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Abstract

object-based methods emphasize detection power.

functional relations.

Background: Sub-cellular structures interact in numerous direct and indirect ways in order to fulfill cellular
functions. While direct molecular interactions crucially depend on spatial proximity, other interactions typically result
in spatial correlations between the interacting structures. Such correlations are the target of microscopy-based co-
localization analysis, which can provide hints of potential interactions. Two complementary approaches to co-
localization analysis can be distinguished: intensity correlation methods capitalize on pattern discovery, whereas

Results: We first reinvestigate the classical co-localization measure in the context of spatial point pattern analysis.
This allows us to unravel the set of implicit assumptions inherent to this measure and to identify potential
confounding factors commonly ignored. We generalize object-based co-localization analysis to a statistical
framework involving spatial point processes. In this framework, interactions are understood as position co-
dependencies in the observed localization patterns. The framework is based on a model of effective pairwise
interaction potentials and the specification of a null hypothesis for the expected pattern in the absence of
interaction. Inferred interaction potentials thus reflect all significant effects that are not explained by the null
hypothesis. Our model enables the use of a wealth of well-known statistical methods for analyzing experimental
data, as demonstrated on synthetic data and in a case study considering virus entry into live cells. We show that
the classical co-localization measure typically under-exploits the information contained in our data.

Conclusions: We establish a connection between co-localization and spatial interaction of sub-cellular structures
by formulating the object-based interaction analysis problem in a spatial statistics framework based on nearest-
neighbor distance distributions. We provide generic procedures for inferring interaction strengths and quantifying
their relative statistical significance from sets of discrete objects as provided by image analysis methods. Within our
framework, an interaction potential can either refer to a phenomenological or a mechanistic model of a physico-
chemical interaction process. This increased flexibility in designing and testing different hypothetical interaction
models can be used to quantify the parameters of a specific interaction model or may catalyze the discovery of

Background

A general biological principle states that cellular func-
tion results from the combined interactions of sub-cellu-
lar structures in space and time. Interactions typically
manifest themselves through statistical dependencies in
the spatial distributions of the involved structures. Here,
we adopt this general definition and we understand

* Correspondence: ivos@ethz.ch
'Institute of Theoretical Computer Science, ETH Zurich, Universitatstrasse 6,
8092 ZUrich, Switzerland

( BioMVed Central

interaction as the collection of all effects that cause sig-
nificant (above the level predicted by a null hypothesis)
correlations in the positions of the participating objects.
Over the last decades, advances in fluorescent markers
have enabled probing interactions of sub-cellular struc-
tures in the microscope, either directly or indirectly.
The direct approach relies on experiments that generate
a signal upon the proximity required for molecular
interaction. Indirect approaches are based on indepen-
dently imaging two populations of interest, and
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searching for clues of interaction in their spatial distri-
butions. This approach is based on the paradigm that
spatial proximity (or co-localization) is a hallmark of
many types of physical and chemical interactions
between sub-cellular structures. If two or more struc-
tures interact, their spatial distributions hence appear
correlated. The reverse, however, is not necessarily true.
Presence or absence of significant co-localization does
not imply presence or absence of interaction. The rea-
son is that co-localization depends on the specific inter-
action mechanism: An unobserved third structure may
act as a confounding factor (in the statistical sense),
making the observed structures appear co-localized even
though they do not interact. Furthermore, one can ima-
gine interaction mechanisms that lead to spatial distri-
butions with correlations that are not captured by
simple co-localization measures. Hence, the interaction
has to be statistically inferred from the data.

Such inference, however, entails a trade-off between
the objectives of pattern discovery and statistical detec-
tion power. According to these objectives, two comple-
mentary approaches to co-localization analysis can be
distinguished: Intensity correlation methods capitalize on
pattern discovery [1], whereas object-based methods [2]
emphasize detection power. Intensity correlation meth-
ods quantify correlations in the intensities of different
color channels on individual pixels. Intensity correlation
methods are straightforward to implement and use. The
results, however, may be difficult to interpret since inter-
actions need to be inferred from correlations in intensity
space, which is sensitive to the blurring and noise inher-
ent to microscopic imaging systems [3]. Object-based
methods quantify the spatial relationships between sets
of discrete objects. This requires reducing the image to a
set of geometric objects using, e.g., image segmentation
or fitting of structure models. Object-based approaches
infer interactions from correlations in physical space,
which allows constructing intuitive and simple co-
localization measures, such as counting the number of
overlapping objects [2].

The intensity-based approach is limited to interactions
on a spatial scale on the order of the resolution of the
microscope. While the object-based approach is not
necessarily limited to any particular length scale (note
that the localization accuracy for an isolated object is
not limited by the spatial resolution of the microscope,
but rather the signal-to-noise ratio [4-6]), a spatial scale
is nevertheless assumed in practice. Many object-based
co-localization methods rely on a hard threshold for the
distances between objects in order to distinguish
between “co-localized” and “not co-localized” for each
individual pair of objects [2]. The choice of distance
threshold greatly influences the types of interactions
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that can be reliably detected. The actual physical or che-
mical interaction between sub-cellular objects can be of
short temporal duration and they can quickly separate
thereafter. In such situations, high thresholds can
increase the detection power, but only at the expense of
increased false-positive rates. When interactions take
place over long distances, the choice of threshold impli-
citly determines a range limit of the analysis.

Apart from fixing the interaction scale a priori, using a
hard distance threshold also implies a binary distinction
of pair-wise distances: either they are below the threshold
and hence the objects are assumed to interact - or they
don’t. A co-localization percentage thus corresponds to
an indirect measure for the preference of “interaction”
over “non-interaction”. This preference reflects the
strength of the interaction. However, it also depends on
the frequency of possible distances that the population of
objects can assume.

More specifically, the cellular context in which the inter-
actions take place is a confounding factor. A high co-loca-
lization percentage can, for example, be observed in a cell
with densely packed sub-cellular structures of interest,
irrespective of their interaction strength. This artifact
needs to be considered in statistical tests [7] or corrected
for in order to construct an interaction score [8].

Taken together, object-based approaches provide
intuitive co-localization measures whose statistical inter-
pretation, however, is not straightforward. Here, we
establish a connection between co-localization and the
notion of interaction as used in spatial statistics [9],
namely the non-independence of the relative positions
of objects under study. This is based on modeling the
nearest-neighbor distance distribution between the
observed objects. These distances are the result of inter-
actions, measurement inaccuracies, and the geometry of
the domain in which the objects are distributed. This
modeling provides generic procedures for inferring
interaction strengths and quantifying their statistical sig-
nificance. Our approach helps formalizing design deci-
sions in co-localization and interaction studies and
shows how they translate to biological hypotheses. Stan-
dard object-based co-localization analysis is included as
a special case, which makes explicit the connections
between interaction and co-localization. After develop-
ing and characterizing the statistical interaction analysis
framework, we exemplify its utility in a biological study
of virus entry.

Results and Discussion

Basic scenario: co-localization analysis

We review the basic concepts of classical object-based
co-localization analysis and its interpretation in terms of
interactions.
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Figure 1 Illustration of co-localization analysis and cellular
context. (A) lllustration of co-localization analysis based on nearest
neighbor distances (arrows) between point-like objects X = {xi}ﬁl
(dots) and circular objects Y = {yj ;‘f] (solid circles). For all distances
d, the state density g(d) is proportional to the total length of the
d-isoline (dashed lines) in Q. The expected co-localization in the
absence of interactions, Cf), is proportional to the area enclosed by
the t-isoline (gray region). (B)-(D) Effect of the positioning of the
objects Y on g(d), illustrating the influence of the cellular context.

Object-based co-localization measures are typically
constructed for two sets of objects X = {xi}ﬁ1 and
Y= {yj}f‘fl. These objects are located in a bounded region
Q c© R” with boundary 0Q and dimensionality n
(usually 2 or 3; see Fig. 1). Each object i (j) is repre-
sented by a feature vector x; (y;) that comprises infor-
mation about the object’s position and, if available, its
dimension and shape. These features vectors are
extracted from image data by means of image segmenta-
tion or fitting of structure models.

Suppose one wishes to investigate the interaction
between the objects in X and Y, one can define for each
x; the distance to the nearest neighbor (NN) in Y,

di=n?n[d<xb%)]. (1)

The function d(-) is a suitable distance function in fea-
ture space, for example the Euclidean distance between
point-like objects or the minimum distance between
outlines of more complex objects. A nearest-neighbor
distance distribution p(d) can then be estimated from
the set of distances D = {d;}Y . The classical overlap or
nearest-neighbor-distance co-localization measure C* fol-
lows by counting [8]:
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where 1(-) is the indicator function and ¢ an applica-
tion-specific distance threshold. The form of Eq. 2
implies assumptions about how the objects in X and Y
interact. The interaction process is considered to be
translation- and rotation-invariant since only the dis-
tance between interacting objects is taken into account.
Based on this distance only two categories of positions
of the objects in X are distinguished: either they are suf-
ficiently close to any object in Y to be considered inter-
acting, or they are not. Furthermore, objects in X
interact with at most one object in Y and they do not
experience the presence of any y; unless they cross the
distance threshold ¢. The choice of ¢ reflects an assump-
tion about the length scale of the interaction to be
detected.

Inferring interactions from an observed co-localization
measure C’ is not trivial since C* > 0 does not necessa-
rily imply any interaction between the objects. This is
because spatial correlations can also be caused by con-
founding factors, such as the cellular context {Q, Y}.
Even if the objects in X and Y do not interact there is a
finite probability that any possible distance in an interval
Ad about d; is observed. We arbitrarily choose Y as a
reference in order to compute the relative frequency of
possible distances (state density) as:

q(d) =
lim Pr(d; € [d, d + Ad]|"no interaction”, Y) 3)
Ad—0 Ad .

This density g(d) is determined by the positions,
dimensions, and number density of the objects in Y (see
Fig. 1). Independent random positions will result in a
relatively wide density g(d) (Fig. 1C). With regularly
placed objects Y, large distances do not occur (Fig. 1B).
Clustering increases the frequency of long distances at
the expense of short distances (Fig. 1D). Objects with
large surfaces or a large number density give rise to
shorter distances. In case there are interactions between
the objects in X and Y, some of the possible distances
are additionally favored over others, deforming the den-
sity q(d) to p(d).

The co-localization measure C' is, therefore, not suffi-
cient to separate the contributions from the cellular
context and the interactions. Information about the
interactions is only contained in the deviation from an
expected base-level in the absence of interactions. This
base level, Cj, is the co-localization measure that would
be observed under the hypothesis Hy: “no interaction”
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(obtained by letting p(d) = g(d) and numerical evalua-
tion of the integral in Eq. 2). But how does a certain
deviation from the base level C relate to interactions
between the objects, and what deviations can be consid-
ered significant? We address this question in the follow-
ing sections by generalizing co-localization analysis to
interaction analysis. Ideally, an interaction score is inde-
pendent of the cellular context and reflects variations of
the interaction strength in a monotonous fashion. The
first step toward constructing such a score is a precise
definition of the term interaction strength in the context
of an interaction model.

Generalization: interaction analysis

Spatial point process analysis [9-11] is a standard sta-
tistical framework for studying the spatial distribution
of interacting objects. Our interaction analysis is
derived from the general binary Gibbs process with
fixed number of objects. Its central component is an
effective pair-wise interaction potential ®(-). In many
applications, “interaction” is an abstraction of the dif-
ferent effects that collectively cause an observed spatial
pattern. Nevertheless, the mathematical form of the
Gibbs process corresponds to physical models of inter-
acting objects. The potential associates an energy level
with each pair {i, j} of interacting objects. The prob-
ability density of the Gibbs process for two sets of
interacting objects, X and Y, has the shape of a Boltz-
mann distribution:

N M
p(X,Y) o exp —ZZcb(xi,yj) , (4)

i=1 j=1

i.e., states with lower energy occur with higher prob-
ability. Eq. 4 implies mutual independence of the objects
within the same set X or Y, in agreement with the
assumptions formulated in the previous section. For
nearest-neighbor interactions, the corresponding inter-
action potential is given by:

® (Xi/ j) _ {q) (di) ify; is NN of x; 5)

0 else ,

where the function ¢(d) specifies the distance depen-
dence of the interaction.

Assume a cellular context {Q,Y} is given. The prob-
ability density p(X|Q,Y) for the potential in Eq. 5 then
only depends on the d;. An inner sum over all j, as in
Eq. 4, is then not required. The mutual independence
within X allows factorizing p(X|Q,Y) into terms that
only depend on a single d;:
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i=1 i=1

where, unlike in Eq. 4, an explicit dependence of the
potential on x; is no longer present.

The probability of observing a certain x; is propor-
tional to exp (-¢(d;)). The probability of observing a cer-
tain d;, however, also depends on how frequently an
arbitrary object x is a distance d; away from its NN in
the given cellular context. This frequency is given by the
state density g(d) as stated in Eq. 3. Straightforward
calculations yield:

P, Y) =p(dlq) =Z 'q(d) exp (—¢ (d)) . 7)

The normalization constant Z (the partition function)
renders p(d|q) a true probability density function.

So far, we have not specified any particular shape for
the interaction potential ¢(-), which can be a parametric
or non-parametric model. A specific choice constitutes a
hypothesis or assumption about the range, strength, and
distance dependence of the interaction. These three
aspects of the interaction are represented independently
in our parameterization:

p(d) = f (d; t) - ®)

€ is the strength, f encodes the shape, o defines the
length-scale, and ¢ is a shift along the distance axis of
the interaction potential. Using Eqs. 7 and 8 we find the
joint probability density of observations D:

p(Dlq) = Z‘Nfl[q(di) exp (—ef (dia_ t)) .0

This is the central class of models that we use to
extend co-localization analysis to interaction analysis.
All interaction models will be formulated as specific
instances of such a model.

The assumptions underlying the simple overlap co-
localization measure can, for example, be formalized in
a specific interaction potential. Only two categories of
distances (d <t and d = ¢) are distinguished (Eq. 2). This
implies a step function for the shape f(z) of the interac-
tion potential ¢(d) (taking o = 1):

¢ (d) = e f(d—1) with

. (10)
sty | —1ifz<0
f (Z)_{O else .
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Using the integral definition in Eq. 2, the co-localiza-
tion measure C’ can then be expressed as a function of
the interaction strength. Inserting Eq. 10 into Eq. 7 and
Eq. 2 and solving for € yields an estimator ¢ of the
model interaction strength:

A Ct Ct
6=6(N’q)=log<1_ct)_10g<1_ocl)' (11)
0

The quantity ¢ corrects for the cellular context and,
therefore, fulfills our requirements for a valid interaction
score. Eq. 11 relates the purely descriptive co-localiza-
tion measure C° to an interaction model between the
objects in X and Y. It builds a bridge between patterns
in the data (the cellular context summarized in g and
the measure C) and functional relationships (interac-
tions) between sub-cellular components.

Whether an observed estimate ¢ is indicative of the
actual presence of an interaction, however, has to be
addressed using statistical inference as presented in the
following section.

Hypothesis testing and power analysis for the step
potential

In the parameterization of our interaction model (Egs. 8
and 9), the presence of an interaction is equivalent to
e = 0. Since ¢ is an estimator, it is a random variable.
Even if the hypothesis Hy: “no interaction” is true, a
non-zero ¢ can occur with finite probability (¢ # 0 does
not imply e # 0). Inference about interactions requires
finding a critical estimated interaction strength above
which one can reject Hy on a prescribed significance
level a.

This critical interaction strength is determined by the
distribution of ¢ under Hy (null distribution), which
depends on the sample size N, g, and the prescribed c.
Under Hy, C'N is binomially distributed with parameters
(Ci, N). Hence, the critical C* can be computed from
the (numerically) inverted cumulative distribution func-
tion of the binomial distribution. The corresponding cri-
tical ¢ follows from Eq. 11.

The dependence of the critical C' and ¢ on Cf) and N
is shown in Fig. 2A and 2B. It can be seen that the
minimum significant excess over C} varies only weakly
with C{ (Fig. 2A). Obviously, large values of C in con-
junction with small N do not allow rejecting Hy, even if
C’ = 1. The critical value of ¢ is highest at the two
extremes of C}) and lowest for C, ~ 0.4 (Fig. 2B). As for
C, it can be seen that for large C! and small N no finite
¢ is sufficiently large to allow rejecting Hp.

The curves in Fig. 2B show the decision of the statisti-
cal test based on the estimated interaction strength ¢. A
true interaction with a strength e greater than this
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Figure 2 Power analysis for a step potential. Minimum C' (A)
and ¢ (B) that allows rejecting Hy: "no interaction” (o = 0.05) as a
function of the base-level Cf). In A, the expected value of C* under
Ho is indicated by a dashed line. (C) Statistical power (1 - f3) for
detecting interactions of a true strength e = 1. Red, green, and blue
lines correspond to N = 10, 100, and 1000, respectively, in all three
panels.

critical value does, however, not guarantee that it will
always be detected by the test (type II error: B). Further-
more, a weak interaction may lead to unwanted rejec-
tion of Hy. The behavior of the test critically depends
on the effect size, which quantifies the departure from
H,. Here, effect size refers to the true interaction
strength € = a > 0. The statistical “power” (1 - ) quan-
tities the probability of rejecting H, when Hy: “¢ = ¢™,
€ = a“ is true. In Fig. 2C, the detection power for a true
strength of @ = 1 is shown as a function of C. As
expected from Fig. 2B, the power is low at the extremes
of Ci, eventually dropping significantly below the
recommended value of 0.8, even for N = 100. Weak
interactions are harder to detect, requiring larger sample
sizes to yield a certain power.

In the design of experimental interaction studies, a key
objective is to maximize the robustness and reliability of
detecting effects of unknown size. Power can be
increased by optimizing the experimental design or the
subsequent statistical analysis. While increasing the
sample size might be possible, controlling the cellular
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context is not feasible in most situations. Our analysis is
based on the interaction model introduced in the pre-
vious section. It allows specifying different shapes f{)
and scales o of the interaction potential. Power could
potentially be increased by better modeling the interac-
tion potential. In the next section, we thus quantify the
influence of alternative model potentials on statistical
power.

Improving statistical power with non-step interaction
potentials

Constructing statistical tests as described above requires
assuming a specific shape and scale of the interaction
potential. In the absence of prior knowledge, however,
this model potential can be arbitrarily different from the
true potential of the actual biological interactions under
observation. Test statistics that are based on a model
potential close to the real one may achieve greater
power.

We quantify the influence of the discrepancy between
the model and the true potential by considering a scenario
where N objects {x;} are distributed in the square region Q
containing M randomly placed circular objects {y;} with
identical radii R. Fig. 3A shows the corresponding state
density g(d). The objects in X interact with the objects in
Y according to the Plummer potential (with ¢ = 0):

¢Pl(d) = € fP! (d) with
o
(12)
— (2% + 1)70‘5 ifz>0
-1 else

Pl = {

This potential has an overall 1 = d-shape, but finite
value and slope everywhere. The parameter € again con-
trols the interaction strength (potential depth). The
parameter o sets the length scale of the interaction
(potential range) and allows gradually changing ¢(d)
from a step-like shape to a potential that causes signifi-
cant attraction toward the objects in Y over large dis-
tances (see Fig. 3B).

For such more general potentials, algebraic expres-
sions for ¢ (such as Eq. 11 for the step potential) can in
general not be derived. Statistical tests for the presence
of interactions can nevertheless be constructed using a
different statistic. Since Eq. 9 describes a member of the
exponential family,

T=—éf(di;t),

is a sufficient test statistic for e [12].

(13)
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Figure 3 Power analysis for non-step potentials. (A) Black line:
state density g(d) for M = 100 circular objects Y with radius R = 3.57
randomly placed in a square domain of size 200 x 200; R is chosen to
yield a circle-covered area fraction of 0.1; Colored lines: resulting
distance distribution p(d) for the three potentials shown in B. (B)
Plummer potential (Eq. 12) with € = 1 and varying scale parameter.
(C) Monte-Carlo estimates of 80%-power isolines in the N-a-plane;
dashed lines: tests based on T, solid lines: tests based on T°'. Note
that larger kinks in the dashed lines are due to the discreteness of T*
and are statistically significant. Colors in A-C indicate scale parameters

of the true potential; red: ¢ = 0.2, green: 6 = 1.0, and blue: ¢ = 5.0.

For a set of distances D, distributed according to Eq. 9
with ¢(d) = ¢P'(d), a test for the presence of interactions
can thus be constructed based on TP! = — "N fPl(d;/0)
under Hy: “no interaction”, where the scale parameter ¢
is assumed to be known. The null-distribution can be
approximated by i.i.d. Monte Carlo (MC) samples
{T,fl}{f:l (see Materials and Methods). An observed value
of TP! is then ranked among the {T,fl}if:]. If it ranks
higher than (1 - @)K1-th, Hy is rejected on the signifi-
cance level o [12]. The statistical power of this test to
reject Hy when Hy: ¢ = #P', € = a“ is true, can be
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estimated with additional MC simulations: For a fixed
effect size a > 0, one draws N distances d; from p(d),
computes TP, and conducts the test as described above
[12]. This procedure is repeated many times and the
fraction of tests rejected serves as an estimator of the
power.

In order to quantify the influence of the model poten-
tial on statistical power, we test H, against H; and Ho:
“¢p = ¢*, € = a“ on data generated under H,; for varying
o (see Fig. 3B for the true interaction potentials under
H,). Testing H, against H, makes use of the sufficient
statistic Tt = — "N, f(4;), which is proportional to C*
with ¢ = 0. As opposed to T?, this statistic only contains
information about the signs of the d; and should thus
yield a less powerful test.

Fig. 3C shows the number of samples required to
reach 80% power as a function of the strength a of the
true interaction potential. It can be seen that the power
of a test based on the true interaction potential (solid
lines) is higher than the power of a test based on a step
potential (dashed lines). Moreover, this difference
strongly increases with increasing potential range o: for
o = 5 (blue lines) using the step model potential
requires 4 times more samples. If the true potential is
close to a step potential (¢ = 0.2, red lines), both tests
perform comparably well. Moreover, the figure also
shows that interactions over longer distances are harder
to detect. We therefore conclude that one needs to be
careful when assuming a step potential (as implicitly
done in traditional co-localization analysis). Controlling
power requires prior knowledge about the interaction
potential. Such prior knowledge can easily be included
in the present framework by choosing ¢, o, and f{-).

Example: virus trafficking

The uptake and intracellular transport of virus particles
is a complex process that involves temporary association
with membrane receptors and multiple organelles of the
endocytic machinery, such as early and late endosomes
[13]. In many cases, fluorescence microscopy allows
resolving the involved entities as discrete objects. This
has previously motivated the use of object-based co-
localization measures to quantify association kinetics
and unravel infection pathways. Here, we show how the
generalized framework of interaction analysis presented
above can be applied in a practical experimental situa-
tion, and how it enables using a large toolbox of well-
known statistical techniques.

We consider a set of 274 two-color fluorescence
microscopy images of single HER-911 cells expressing
the small GTPase Rab5 tagged with enhanced green
fluorescent protein (EGFP), recorded in the green color
channel. Rab5 is a regulator of clathrin-mediated
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endocytosis and a marker for early endosomes. These
dynamic, lipid-bounded organelles are formed by invagi-
nations of the plasma membrane. They are the first sort-
ing compartment of clathrin-derived cargo [13]. Either
fluorescently tagged Adenovirus serotype 2 (Ad2) or its
temperature sensitive mutant (TS1) were recorded in
the red color channel. Images were taken between 2 and
46 min post infection. The same data have already been
used in a previous study [5]. Virus positions and endo-
some outlines were extracted from the images as
described in the Materials and Methods section. Based
on these object representations, the set D of virus-to-
nearest-endosome distances and the state density g(d)
were computed for each of the imaged cells.

Like Ad2, TS1 is known to enter the cell by clathrin-
mediated endocytosis, but the mutation inhibits escape
from endosomes [14,15]. This should be reflected in a
deviation of the empirical distribution of observed dis-
tances D from the null distribution p(d) = g(d), which is
stronger for TS1 than for Ad2. In our framework, this
translates to a non-flat interaction potential between
virus centroids and outlines of Rab5-positive endosomes.

Before modeling an interaction potential, we test Hy:
“¢(d) = 0” against Hy: “¢(d) = 0” for each imaged cell
using a non-parametric statistical test (see Materials and
Methods). This test does not assume any specific shape
of the interaction potential, which allows detecting any
type of interaction, albeit with reduced power. The
results are summarized in Table 1. The fraction of cells
for which H, has to be rejected is significantly higher
for TS1 than for Ad2, irrespective of the significance
level and despite the on average smaller sample sizes N.
However, Ad2 exhibits significant interaction with endo-
somes in half of the cells (o = 0.05).

These results indicate that the interaction potential is
non-zero for many cells. They do not, however, permit
any conclusions about the shape or strength of the interac-
tion potential, for which, in addition, no prior information
is available. We therefore apply a non-parametric estima-
tion procedure for the interaction potential to get a sketch
of its strength and distance-dependence. Subsequently we
can specify and identify parametric potentials. Ignoring,
for now, possible variability between cells and virus types,

Table 1 Results of non-parametric statistical tests for
interaction in the virus trafficking data

#cells p < 0.05 p < 0.01 N
Ad2 135 70 (52%) 25 (19%) 180 + 50
TS1 139 128 (92%) 100 (72%) 157 £ 59

First column: number of cells analyzed; second and third columns: number
and percentage of cells for which Hy was rejected on the indicated
significance levels; forth column: mean and standard deviation of the
observed number of virus particles per cell.
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we pool all data and estimate a common non-parametric
potential ¢"P-(d) (see Materials and Methods). The esti-
mated ¢™P-(d) is shown in Fig. 4. Its shape is notably differ-
ent from a step function. The slow decay suggests that
viruses interact with endosomes over distances of about
10 pixels (1 ym) from their center.

The estimated non-parametric potential serves as a
template for the shape of parametric models. Parametric
potentials can be identified more robustly from sets of
observed distances of individual cells. This allows corre-
lating their parameters with co-variates such as the virus
type or the time at which a cell was imaged after infec-
tion. We consider four different potentials, two that
resemble the shape in Fig. 4 (Hermgquist and Linear type
1) and two that are generalizations of the step potential
with a plateau below d = 0 (Linear type 2 and Plum-
mer). For all potentials, we fix the threshold to ¢ = 0.
Definitions of the potential shapes f{-) are given in the
Materials and Methods section.

The parameters of the potentials are found by maxi-
mum likelihood estimation (MLE). In order to exclude
cell-to-cell variations of the potential range, we do not
determine the pairs (€, ox) for each cell separately.
Rather, we estimate for a given potential a single scale
parameter 0y = 0* common to all cells, while the inter-
action strengths €; may vary between cells. The resulting
(N“*+1)-dimensional estimation problem is solved with
a nested ML algorithm (see Materials and Methods).
The common scale 6* and the maximum of the pooled
log-likelihood /* for the four potentials are reported in
Table 2. As a reference, the values are also given for a
step potential with distance threshold ¢ = 0.

The potentials are ranked according to their log-likeli-
hood. It can be seen that the step potential is outper-
formed by all others. This remains unchanged even if
one compares Akaike or Bayesian information criteria,

Qf)!).l).(d)

0 10 20 30 40 50
d [pixel]
Figure 4 Non-parametric estimate of the interaction potential.

The non-parametric estimate of the interaction potential based on
all imaged cells.
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Table 2 Comparison of estimated scale parameters of
interaction potentials for the virus trafficking data

o* max [* rank
Hermaquist 396 -1.224710° 1
Linear, type 1 4.14 -1.2362:10° 2
Linear, type 2 6.61 -1.242710° 4
Plummer 115 -1.237410° 3
Step (t=0) -1.2632:10° 5

Scale parameters 5* of potentials as found by maximume-likelihood
estimation, and the corresponding maximized pooled log-likelihoods max /*
for the different potentials (Eq. 17.)

which take into account the smaller number of free
parameters. With a difference in log-likelihood of > 10*
to second-best fit, the Hermquist potential is by far the
best fit. It is also subjectively most similar to the non-
parametric potential identified above. Fig. 5 shows an
example of an imaged cell, infected with TS1, together
with the empirical and estimated distance distributions
and the corresponding Hermquist potential. The images
of Ad2-infected cells are visually indistinguishable from
those of TS1-infected cells and are hence not shown.
Despite fitting only one independent parameter (o* is
fixed from the estimate over all cells), the estimated
model distribution captures the features of the data
remarkably well.

The estimated interaction strength ¢ of the Hermquist
potential varies within and between the two groups of
infected cells. The within-group variability comprises
statistical fluctuations and natural variations between
cells. Since virus internalization and transport is a
dynamic process, the time at which a cell was imaged
(time post infection) is a further source of in-group
variability. Fig. 6 shows the estimated interaction
strength of a Hermquist potential for all cells infected
with Ad2 (blue crosses) and TS1 (red circles) as a func-
tion of the time post infection. Throughout the observa-
tion period, the interaction strength for TSI is
significantly larger than that for Ad2, confirming the
trend reported in Table 1. Furthermore, a temporal
maximum of the interaction strength is apparent for
TS1, while for Ad2 no significant variation over time
can be resolved. These results indicate that TS1 and
Ad2 use different uptake pathways or exhibit signifi-
cantly different escape kinetics from Rab5-positive
endosomes.

Conclusions
We have introduced a statistical inference framework
for robustly estimating interaction parameters from
experimentally observed object distributions.

This allowed establishing a connection between spatial
co-distributions of objects and interaction, by formulat-
ing the object-based interaction analysis problem in a
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0 5 10 15
d [pixel]

Figure 5 Interaction analysis applied to virus trafficking.
Interaction analysis for a single cell infected with TS1, imaged 27
min post infection. (A) Imaged endosomes (Rab5-EGFP) with
overlaid outlines (solid red lines) and virus centroid positions (blue
crosses, virus channel not shown). Nearest-endosome-distance
isolines (dashed red lines) are shown in the magnified inset. (B)
State density g(d) for the shown cell (dashed black line), observed
virus-to-nearest-endosome distances (marks and histogram, N =
143), and estimated distance distribution from the model p(d) (solid
black line). (C) Estimated Hermquist potential (¢ = 3.90, §* = 3.96)
of the interactions between viruses and nearest endosomes.

spatial statistics framework based on nearest-neighbor
distance distributions. The present framework provides
generic procedures for inferring interaction strengths
and quantifying their statistical significance. Standard
object-based co-localization analysis is included as a
limit case, making explicit the connections between the
present framework and more classical approaches.

In the present framework, two novel key quantities
emerge: (i) the state density g(d), which is the distribu-
tion of nearest-neighbor distances expected under the
null hypothesis of no interaction, and (ii) the interaction
potential ¢(d), which defines the strength and distance

time post infection [min]

Figure 6 Time-resolved interaction analysis of the trafficking of
two strains of viruses. Estimated strength of a Hermquist potential
(scale o* = 3.96) for the interaction between endosomes and virus
particles versus the time post infection. Red circles: TS1; blue
crosses: Ad2. The time course of the mean (solid lines) and the + 1
standard deviation interval (shaded bands) are estimated using a
Nadaraya-Watson kernel estimator with bandwidth of 5 min.

dependence of the interaction. We have shown that
classical co-localization analysis amounts to estimating
the parameters of a step potential. This requires a
notion of “inside” and “outside”, either naturally defined
by the physical extent of the objects or imposed through
the step function’s distance threshold. For point-like
objects, or weak correlations between object positions,
the choice of distance threshold is arbitrary.

This limitation can be relaxed by affording more gen-
eral shapes of the interaction potential, which naturally
extends co-localization analysis to (spatial) co-distribu-
tion analysis without requiring any additional assump-
tions. The additional flexibility allows capturing
information about a wider range of sub-cellular interac-
tions. This was demonstrated by statistical power analysis
of the classical and generalized measures. Our results
highlight that the probability of detecting an interaction
strongly depends on the cellular context. We furthermore
illustrated the influence of the range of an interaction on
its detectability. Test statistics that include knowledge
about the shape of the true interaction potential can
greatly reduce the number of samples required to achieve
a certain target power. Physico-chemical models might
provide such prior knowledge. Alternatively, a non-para-
metric phenomenological potential can be estimated
from the data as demonstrated here. This potential can
then serve as a template for the parametric potentials
used in subsequent analyses. In addition, the present fra-
mework enables comparison of the likelihoods of
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different hypothetical physico-chemical interaction mod-
els directly on the original image data.

The present approach enables applying a wide range
of established statistical tools for analyzing experimen-
tal data, from parameter identification to model selec-
tion. This workflow was illustrated by studying the
spatial patterns of endosomes and viruses infecting live
human cells. In this case study, the experimental data
were very well explained using only a single free para-
meter per cell. Among the five potentials considered,
the step potential (corresponding to the classical co-
localization measure) was worst in explaining the data.
This highlights the benefit of the present method over
classical co-localization analysis. Moreover, the fitted
potentials provided additional quantitative readouts
that could be used in subsequent machine learning
analyses.

For simplicity the case study was done on 2D projec-
tions of 3D images. The presented approach, however,
is equally applicable in three dimensions without any
changes, provided three-dimensional object detection
and segmentation is available. Projecting the data into
two dimensions alters the estimated potentials (as it
also does for any other co-localization measure), since
it distorts both the distance data D and the state den-
sity q(d). We empirically found that the strengths of
the potentials estimated from the projected 2D data
may be smaller than those estimated directly on the
raw 3D data (data not shown). Although all distances
D are systematically reduced by the projection, this
effect is overcompensated by the non-linear distortion
of q(d), which is strongest for intermediate distances,
but negligible for very small and large distances.
Besides projection artifacts, errors in the image proces-
sing may also influence the estimated co-localization
measures. Depending on the accuracy of the image
segmentation method used, object sizes can be under-
or overestimated, or entire objects can be missed alto-
gether. This problem is inherent to all forms of co-
localization or distribution analysis. We have assessed
the sensitivity of our method with respect to image
segmentation errors by successively eroding or dilating
the endosomes from the presented case study. The
results show that the mean of the estimated strength
of the Hermquist potential remains unaffected, yet the
variance of the estimate increases for strong erosion
when entire endosomes start to be missed (data not
shown). This robustness of the present method is due
to the state density g(d) correcting for size errors. The
classical co-localization measure, naively corrected for
the cellular context by subtracting the amount of
unspecific co-localization C,, significantly changes
when under- or over-estimating object sizes. For
strong erosion, leading to very small and frequently
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missing objects, it even drops to a meaningless value
of zero (data not shown). Since image segmentation
errors are always present in practical applications, we
consider the robustness of our method one of its
major advantages over classical measures.

The presented framework is limited by the same
assumptions that also underlie classical co-localization
analysis: (i) spatial homogeneity and (ii) isotropy of the
interaction within the observation window, and (iii)
exclusively nearest-neighbor interactions between objects
of different classes. Assumption (i) is, e.g., violated if
large areas of the analyzed images do not contain any
objects. In this case, estimation of g(d) is not robust.
Assumption (iii) imposes limits on admissible distances
between objects: If objects X are attracted toward objects
Y, the distances between the objects within the set ¥’
need to be larger than the typical interaction range.

All of these limitations could be relaxed by using posi-
tion-dependent interaction potentials or allowing for
many-body interactions as described by general Gibbs
processes. Considering such processes, however, is theo-
retically and numerically challenging. The presented fra-
mework could also be extended by including additional
confounding factors, such as imaging artifacts causing
spurious co-localization. Temporal plasticity of interac-
tions, cell-to-cell variations, and experiment-to-experi-
ment variations could be accounted for through
additional co-variates (time, cell index, experiment
index) in the statistical model. Already in its present
form, the statistical framework can be used to test more
general hypotheses, such as “interactions are stronger in
strain A than in strain B”.

The interpretation of fitted potentials is limited to
their relative strengths. In the absence of a mechanistic
or physical model of the process that has created the
observed spatial pattern, biophysical interpretation of
the identified parameter values is difficult or misleading.
This is because the fitted interaction potentials reflect
the collection of all intracellular phenomena that lead to
the observed point pattern. Interestingly, however, a
relation between the steady-state distribution of a diffu-
sion process with added deterministic forces and the
distribution of the Gibbs process (Eq. 4) exists: If the
deterministic force acting between the diffusing objects
is given by -d¢/dd, the two distributions become identi-
cal (in appropriate units). This fact points a possibility
of connecting fitted interaction potentials with biophysi-
cal processes.

Methods

Image acquisition and processing

Endosomes and virus particles were imaged with a high-
resolution spinning disk confocal microscope (NA 1.35,
100x objective plus additional 1.6x lens, 100 nm pixel
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size) as described [5]. We acquired z-stacks of 8 images
each with a 400 nm z-spacing. Stacks were maximum
projected prior to image analysis. Endosome outlines
were represented as piece-wise linear closed splines in
the focal plane. Outlines were estimated from images
using a specialized model-based image analysis techni-
que [5], yielding sub-pixel localization accuracy and pre-
cision. Virus particles were modeled as points and
represented by estimated intensity centroid positions [6].
Prior to distance measurement, relative shifts between
virus and endosome positions due to chromatic aberra-
tion were corrected using an empirical calibration func-
tion [5,16]. The boundary dQ of the region Q was
defined as the cell boundary. An approximation of it
was found by low-pass filtering and thresholding of the
endosome images.

Measuring q(d)

The state density g(d) was determined from the
objects {y;} contained in the region Q. Positions x in
Q were sampled exhaustively on a uniform Cartesian
grid with spacing & = 0.25 pixel. For each x, the dis-
tance d; to the nearest neighbor in Y was computed.
Using this finite sample of distances D = {d;};, an
approximation of g(d) was found by Gaussian kernel
smoothing density estimation using the MATLAB
(The MathWorks, Inc.) function ksdensity.m with
default settings.

Test for interaction
Following [12], a non-parametric test for interaction was
constructed using the distance counts

T=(Ty,...,T)",

(14)
T = Zil 1(t < di < ti1),

in L = 20 equi-sized bins defined by L + 1 strictly
increasing thresholds ¢; that span the entire non-zero
range of g(d) for a given cell. First, a Monte Carlo sam-
ple {T}i, from the null distribution of T was obtained
by sampling N = |D| distances d; from ¢g(d), computing
Ty, and repeating this procedure K times. This sample
allowed approximating the expectation Eq(T) and co-
variance matrix Covy(T) of the null distribution. The

test statistic U was defined as
U = (Bo(T) — T) Covo(T) ™" (Eo(T) — T). (15)

Second, T and U were computed for the set D of
observed distances. U/ was then ranked among the
{U}_, obtained from an additional Monte Carlo sample

{Te}X , generated as described above. If it ranked higher

than (1 - &)K1-th, Hy was rejected on the significance
level .
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The parametric tests used in sections “Hypothesis test-
ing and power analysis for the step potential” and
“Improving statistical power with non-step interaction
potentials” followed a simpler protocol. The ranking was
directly performed among the scalar test statistics T°
and T*', avoiding the detour via U. A priori estimation
of the expectation and variance of T* and 7' was there-
fore not required.

ML estimation of potentials
For a given potential ¢, the log-likelihood of its para-
meters © given the observations Dy in cell k is:

Nk
I(©IDy, k) = py(diilae) = —Ni log (Z:(©))
i=1
Nk

+ 2108 (a1 (1)) = ¢ (dsi ©) -

Simultaneous estimation of the common scale o* and
independent strengths ¢ of a set of N cells was done
by maximizing the pooled log-likelihood:

Neells

FUODLY) = D [(OlDy, k)

k=1

(17)

with respect to the parameters {Oy} = {(€x, 0*)}. This
was done by numerically maximizing (using Nelder-
Mead simplex) the sum of maxima maxc,I((€x, o*)|Dy, k)
with respect to ¢*.

The piece-wise linear non-parametric potential
¢™P(d) was defined as a weighted sum of kernel func-
tions x(-) centered on the support points d,:

¢"P(d) = Y, wy k(d — dy) with
. (18)
_ | lzl/hif |z| <h
“(z) = 0 else .

P = 21 support points d, were distributed between -5
and 95 with constant spacing # = 5 pixel. Setting wp = 0
enforced ¢"P(d) = 0 for all d = 95. Setting ¢ = ¢"
the remaining weights were estimated by numerically
maximizing (using CMA-ES) the penalized joint log-
likelihood [17]:

Neells

pIOIDLY) = Y I(OIDy, k)

k=1

P rw, —w 2
p — Wp+l

+ 7

()

p=1

with respect to ® = (wy,....wp_1). Smoothness of ¢"P was
controlled by the parameter s = 2. The quadratic penalty in

(19)
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Eq. 19 corresponded to a Gaussian prior with zero mean
and standard deviation s on the differences w,, - w,,,;.

List of parametric potentials

Potentials were parameterized as ¢(d) = ef((d - t)/0)
with interaction strength e, length scale o, and threshold
t = 0. Their shapes f{) were defined as:

+ Hermquist potential:

he(y _ —@z+1)7lifz>0
1@ = {—(1 —z) else . (20)
« Linear potential, type 1:
n,y_JO ifz>1
/) = {f(lfz) else . (21)
« Linear potential, type 2:
0 ifz>1
fz)=1 -1 ifz<0 (22)
—(1—2z)else .

+ Plummer potential: defined in Eq. 12.

Implementation

All software was implemented in MATLAB version 7.9
(The Mathworks, Inc.) and run on a 2.66 GHz Intel
Core2 Duo machine. Estimation of two-parameter
potentials (Egs. 12 and 20 to 22) took a few milliseconds
per cell. Computation of g(d) took about one second.
This time, however, strongly depended on the sampling
resolution used. The non-parametric test for interaction
took about half a second per cell. The time needed to
estimate the common scale parameter for all cells was
around ten minutes. A constantly updated version of
the developed software is freely available from the web
site of the authors http://www.mosaic.ethz.ch/Down-
loads. The MATLAB functions, scripts, and sample data
at the time of writing are contained in additional file 1.

Additional material

Additional file 1: MATLAB source code. ZIP archive containing the
MATLAB source code for potentials, likelihood functions, and statistical
tests, as well as sample scripts and sample data at the time of writing.
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