10 k) 0.20 0.27 0.23 0.22

> 2 p53 motif (10 k) 0.41 0.46 0.47 0.58
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acetylation [37]). On the other hand, the top three most
enriched sequence affnities on 10 kb upstream region
for putative p53 targets are PITX2, FOXO1 and TBP,
which are all known to be related to functional regula-
tion of p53. PITX2 can bind to HPV E6 protein and
inhibit E6/E6AP-mediated p53 degradation [38]. FOXO1
may function as a tumour suppressor and regulators of
FOXO1 function are controlled by p53 [39]. TBP is a
TATA-binding protein but p53 can prevent TBP from
participating in RNA pol III-dependent transcription
[40]. Thus, p53 response genes may preserve certain
sequence specific features (e.g. a common cis-regulatory
module on the upstream region) that enables p53 to
interact easily with other co-regulators to control
diverse biological processes.

Discussion
This work developed a nonlinear model for inferring
genetic regulation from microarray gene expression
data. The major feature of this approach is the inclusion
of the cooperative binding of TFs by which we can
study the nonlinear properties of gene expression in a
sophisticated way. It is also a practical approach to
investigate the impact of time delay of gene expression
on the dynamics of the down-stream target genes. We
validated the proposed method by comparing the esti-
mated TF p53 activities with experimental data. In addi-
tion, the predicted putative p53 target genes by our
nonlinear model were supported by DNA sequence ana-
lysis which suggests that p53 predominately controls
remote genes. The long-distance gene regulation may be
accomplished by a cooperative regulation between p53
and other proteins. This hypothesis may also explain the
poor overlap among the four lists of the putative p53
target genes, and support the fact that we could not find
a p53 binding motif on the upstream non-coding region
of at least 20% of the putative p53 targets although
these genes may be strongly positively regulated by p53
protein [10].
For issues regarding the estimation of protein activities

and the effects of time delay in genetic regulation, we
first emphasize that gene transcription depends on mul-
tiple factors such as the activities of transcription fac-
tors, the availability of RNA polymerase and the
activities of other promoters in the transcriptional
machinery. For example, in order to activate gene
expression, the required availability of RNAP II and
other promoters differ significantly between two p53
target genes - p21 and Fas/AOP1 [28]. However, most
modelling approaches including our current study
approximate the activities of all the promoters in the
transcriptional machinery as the activities of TF p53.
Therefore, our estimated p53 activities represent the
total activities of all factors in the transcriptional

machinery, which may be slightly different from one
another if various sets of training target genes were
used. In addition, time delay exists in many biological
processes of gene expression such as transcriptional
initiation, elongation, protein translocation, and transla-
tional elongation. However, in the present model, we
simplified all kinds of time delay effects into a single
factor. This is a practical approach to study the time
delay effect of each individual p53 target gene, and
therefore the time delay of each gene may differ.
Finally, a number of factors may contribute to the

variation of predictions using the mathematical model.
For example, we have shown that the selection of
training genes may influence the estimation of p53
activity and consequently alter the prediction of puta-
tive target genes. In addition, the proposed nonlinear
differential equation model may affect the estimation
of putative target genes. The present model estimation
error is related to the selection of synthesis function.
Although the Michaelis-Menten function is generally
used if there is no extra information about the TFs,
more precise estimates may be obtained by using a
more sophisticated synthesis function which requires
TFs’ cooperative binding and/or binding sites informa-
tion. Furthermore, in the present work the relative
error was used to compare the errors of different
genes. Nevertheless, the model estimation error may
be large if the gene expression is weak. For that rea-
son, a number of discovered p53 target genes were not
included in our prediction, even though their simula-
tions matched well the gene expression profiles (Figure
4D). Thus, it is worthy to evaluate the influence of the
error measurement on both the predictions of the TF
activities and genetic regulation to the putative target
genes. In that case, other error measurement methods
(e.g. the weighted distance measure [41]) may be con-
sidered. Finally, it is widely recognized that microarray
gene expression data is noisy. It is therefore important
to develop stochastic models and the corresponding
stochastic inference methods [42] to investigate the
impact of gene expression noise on the accuracy of the
modelling inference.

Conclusions
In summary, we have developed a nonlinear model for
inferring genetic regulation from microarray gene
expression data. This “bottom-up” method was
designed not only to infer the regulation relationship
between TF and its down-stream genes but also to
estimate the up-stream protein activities based on the
expression levels of the target genes. The successful
prediction of a large number of putative p53 target
genes indicates that the proposed dynamic model is a
promising method to investigate genetic regulation. It
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is expected that our results will provide both valuable
prediction for further experimental validation and
quantitative information for the development of the
p53 gene regulatory networks.

Methods
Microarray data analysis
This research is based on a published microarray data-
set which was generated from the Human All Origin,
MOLT4 cells carrying wild-type p53. Cell were g-irra-
diated and harvested every 2 hours over a 12-hours
period [10]. We obtained the ionizing radiation Affy-
metrix dataset [10] from ArrayExpress (E-MEXP-549).
Firstly, the microarray dataset was pre-processed by an
R BioConduct package [43], in which probes with bad
signal quality and less variation across all the time
points were removed. This resulted in ~8,737 probes
from a total of 22,284 probes. The pre-processed
probes were then further median centred within each
array and transformed to Z-scores before using the
pair-wise Fisher’s linear discriminant method [20] to
screen probes with the most relevant response to
ionizing radiation. The top 15% of the most relevant
response probes (~1,312 probes) were selected as the
input data to our nonlinear model. All gene symbols
were obtained from the NETAFFX [44]. It is note-
worthy that 2 of 50 putative p53 target probes
(201714_at and 220623_s_at) from Refs [10] are not
included in the selected 1,312 probes.

Nonlinear model
A mathematical model with a general type of the cis-
regulatory functions has been proposed recently aimed
at reconstructing genetic regulatory networks [12,13].
The model includes both positive and negative regula-
tion, time delay and number of DNA-binding sites.
However, the cooperative binding of TFs was not con-
sidered. In this work, we propose a new model where
the dynamics of gene transcription is represented as

dxi
dt

c k f x t x t d xi i i j ij k ik i i    ( ( ), , ( )) ,τ τ (2)

where ci is the basal transcriptional rate, ki is the max-
imal expression rate and di is the degradation rate. Here
we use one value τij to represent regulatory delays of
gene j related to the expression of gene i. The cis-regu-
latory function fi(xj,..., xk) includes both positive and
negative regulations, given by

f X g x n m k g x n m ki j j j j

j R

j j j j

j Ri i

( ) ( , , , ) ( , , , ) 














  

 1 ,, (3)

and Ri
 and Ri

 are subsets of positive and negative
regulations of the total regulation set R, respectively.
For each TF, the regulation is realized by

g x n m k
kxn m

( , , , )
( )

,


1

1
(4)

where m is the number of DNA-binding site and n
represents the cooperative binding of the TF. The pre-
sent model is a more general approach which includes
the proposed cis-regulatory function model when n = 1
[12,13], the Michaelis-Menten function model when m
= n = 1 [11], and the Hill function model when n > 1.
Based on the structure of TF p53, the transcription of a
p53 target gene is represented by

dxi t
dt

c k
p t i i

K i p t i
d x ti i i i

( ) [ ( )]

[ ( )]
( ),  

 
τ

τ

4

4 4


(5)

where xi(t) is the expression level of gene i and p(t) is
the p53 activity at time t. Here δi is an indicator of the
feedback regulation, namely δi = 0 if p53 inhibit the
transcription of gene i or δi = 1 if the transcription is
induced by p53. The Hill coefficient was chosen to be 4
since p53 is in the form of tetramer as a transcriptional
factor [22].

Prediction of TF activities
It is assumed that a TF regulates the expression of N
target genes. The proposed mathematical model (2)
can be used to infer the activities of the TF from the
expression levels of these N target genes. To achieve
this, we developed a system of N differential equations.
Each equation of the system follows the model (2) and
represents the expression process of a specific gene.
This system contains a number of unknown para-
meters including the kinetic rates (ci, ki, di, τij) (i = 1,
..., N) together with the TF activities at M measure-
ment time points (t1,..., tM). Using an optimization
method such as the genetic algorithm [45], we can
search the optimal model parameters to match the
expression levels {xij, i = 1,..., N, j = 1, ..., M} of these
N target genes at M measurement time points of the
microarray experiments. The estimated TF activities
from the optimization method is the prediction of the
TF activities.
Specifically, this work used the nonlinear model (5) to

predict the p53 activities from a set of five training tar-
get genes (N = 5). Here a system of five equations, in
which each equation follows the same nonlinear model
(5) with different parameters, was used to represent the
expression of five training genes. The unknown para-
meters of the system are rate constants (ci, ki, Ki, di, τi,
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δi) (i = 1,..., 5) and p53 activities (pj = p(tj), tj = 2, 4,...,
12) at six time points. The activities of p53 at other
time points will be obtained by the natural spline inter-
polation. In total, there are 26 unknown parameters in
the system and the p53 activities at 6 time points is our
final inference result.
We used a MATLAB toolbox of the genetic algorithm

[45] to search the optimal values of these 26 parameters.
The search space of each parameter is [0, WMAX] and
the values of WMAX are [5, 5, 5, 2] for [ci, ki, Ki, di]. For
p53 activity pi, the values of WMAX are unit one. After a
set of unknown parameters is created by the genetic
algorithm, a program developed in MATLAB was used
to simulate the nonlinear system of 5 equations and cal-
culate the objective value. The program is described
below.

1. Create an individual of p53 activities (pi, i = 1,...,6)
and regulatory parameters (ci, ki, Ki, di) (i = 1, ..., 5)
from the genetic algorithm;
2. Use the natural spline interpolation to calculate
p53 activities at time points in [0, 12];
3. Solve the system of 5 equations (5) by using the
4-th order classic Runge-Kutta method for each
training gene i from the initial expression level ui0
(= xi0), and find the simulated levels uij(j = 1,..., 6);
4. Calculate the estimation error of gene i as
e u x xi ij ij ijj
  | | / | |

1

6
, where xij is the microar-

ray expression level. Finally, the objective value is
e eii
  1

5 .

Prediction of putative target genes
Using the predicted TF activities in the previous sub-
section, we can infer the TF-mediated genetic regula-
tion based on the proposed nonlinear model (2). The
genetic algorithm can be used here to search the opti-
mal model parameters in functions (3) and (4) to
match the expression level of a putative target gene
and examine whether the positive or negative regula-
tion in function (3) is more appropriate to present the
genetic regulation. All the genes considered will be
ranked by the model error that is defined as the differ-
ence between the simulated expression levels from
model (2) and microarray expression profiles. Genes
with smaller model error will be selected as the puta-
tive target genes and further research will be carried
out for these genes.
Specifically, we used the newly inferred p53 activity in

Figure 2B and nonlinear model (5) to infer the genetic
regulation of p53 target genes. There are six unknown
parameters for each gene’s regulation, namely ci, ki, Ki,
di, τi and δi. The genetic algorithm was used to search

for the optimal values of these six parameters. The
value of δi is determined by another parameter hi whose
search area is [-1, 1]; and parameter hi indicates either
positive (hi > 0, δi = 1) or negative (hi < 0, δi = 0) regu-
lation from p53. The time delay τi is treated as one of
the unknown parameter and its value will be searched
by the genetic algorithm. Ten estimates (cij, kij, Kij, dij,
τij, δij) (j = 1, ..., 10) were obtained from different imple-
mentations of the genetic algorithm. From these 10 esti-
mates, we selected the set of parameters that has the
smallest estimation error as the final estimate. The fol-
lowing algorithm was developed to estimate the model
parameters.

1. Create an individual of the regulatory parameter
(ci, ki, Ki, di, τi, δi) from the genetic algorithm;
2. Determine the value of δi in Equation (5). If hi >
0, δi = 1. Otherwise δi = 0;
3. Determine the p53 activities based on activities in
Figure 2B and the time delay τi. p(t - τi) = 0 (t ≤ τi).
4. Simulate model (5) by using the initial level ui0(=
xi0) and find the simulated expression levels uij (j =
1,..., m);
5. Calculate the objective value
e u x xi ij ij ijj

m  | | / | |
1

.

Sensitivity analysis
Here we use the Khalil method [27] for sensitivity analy-
sis of mathematical models. For a given model (the base
model) with parameter p

dx
dt

f t x p ( , , ), (6)

we consider the solution x* of this system with a per-
turbed parameter p + Δp. The difference between solu-
tions x* and x is

d x x
dt

f t x x p f t x p
f
x

x x
f
p

p
( * )

( , *, ) ( , , ) ( * ) .
     


  


 

Together with the base model (6), the adjacent model
for parameter p is

dEp
dt

f
x
Ep

f
p

 


 


. (7)

Here Ep represents the drift of the solution with a
unit parameter perturbation. The solutions of the adja-
cent models for certain important parameters in the
base model give insight into which parameter induces
the largest error in solutions and when errors will be
the largest in simulations.
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Additional file 1: A complete list of 1,312 selected gene probes.
Here we listed the 1,312 most relevant response probes to ionizing
radiation based on the selection of Fisher’s linear distriminant. These
probes were further assigned to 40 clusters according to their expression
profiles across all time points. The detailed information of each probe
includes Gene title, GO information, nonlinear model estimation errors,
gene regulation state, time delay effect, gene regulation state based on
event method or correlation methods.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
36-S1.XLS ]

Additional file 2: Detailed information for the top 317 putative p53
target genes. Here we list the putative p53 target gene information (i.e.
AffyProbe ID, gene symbol and gene title), quantitative model estimation
error, target gene regulation state inferred by quantitative model
(regulate: 1 represents positive regulation by p53 but -1 represents
negative regulation by p53), time delay effect (delay: hour), target gene
regulation state inferred by event method (event score > 0 represents
positive regulation, event sore < 0 represents negative regulation), target
gene regulation state inferred by correlation method (correlation
coefficient > 0 represents positive regulation, correlation coefficient < 0
represents negative regulation), and the number of motif count of
perfect match of 10-mer p53 binding motif on 10 kb upstream region
(motif counts).
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
36-S2.PDF ]

Additional file 3: Predicted TF affinity profiles for four lists of
putative p53 target genes. Here we used MatrixREDUCE program to
compute sequence affinity profiles for 409 human TF weight matrices on
four lists of p53 target genes. An average sequence affinity of each TF
on each list is listed below according to their prediction methods such
as MBDM method, nonlinear quantitative model, microarray gene
expression analysis, and Chip-PET analysis, respectively. The
corresponding affinity score for random sequences and its associated
relative ratio to each list are presented as well.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
36-S3.PDF ]

Additional file 4: Hierarchical clustering of relative sequence affinity
ratios. Here we present results of hierarchical clustering of relative
sequence affinity ratios for 409 human TFs across four list of putative p53
target genes. Yellow colour represents enriched TFs but blue colour
represents depleted TFs.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
36-S4.PDF ]
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