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Abstract
Background: Microarray technology allows the simultaneous analysis of thousands of genes within a single 
experiment. Significance analyses of transcriptomic data ignore the gene dependence structure. This leads to 
correlation among test statistics which affects a strong control of the false discovery proportion. A recent method 
called FAMT allows capturing the gene dependence into factors in order to improve high-dimensional multiple testing 
procedures. In the subsequent analyses aiming at a functional characterization of the differentially expressed genes, 
our study shows how these factors can be used both to identify the components of expression heterogeneity and to 
give more insight into the underlying biological processes.

Results: The use of factors to characterize simple patterns of heterogeneity is first demonstrated on illustrative gene 
expression data sets. An expression data set primarily generated to map QTL for fatness in chickens is then analyzed. 
Contrarily to the analysis based on the raw data, a relevant functional information about a QTL region is revealed by 
factor-adjustment of the gene expressions. Additionally, the interpretation of the independent factors regarding 
known information about both experimental design and genes shows that some factors may have different and 
complex origins.

Conclusions: As biological information and technological biases are identified in what was before simply considered 
as statistical noise, analyzing heterogeneity in gene expression yields a new point of view on transcriptomic data.

Background
Microarray technology allows the analysis of expression
levels for thousands of genes simultaneously and is a
powerful tool to characterize mRNA level variation due
to measured variables of interest (various phenotypes,
treatments...). Typical approaches to find significant rela-
tionships between gene expressions and experimental
conditions ignore the correlations among expression pro-
files and functional categories [1]. This dependence
structure leads to correlation among test statistics which
affects a strong control of the actual proportion of false
discoveries [2]. Indeed, a number of unmeasured or
unmodeled factors independent of the variables of inter-
est may influence the expression of any particular gene
[3,4]. These factors may induce extra variability in the
expression levels and decrease the power to detect links
with the variables of interest.

Recently, several works have introduced models for the
common information shared by all the genes. Especially
Friguet et al [4] propose to model this sharing of informa-
tion by a factor analysis structure in a method called Fac-
tor Analysis for Multiple Testing (FAMT). The estimated
factors in the model capture components of the expres-
sion heterogeneity. As well, Storey et al [3] introduce Sur-
rogate Variable Analysis (SVA) to identify and estimate
these extra sources of variation. The factors in FAMT and
the surrogate variables in SVA are similarly designed to
model dependence among tests by a linear kernel but
they are estimated differently. Contrarily to the SVA
model, independence between the factors and the experi-
mental conditions of interest is explicitly assumed in
FAMT in order to separate clearly the effects of the
experimental conditions on the gene expressions and the
nuisance variability due to unmodeled technological
effects and other known or unknown effects that could be
uncontrolled in the experimental design.

The major sources of expression variation are then
assumed to be the experimental conditions of interest,
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but also gene dependence and uncontrolled factors in the
experimental design. Indeed, even after normalization,
variation due to the experimental design still exists in
expression data. The factors extracted in the residual part
of the regression models explaining the gene expressions
by the experimental conditions of interest are therefore
analyzed to give more insight both on expression hetero-
geneity among sampling units and the contribution of
some biological processes to gene dependence. First, fac-
tors are extracted from illustrative expression data sets
with simple patterns of expression heterogeneity in order
to show how they can straightforward be related to
sources of heterogeneity. Henceforth, the same factor
model approach is used to analyze an expression data set
initially generated to map quantitative trait loci (QTL) for
abdominal fatness (AF) in chickens, especially on chro-
mosome 5 (GGA5) [5]. This data set concerns hepatic
transcriptome profiles for 11213 genes of 45 half sib male
chickens generated from a same sire. This sire was gener-
ated by successive inter-crossing of two experimental
chicken lines divergently selected on AF and was known
to be heterozygous for an AF QTL on the GGA5 chromo-
some around 175 cM (For more details, see [5]). The 45
half sib chickens show therefore variation on AF. Accord-
ing to the polygenic effect model of quantitative traits,
this variation is probably due to multiple mutations and
biological processes.

Two lists of genes significantly correlated to the AF trait
are first generated using the raw and the factor-adjusted
expression dataset. Then, the relevance of the two gene
lists to characterize functionally fatness variation in the
family are compared, regarding the frequencies of biolog-
ical processes related to the AF trait in their functional
annotations. Factor-adjusted expression data is finally
used to identify a gene whose expression is controlled by
the AF QTL region.

Furthermore, the extracted factors are interpreted
using external information on the experimental design
such as the hatch, dam and body weight and also gene
information such as functional categories, oligonucle-
otide size and location on the microarray. It is deduced
that some factors may have different and complex origins,
which confirms the importance of taking into account
these extra sources of variability to be more relevant in
the transcriptomic analyses.

Results
Illustrative Examples
Similarly to Storey et al (2007) [3], three simple situations
of heterogeneity are considered. For each one, indepen-
dent expressions for 1000 genes on 20 arrays are simu-
lated according to a standard normal distribution. The
sample is split into two equal groups and a constant is

added on the first 100 gene expressions to mimic a differ-
ential expression between these two groups.
Case 1: One independent variable affecting all genes
All genes are affected by an independent grouping vari-
able marked by colors red and green on Figure 1A. A sin-
gle factor is extracted by FAMT. Figure 2A helps
interpreting this factor and shows that it clearly discrimi-
nates the two colored groups of individuals (P-value ≤ 2.2
× 10-16). This shows a high association between the factor
and the independent grouping variable. The genes repre-
sentation does not show any particular structure. In this
simple case the factor estimated by FAMT can therefore
be easily interpreted through the individuals representa-
tion.
Case 2: One independent variable affecting a set of genes
Only genes 70-170 are affected by an independent group-
ing variable marked by colors red and green on Figure 1B.
A single factor is also found using FAMT. As shown on
Figure 2B, the factor discriminates the two groups of indi-
viduals (P-value ≤ 2.2 × 10-16) and the two groups of genes
(P-value ≤ 2.2 × 10-16). In this case, the estimated factor
can be interpreted through the individuals and genes rep-
resentations.
Case 3: Two independent variables affecting two different sets 
of genes
Gene sets 70-170 and 171-271 are each affected by an
independent grouping variable marked respectively by
colors red and green and by colors orange and blue as
illustrated by Figure 1C. Two factors are identified by
FAMT which are now interpreted regarding the two
external sources of heterogeneity (Figure 2C). The red-
green variable seems to be highly associated with the first
axis (P-value ≤ 2.2 × 10-16 in both representation). On the
contrary, the orange-blue variable is not associated with
this axis considering a significance level of 0.05 (P-value =
0.7933 for the individuals representation, p-value =
0.1109 for the genes representation). The same strategy is
implemented for the second factor. The red-green vari-
able appears to be not associated with this factor (P-value
= 0.7949 for the individuals representation, p-value =
0.1926 for the genes representation) whereas the orange-
blue variable is highly associated (P-value ≤ 2.2 × 10-16 in
both representations). In this case, each of the two esti-
mated factors can be explained by one of the two inde-
pendent grouping variables.

Analysis of the AF expression data set
Classical approach
Examination of the Pearson coefficient correlation
between hepatic transcript levels and AF trait shows that
287 genes are significantly correlated considering a signif-
icance threshold of 0.05 without any correction for multi-
ple tests. This low amount of differentially expressed
genes might be explained by a poor genetic variability
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between individuals which are half sib offsprings and
could also be due to dependence between genes that can
lead to under representation of the smallest p-values [6].
Heterogeneity analysis
Minimizing the variance inflation criterion proposed by
Friguet et al. [4], six factors containing a common infor-
mation shared by all genes and independent from the AF
trait are extracted. Subtracting the linear dependence
kernel defined by these factors from the raw expression
data yields the factor-adjusted expression data. The sig-
nificance analysis based on these expressions results in a
list of 688 gene expressions significantly correlated to the
AF trait. 93% of the 287 genes found with the classical
approach are included in this list. This larger number of
differentially expressed genes suggests that correlation
between many gene expressions and the variable of inter-
est is under estimated due to gene dependence. Consider-
ing the Gene Ontology (GO) terms and KEGG pathways,
one enriched term related to the lipid metabolism is
found in the gene list resulting from factor-adjustment
(688 genes) whereas none is observed in the gene list
obtained using the raw expressions (287 genes). This
term concerns "Steroid biosynthesis process" with 3 genes
associated (Table 1). More precisely, these genes are
involved in the cholesterol metabolism or in conversion
of cholesterol in steroids. Several works show relation-
ships between cholesterol metabolism and obesity [7-9].

This result shows that the genes found after factor-
adjustment are more related to the fatness trait. Further-
more, the impact of factor-adjustment is shown in Figure
3, where a principal component analysis (PCA) generated
with the 688 factor-adjusted transcript levels of corre-
lated genes (Figure 3B) separates much more fat and lean
chickens than the same PCA generated with the raw
expressions of the same 688 genes (Figure 3A). This
observation displays that factor-adjustment has cleaned
up the data from dependence, which highlights masked
relationships with the AF trait.

We focus on one of the 3 genes involved in the "Steroid
biosynthesis process", DHCR7, which is only observed in
the list of 688 genes and known for encoding the last
enzyme involved in the cholesterol synthesis. As shown
in Figure 4, the analysis of the factor-adjusted expressions
for this gene highlights an eQTL (P-value < 0.05) colocal-
izing with the AF QTL previously observed [5]. The same
LRT curve based on the raw expressions does not point
out any eQTL. This result shows that the expression of
this gene is controlled by a mutation in the same GGA5
AF QTL region. Because of the function of this gene
related to lipid metabolism, this result suggests that this
mutation could be the same as the QTL mutation for fat-
ness phenotype. Further investigations are necessary to
refine these QTL and eQTL locations.

Figure 1 Structure of the illustrative data sets. Representation of three illustrative studies consisting of 1000 genes on 20 arrays divided between 
two groups. (A) Case 1: one independent grouping variable with red and green levels affecting all genes. (B) Case 2: one independent grouping vari-
able with red and green levels affecting a gene set. (C) Case 3: two independent grouping variables with red and green levels and with blue and or-
ange levels affecting each a different gene set.
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Factor interpretation
In the present study, some external information about the
experimental design and the genes is available. As we did
in the simulated examples, we interpret the factors
extracted from the AF expression dataset using this
known information.
Using information on experimental design
The hatch, the dam and the body weight were previously
measured for each bird and should be independent of the
AF variation. For the body weight, the founder chicken
lines were selected on AF criteria maintaining a constant
body weight. The variables "hatch" and "dam" are both
categorical with respectively, four and eight levels and the
body weight is a continuous variable. We first focus on
the "hatch" and for each factor we represent the individu-
als colored according to their hatch (Figure 5). Factor 1
seems to discriminate hatches 1 and 4, factor 3 hatch 2
from the others and factor 4 hatches 2 and 3 from hatch
1. The effect of the hatch on each factor is tested and the
results given in Table 2 confirm our previous observa-
tions: factor 1, 3 and 4 can be partly explained by a hatch

effect (the significant test for each hatch level is given in
Additional file 1). We then calculate the association for
the "dam" and "body weight" with each of the six factors.
Table 2 shows no effect of the dam and a high correlation
between the weight and factor 2. Contrarily to the illus-
trative cases where each factor could be interpreted by a
unique variable, the factors found here seem to have
more complex origins. Indeed, three of the six factors can
be interpreted by an hatch effect and another one by a
body weight effect. The same analysis is now performed
after adjustment of the raw expression data for hatch and
body weight. Interestingly, only five factors independent
of the AF trait are extracted and still a hatch effect exists
but only on the first factor and a weight effect on the sec-
ond factor (Table 2). This persistence of both effects sug-
gests that there exists an interaction involving hatch and
body weight with other unmeasured and/or unknown
variables. Therefore, taking into account the hatch and
body weight in the statistical model seems to be not suffi-
cient to remove a consequent part of the heterogeneity in
gene expression.

Figure 2 Illustrative data sets: Individuals and genes representations. Individuals and genes representation using respectively the Z matrix cor-
responding to the factors and the B matrix of the loadings found by FAMT. Individuals and genes are colored according to the independent variable 
they are affected by. (A) representations corresponding to case 1, (B) case 2 and (C) case 3.
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Table 1: Enrichment tests for the list of 287 genes and 688 genes

LIST OF 287 GENES

GOID GO Term Size Count Pvalue HGNC ID

GO.0006470 protein amino acid dephosphorylation 56 5 0.015 ACP1, PTPN14, PTPRE, PTP4A3, PTPN6

GO.0006725 cellular aromatic compound metabolic process 38 4 0.017 PPME1, GART, MOCS1, ALDH6A1

GO.0007259 JAK STAT cascade 9 2 0.022 SOCS1, STAMBP

GO.0043543 protein amino acid acylation 9 2 0.022 NULL, ZDHHC17

GO.0044259 multicellular macromolecule metabolic process 10 2 0.027 ACE2, SERPINH1

GO.0008033 tRNA processing 26 3 0.0296 TSEN15, FARS2, NSUN2

GO.0033002 muscle cell proliferation 11 2 0.032 NOX1, BMP10

GO.0050730 regulation of peptidyl tyrosine phosphorylation 12 2 0.038 SOCS1, EGFR

Kegg ID Kegg pathway Size Count Pvalue HGNC ID

map04320 Dorso ventral axis formation 9 3 2.38E-03 EGFR, SPIRE1, ETS1

LIST OF 688 GENES

GOID GO Term Size Count Pvalue HGNC ID

GO.0006470 protein amino acid dephosphorylation 56 10 1.80E-03 ACP1, PPM1E, PTPN14, PTPRE, PTP4A3, 
PPM1G, PTPRU, PPP3CB, PPM1L, PTPRF

GO.0046483 heterocycle metabolic process 33 7 3.21E-03 AMBP, GART, P4HA2, HMOX2, AFMID, MTHFS, 
ALDH6A1

GO.0051186 cofactor metabolic process 64 10 4.97E-03 AMBP, TXNRD3, NOX1, HMOX2, AFMID, 
GGT7, MTHFS, MOCS1, HMGCS1, ACO2

GO.0016202 regulation of striated muscle development 15 4 0.011 MBNL3, LEF1, NRG1, BMP4

GO.0007259 JAK STAT cascade 9 3 0.014 SOCS1, HCLS1, STAMBP

GO.0040011 locomotion 111 13 0.017 PRKG1, EDNRB, ACE2, NOX1, EGFR, NRG1, 
BMP10, ARAP3, JPH3, VHL, VAX1, DAB1, 
LAMA2

GO.0001932 regulation of protein amino acid phosphorylation 26 5 0.019 PDGFA, SOCS1, HCLS1, EGFR, BMP4

GO.0048585 negative regulation of response to stimulus 10 3 0.020 AMBP, PPP3CB, FABP7

GO.0006534 cysteine metabolic process 4 2 0.021 CBS, CDO1

GO.0002274 myeloid leukocyte activation 11 3 0.026 IRF4, LCP2, NDRG1

GO.0006725 cellular aromatic compound metabolic process 38 6 0.026 PPME1, GART, AFMID, MTHFS, MOCS1, 
ALDH6A1

GO.0007185 transmembrane receptor tyrosine phosphatase 
signaling

5 2 0.033 PTPRE, PTPRF

GO.0007271 synaptic transmission cholinergic 5 2 0.033 CHRNA4, LAMA2

GO.0000097 sulfur amino acid biosynthetic process 5 2 0.033 CBS, CDO1

GO.0006700 C21 steroid hormone biosynthetic process 5 2 0.033 STAR, CYP17A1

GO.0006787 porphyrin catabolic process 5 2 0.033 AMBP, HMOX2

GO.0001764 neuron migration 12 3 0.033 PRKG1, VAX1, DAB1

GO.0030509 BMP signaling pathway 21 4 0.036 SOSTDC1, BMP10, MSX2, BMP4

GO.0045321 leukocyte activation 64 8 0.040 SWAP70, CHRNA4, FKBP1B, IRF4, LCP2, 
PPP3CB, NDRG1, SFRS17A
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Using gene information
To interpret the estimated factors in terms of gene
expressions, we use known information about genes as
oligonucleotide size and location on the chip: block, row
and column (genes representation on each factor is given
in Additional file 2). For these variables, we test their
association with each factors extracted from the raw data
and the hatch and body weight adjusted data. As shown
in Table 2, there is a strong oligonucleotide size effect and
block effect captured by almost all the factors. We exhibit
also a row and column effect associated with some fac-
tors. Moreover, the genes that most contribute to the first
two factors are identified (score larger than 0.8). We

obtain a set of 313 genes for factor 1 and a set of 175
genes for factor 2 and which were as expected not
included for 95% of them in the list of 688 genes. We per-
form a term enrichment test for this two sets (Table 3). As
we expect, there are essentially biological terms indepen-
dent of the lipid metabolism. Factor 1 is mainly charac-
terized by genes involved in cell division metabolism and
interestingly also to pigmentation. Factor 2 is more char-
acterized by genes involved in the nucleotide metabolism.
The enriched terms found are thus not implicated in the
metabolim changes induced by the AF variability. We
previously highlighted a hatch and body weight effects on
the factors. As in PCA, individuals and genes representa-

GO.0006790 sulfur metabolic process 32 5 0.043 CBS, CDO1, TXNRD3, GGT7, CHST1

GO.0018193 peptidyl amino acid modification 43 6 0.045 PDGFA, SOCS1, P4HA2, HCLS1, EGFR, MAP2

GO.0008211 glucocorticoid metabolic process 6 2 0.048 STAR, CYP17A1

GO.0006769 nicotinamide metabolic process 6 2 0.048 NOX1, AFMID

GO.0030111 regulation of Wnt receptor signaling pathway 14 3 0.050 SENP2, LEF1, SENP2

Kegg ID Kegg pathway Size Count Pvalue HGNC ID

map00630 Glyoxylate and dicarboxylate metabolism 9 4 1.87E-03 GLYCTK, HYI, AFMID, ACO2

map00140 C21 Steroid hormone metabolism 6 3 5.11E-03 DHCR7, HSD11B1, CYP17A1

map04320 Dorso ventral axis formation 9 3 0.018 EGFR, SPIRE1, ETS1

map04012f ErbB signaling pathway 35 6 0.026 PIK3R5, PLCG1, PAK3, EGFR, NRG1, PTK2

Enrichment tests were performed using an R program (see Methods section) with GO BP terms and Kegg pathways. The tests were done on the 
list of 287 genes found using the classical approach and the list of 688 genes found by FAMT. For each enriched term, the identifier (ID), the 
biological term, the size of the whole list of genes related to the term (size), the number of genes in the sub-list related to the term (count), the 
pvalue of the test and the HGNC Hugo abbreviations of the related genes are given. Italic terms are those which are present in both lists.

Table 1: Enrichment tests for the list of 287 genes and 688 genes (Continued)

Figure 3 Principal component analysis: individuals representation. Birds are colored according to their weight split into 3 classes: lean (green), 
intermediate (red) and fat (black). (A) PCA generated with the raw expression of the 688 differentially expressed genes. (B) PCA generated with the 
factor-adjusted expression of the 688 differentially expressed genes.
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tions can be interpreted commonly. Hatch effect could
therefore be related to the particular metabolisms charac-
terizing factor 1.

Discussion and Conclusion
The model used in the present study assumes that the
gene expressions are uncorrelated given a set of hidden
variables called factors. In comparison to classical meth-
ods which do not take into account the dependence
between genes, this approach provides a list of genes
more correlated to the variable of interest. Moreover, fac-
tor-adjustment of the expression dataset turns out to give
more insight to subsequent analyses such as QTL charac-
terization. As a result, a gene is identified as correlated to
the AF trait and related to the cholesterol metabolism
having a trans-eQTL colocalizing with GGA5 AF QTL.
Because several works show a link between cholesterol
and obesity, this gene could be considered as a signature
of the mutation underlying this AF QTL rather than a
mutation close to it. This result provides functional
hypothesis about genes whose expression could be
impacted by the QTL of interest.

Factor analysis was introduced in the psychometric
field in 1904 by Spearman [10] in order to extract the

common factors in intelligence and personality. In this
particular domain, the individuals are explained by their
responses to different subsets of tests. The method usu-
ally furnished at least five factors which were interpreted
as follows: neuroticism, extraversion, conscientiousness,
agreeableness and openness to ideas. In our study, the
factors were found using an EM algorithm presented by
[4]. Our purpose was first to interpret the estimated fac-
tors and consequently to investigate which kind of infor-
mation present in this factor structure could generate
heterogeneity of the gene expressions. External informa-
tion concerning the experimental design and functional
annotations of the genes were used to analyse the factors.
It is deduced that some factors seem to have a complex
explanation with at least 2 variables associated to them.
For factor 1, the individuals variability independent of the
trait of interest is for instance shown to be related to the
hatch. Enrichment tests also give a characterization of
this factor by specific metabolisms.

To remove expression heterogeneity from the data for
the subsequent statistical analyses, the basic idea consists
in adjusting the raw expression data from the common
factor structure. As we extract uncontrolled effects and
technological biases from what was before simply consid-

Figure 4 eQTL mapping for DHCR7 on chromosome 5. The LRT curves for the gene DHCR7 are represented in blue (plain line for the factor-adjust-
ed analysis and dotted line for the raw analysis). The LRT curve for the AF trait is represented in red. The plain curves reveal the existence of a QTL/
eQTL for the 2 traits in the same region, around 175 cM on the GGA5 chromosome. This colocalization is not revealed by the raw analysis. The Signif-
icance level of 5% is represented by the horizontal green line. The genetic distances (cM) and likelihood ratio (LR) are shown on the X-axis and Y-axis, 
respectively.



Blum et al. BMC Bioinformatics 2010, 11:368
http://www.biomedcentral.com/1471-2105/11/368

Page 8 of 12
ered as statistical noise, analyzing heterogeneity in gene
expression yields a new point of view on transcriptomic
data. We show in this study the importance of taking into
account these extra sources of variation to be more rele-
vant in the transcriptomic analyses.

Methods
AF expression data set
The data set concerns hepatic transciptome profiles for
11213 genes of 45 half sib male chickens variable for
abdominal fatness (AF). The data set was generated to
map quantitative trait loci (QTL) for abdominal fatness in
chickens and used in a previous study [5]. The sire of this
family, generated by successive inter-crossing of two
experimental chicken lines divergently selected on
abdominal fatness, was known to be heterozygous for an
AF QTL on the GGA5 chromosome around 175 cM. Ani-
mals, marker genotyping and transcriptome data acquisi-
tion and normalization are described in Le Mignon et al
(2009) [5].

Illustrative examples
For each case, we simulated expression for 1000 genes on
20 arrays divided in two groups using the R programming
language. Initially, the expression measurements for each
gene were independently drawn from a standard normal
distribution. The expression heterogeneity due to simple
independent grouping variables was included in the sim-
ulated data set by adding a constant value for 7 random
individuals for all genes (case 1) or a set of genes (case 2
and 3).

Classical expression analysis
As the variable of interest in the biological study is con-
tinuous, we calculated the Pearson correlation coefficient
for each gene expression and deduced the number of
genes correlated to the trait by considering the P-values
under the cutoff 0.05.

Factor-analytic method
Steps and algorithm
The method takes into account the impact of dependence
on the multiple testing procedures for high-throughput

Table 2: Description of the factors extracted from the raw data and from the hatch and weight adjusted data

Factors extracted from the raw AF expression dataset

Individual information Gene information

hatch dam weight oligo size chip block chip row chip 
column

Factor 1 8.92E-05 0.139 0.129 2.20E-16 2.20E-16 0.074 0.179

Factor 2 0.074 0.913 4.70E-03 2.20E-16 2.20E-16 0.041 0.857

Factor 3 1.90E-02 0.848 0.489 2.55E-14 2.20E-16 0.716 0.376

Factor 4 6.00E-03 0.127 0.959 1.41E-07 2.20E-16 0.707 0.167

Factor 5 0.435 0.217 0.884 0.529 2.20E-16 4.97E-03 9.99E-05

Factor 6 0.946 0.412 0.615 1.79E-07 2.20E-16 0.876 5.11E-07

Factors extracted from the AF expression dataset adjusted for the hactch and body weight effects

Individual information Gene information

hatch dam Weight oligo size chip block chip row chip 
column

Factor 1 1.13E-04 0.219 0.156 2.20E-16 2.20E-16 0.078 0.209

Factor 2 0.052 0.841 3.40E-03 2.20E-16 2.20E-16 0.036 0.814

Factor 3 0.049 0.819 0.569 2.16E-11 2.20E-16 0.554 0.16

Factor 4 0.178 0.031 0.869 6.80E-09 2.20E-16 0.897 0.885

Factor 5 0.949 0.727 0.647 2.79E-12 2.20E-16 0.291 2.36E-10

The p-value is given for each association test (see Methods section). Considering a threshold of 1%, the significant p-values are in bold.
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data. The common information shared by all the variables
(i.e. gene expressions) is modeled by a factor analysis
structure. Let Y(k) = (Y(1), Y(2),..., Y(m))' be a random m-vec-
tor and x(k) = (x(1),..., x(p))' some explanatory variables. The
conditional covariance matrix of the responses, given the
explanatory variables, is represented by a factor analysis
model: Σ = Ψ + BB', where Ψ is a diagonal m × m of
uniquenesses and B is a m × q matrix of factor loadings.
In the above decomposition, the diagonal elements in Ψ

are referred to as the specific variances of the responses
and therefore BB' appears as the shared variance in the
common factor structure. This factor analysis representa-
tion of the covariance is equivalent to the following
mixed effects regression modeling of the data: for k = 1,
..., m

Y Zk k k
k

k( ) ( ) ( ) ( )= + + +′ ′b b0 x b ε

Figure 5 AF data set: individuals representation for each factor. Individuals are represented on the factor using the B matrix of loadings found by 
FAMT. The individuals are colored according to the variable "hatch" which has 4 levels.



Blum et al. BMC Bioinformatics 2010, 11:368
http://www.biomedcentral.com/1471-2105/11/368

Page 10 of 12
where bk is the kth row of B, Z = (Z(1), ..., Z(q)) are latent
factors supposed to concentrate the common informa-
tion in the m-responses and e = (e(1),..., e(m))' is a normally
distributed m-vector independent of Z, with mean 0 and
variance-covariance Ψ.

An EM algorithm [11] is used to estimate Ψ, B and Z.
The number of factors is chosen so that the variance of

the number of false discoveries is minimized. A VARI-
MAX rotation is finally applied on the factors after EM
estimation in order to privilege highly dispersed loadings
rather than a homogeneous distribution of the loadings.
Once the factor model is estimated, factor-adjusted test
statistics are obtained by correction of the classical tests
from the effect of the common factors. [4] show that the

Table 3: Biological terms characterizing factor 1 and 2

FACTOR1

GO ID GO Term Size Count Pvalue

GO.0007051 spindle organization 6 2 8.20E-03

GO.0050931 pigment cell differentiation 7 2 0.011

GO.0000279 M phase of meiotic cell cycle 79 6 0.012

GO.0000079 regulation of cyclin dependent protein kinase activity 9 2 0.019

GO.0016570 histone modification 13 2 0.038

GO.0015698 inorganic anion transport 53 4 0.039

GO.0007156 homophilic cell adhesion 32 3 0.041

Kegg ID Kegg pathway Size Count Pvalue

map05216 Thyroid cancer 11 2 0.020

map05130 Pathogenic Escherichia coli infection 12 2 0.024

map04520 Adherens junction 31 3 0.024

FACTOR2

GO ID GO Term Size Count Pvalue

GO.0006195 purine nucleotide catabolic process 5 3 2.23E-05

GO.0030168 platelet activation 7 3 7.65E-05

GO.0007051 spindle organization 6 2 2.55E-03

GO.0007596 blood coagulation 24 3 3.76E-03

GO.0030336 negative regulation of cell migration 12 2 0.011

GO.0032879 regulation of localization 103 5 0.012

GO.0001775 cell activation 74 4 0.016

GO.0001890 placenta development 18 2 0.023

GO.0017038 protein import 49 3 0.027

GO.0006403 RNA localization 22 2 0.034

GO.0006816 calcium ion transport 56 3 0.038

Kegg ID Kegg pathway Size Count Pvalue

map00230 Purine metabolism 64 4 0.013

Enrichment tests were performed on the genes contributing the more to the construction of factor 1 and 2 using the GO BP terms and Kegg 
pathways. For each enriched term, the identifier (ID), the bioligical term, the size of the whole list of genes related to the term (size), the number 
of genes in the sub-list related to the term (count), the pvalue of the test.
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resulting tests statistics are asymptotically uncorrelated,
which improves the overall power of the multiple testing
procedure. The algorithm is implemented in the "FAMT"
R package available from CRAN. For the subsequent
analyses, the raw expression data set is adjusted for the
estimated independent factors, which results in the so-

called factor-adjusted expression data :

Individual and variable representation
As in PCA, the data set is transformed into a new coordi-
nate system by an orthogonal linear transformation [12].
We can represent the individuals and variables graph
through B, the matrix of factor loadings and Z, the matrix
of estimated factors. Those two representations are
related by a transition formula [12], which enables their
simultaneous interpretation. Moreover, each factor can
be related to external information which may be available
in the experimental design (significance of the relation-
ship is assessed by an analysis of variance test).

QTL and eQTL mapping
QTLMAP software based on an interval mapping
method described by Elsen et al [13], was used to detect
QTL affecting the AF trait and the eQTL affecting the
expression of DHRC7. The statistical variable for testing
the presence of one QTL (or eQTL) versus no QTL (or no
eQTL) at one location was an approximate likelihood
ratio test (LRT) [14]. Significance thresholds were empiri-
cally determined for AF QTL and DHCR7 eQTL from
2000 simulations. For more details, see Le Mignon et al
(2009) [5].

Gene set enrichment
The enrichment of biological terms among a list of genes
was assessed by the probability that an equally high or
higher enrichment could be obtained by chance given the
frequency of the biological terms among all the genes
considered. We first implemented an R program which
calculated the P value using a Fisher exact test for over-
representation and return the enriched terms. Let 
denote the subset of genes related to a given metabolism
in a gene set of interest. The Fisher exact test corresponds

to the hypergeometric sum as follows: 

where . B the num-

ber of genes contained in the whole population, m the
number of genes in the gene set of interest and B0 the
number of genes related to the metabolism. The func-
tional annotations used for this program were generated

as indicated in [15] are available on the website: http://
www.sigenae.org. They were obtained by a bioinformatics
procedure using the Ensembl annotation source [16]. The
analysis were done using the Gene ontology (GO) biolog-
ical processes (BP) terms [17] and the KEGG pathways
[18] with a significant threshold of 0.05.

List of abbreviations
AF: Abdominal Fatness; eQTL: Expression Quantitative
Trait Loci; GGA5: chromosome 5; FAMT: Factor Analy-
sis for Multiple Testing; SVA: Surrogate Variable Analy-
sis; HCA: Hierarchical Cluster Analysis; PCA: Principal
Component Analysis; LRT: Likelihood Ratio Test; GO:
Gene Ontology; BP : Biological Process; KEGG: Kyoto
Encyclopedia of Genes and Genomes.
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