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Abstract

Background: We propose a method for deriving enzymatic signatures from short read metagenomic data of
unknown species. The short read data are converted to six pseudo-peptide candidates. We search for occurrences
of Specific Peptides (SPs) on the latter. SPs are peptides that are indicative of enzymatic function as defined by the
Enzyme Commission (EC) nomenclature. The number of SP hits on an ensemble of short reads is counted and
then converted to estimates of numbers of enzymatic genes associated with different EC categories in the studied
metagenome. Relative amounts of different EC categories define the enzymatic spectrum, without the need to
perform genomic assemblies of short reads.

Results: The method is developed and tested on 22 bacteria for which there exist many EC annotations in
Uniprot. Enzymatic signatures are derived for 3 metagenomes, and their functional profiles are explored.
We extend the SP methodology to taxon-specific SPs (TSPs), allowing us to estimate taxonomic features of meta-
genomic data from short reads. Using recent Swiss-Prot data we obtain TSPs for different phyla of bacteria, and dif-
ferent classes of proteobacteria. These allow us to analyze the major taxonomic content of 4 different
metagenomic data-sets.

Conclusions: The SP methodology can be successfully extended to applications on short read genomic and
metagenomic data. This leads to direct derivation of enzymatic signatures from raw short reads. Furthermore, by
employing TSPs, one obtains valuable taxonomic information.

Background
Characterizing complex microbial ecosystems remains a
challenge for metagenomics. Environments such as soil,
containing many thousands of species require massive
sequencing power to obtain a reasonable coverage of
the microbial community. In practice this means that
such studies may suffer from highly incomplete sam-
pling, see for example Tringe et al. [1]. The so called
“deep sequencing” technologies offer hope due to their
tremendously high-throughput - the Illumina Genome
analyzer and the SOLiD 3 (Life Technologies) can cur-
rently produce over 10 Gb, and up to 40 Gb of high
quality reads, respectively. However these fantastic capa-
cities come with a price - a short read length that cur-
rently stands at 100 bases or lower for both these
technologies. For a recent review of experimental and
computational achievements and challenges in metage-
nomics see Wooley et al. [2].

Unlike a bacterial genome, where short reads can be
compensated for by using paired ends and relying on
assembly, a highly complex metagenome will often not
enable such assembly, and the short individual reads
will therefore constitute the data from which informa-
tion has to be extracted. Of course, getting significant
BLAST hits with queries of 100 nucleotides or below is
challenging, which results in no match that can be
assigned a putative function for the vast majority of
sequence reads. In the seminal paper by Dinsdale and
coworkers [3] using reads of 105 bases and below, most
of the biomes investigated yielded less than 20% BLAST
hits, many of which could not be ascribed a function.
Conventionally, one first tries to reconstruct a long

contig from short reads. The contigs are then analyzed
for open reading frames (ORFs) which may be translated
into putative proteins. The functionality of the putative
proteins can be deduced by comparing them with
known proteins whose sequence similarity is high
enough (e.g. very low BLAST e-values) to warrant such* Correspondence: horn@tau.ac.il
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predictions. This can be improved by combining various
methods such as studying both phylogeny and function
[4]. The problems of handling and analyzing these envir-
onmental data have been recently discussed by Raes and
Bork [5].
We propose to forego some of the stages used in con-

ventional analysis and consider the multitude of avail-
able short reads directly. This can allow us to gather
inclusive information. We use this term to imply func-
tional information on the aggregate of all data rather
than the exclusive information specifying what are the
exact genes present and to which species these genes
belong. Here we present such a tool employing peptide-
based enzymatic signatures and demonstrate its applica-
tion to quality control and functional investigation of
metagenomic data.
Extending the peptide-based approach, we can also

derive taxonomic signatures from metagenomic short
reads. Current technologies for estimating microbial
phylogenetic diversity of metagenomes involve calcula-
tion of similarity between sequences encoding rRNAs to
database entries such as the ones available in the Ribo-
somal Database Project, RDP [6]. This procedure
requires the expensive operation of assembly of contigs,
and is based on the premise that 16S rRNA sequences
provide a suitable basis for taxa-separations, defining
operational taxonomic units (OTUs) [7]. Our approach
differs from this conventional method in two respects:
first we deal directly with short reads, second we do not
employ the 16S rRNA as the taxonomic indicator.
Instead we use SPs of aminoacyl tRNA synthetases
(aaRS) for taxonomic indication.
Recently, the algorithm of CARMA [8] was introduced

to provide phylogenetic classification directly from short
reads. It is composed of two components: detection of
Pfam domain and protein family fragments (EGTs) that
are conserved in an environmental sample and recon-
struction of a phylogenetic tree for each matching Pfam
family. The authors state that environmental gene tags
as short as 27 amino acids can accurately be classified
with high specificity. We provide an accurate alternative
to this approach, based on peptides of lengths 7 amino
acids and higher, and therefore more suitable for short
read data.
The workflow of our paper is the following:

a. Based on the concept of Specific Peptides (SPs) we
propose their direct application to short read (SR)
analysis.
b. We derive factors that reflect the ratio between
counts of SPs, corresponding to a specific EC cate-
gory, on a set of SRs of a genome or a metagenome,
and the numbers of enzyme sequences carrying the
same EC annotation on the genome or the

metagenome. This is exemplified first on Escherichia
coli data and further developed on artificial metagen-
omes of known bacteria, relying on their genomic
sequences and enzymatic annotations of their pro-
teins in Uniprot.
c. We develop the concept of TSPs, taxa-specific
SPs, using amino-acyl tRNA synthetases that are
known to appear only once per species. The deter-
minations of which SPs are taxon-specific, and their
associated factors, are derived from all enzymatic
data of Swiss-Prot.

The methodology is explained in detail in the follow-
ing section, and then exemplified and tested in the
Results sections.

Methods
The Specific Peptides Approach
Kunik et al. [9] have extracted very short (~8aa) deter-
ministic motifs, named Specific Peptides (SPs), whose
presence in the protein sequence is a good marker for
enzymatic functions. The use of motifs has a long his-
tory in bioinformatics [10,11]. It is only recently, how-
ever, that the increasing amounts of annotated protein
data, combined with novel motif-extraction techniques
[12], allowed extracting short SPs and using them with
good precision and recall values. SPs are strings of
amino-acids, extracted from enzyme sequences using
the motif extraction algorithm MEX [12]. They are
selected for their specificity to levels of the Enzyme
Commission (EC) 4-level functional hierarchy. Weingart
et al [13] have demonstrated how SPs can be employed
for Data Mining of Enzymes (DME) on any given
ensemble of protein sequences. Their methodology
relies on coverage length (L, overall number of amino-
acids) of SP hits that carry the same EC assignments. In
their analysis, L ≥ 7 has led to highly accurate results.
They have also updated the SP list, extracting them
from a training set of Swiss-Prot data dated July 27th,
2009. This set includes 257,598 SPs of length ≥ 7 with
labels corresponding to EC levels 3 and 4. The latter are
further filtered for redundancy to discard any SP that
contains within it a shorter SP with the same EC specifi-
cation. This leaves us with a final set of 148,395 SPs that
we use in our analysis. Testing the DME approach on a
set of 19,849 enzymes that were integrated into Swiss-
Prot from July 28th until September 22nd 2009, Wein-
gart et al [13] obtained precision of 99.2% and recall of
92.4%, thus vouching for the high quality of DME pre-
dictions at the 3rd level of the EC hierarchy.
Here we propose using an SP search on raw Short Read

(SR) data, independent of gene reconstruction. Available
reads of k nucleotides, where 50 ≤ k ≤ 200, may be
turned into peptide candidates in six possible ways,
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counting 3 possible ORFs and 2 possible strands. Each of
these pseudo-peptides is checked for SP hits. The latter
are required to reside completely within the pseudo-pep-
tides and have a length of 7 amino-acids or more. Ignor-
ing shorter matches has proved to reduce considerably
the number of false positive hits in various trial runs.
This reliance on k = 7 and higher k-mers agrees with the
DME methodology of Weingart et al [13].
Given a set of short reads we try to obtain a predic-

tion of the number of enzymes in the different EC cate-
gories that are expected to be found in the studied
metagenome. For that we have to develop a method
that relates the number of SP hits observed on a given
ensemble of short reads to the expected number of
related genes. We define this ratio as the raw-factor, RF
(EC) = (number of SP hits)/(number of enzymatic
genes) defined for each EC category. To explain this
concept we will first illustrate it on a single organism
and then proceed to derive it for suitable metagenomes.

The SPSR methodology: Training on Escherichia coli
Here we study the derivation and meaning of factors on
E. coli, making use of its well-studied genome and its
well-annotated genes. We notice that if we insert the
full genomic sequence instead of short reads in the eva-
luation of the RFs, these factors coincide with the aver-
age number of SP hits on an enzyme within each EC
category. Given the genome, we generate SRs randomly,
making sure we obtain a 5-fold coverage of the full gen-
ome. Calculating the raw-factors, we realize that they
vary as we change the length of our SRs. The RFs for
finite short read lengths are always lower than their
asymptotic values, because SP lengths have to fit inside
the lengths of the SRs. Figure 1 displays the distribution
of SP lengths for all EC categories. It allows us to esti-
mate the reduced efficiency of SP detection according to
the length of the SR. Thus for a 50 nucleotide short

read, no SP hit is expected with length larger than
16 amino-acids. Given this geometrical constraint, the
relative efficiency of observation of an SP with length
L amino-acids, will be (17-L)/16, just by counting the
number of times it can fit into a window of 16 amino-
acids. Given the distribution in Figure 1 we estimate the
total efficiency for a 50 nucleotide short read to be 0.48.
Similarly, we estimate the efficiency for SRs of 100 and
200 nucleotides, to be 0.73 and 0.87 respectively. In
practice the numbers may vary somewhat between EC
categories, since their SP length distributions are not all
equal to one another.
Testing this procedure on E. coli, we obtain the factors

displayed in Figure 2, following the general trend
explained above. The 3rd level EC category with the lar-
gest factor is 6.1.1, the aminoacyl tRNA synthetases
(aaRS). Since all SPs are subject to similar constraints,
we observe that if we measure the relative amounts of
different EC categories, as shown in Figure 3, they
remain approximately constant as we vary the SR length.
We will therefore normalize the raw factors by dividing
them by the highest raw factor as follows (Figure 3): NF
(EC) = RF(EC)/(RF(6.1.1)). The stability of the NFs will
allow us to employ them in metagenomic studies of
variable SR lengths.

The SPSR methodology: Training on 11 bacteria
Next we use a set of 11 bacteria to serve as a training
set, to provide factors that are suitable for metagenomic
studies. The identities of the bacteria are displayed in
Table 1, together with another set of 11 bacteria that
will be used as a test set for the resulting factors. The
bacteria were chosen from different phyla and classes to
provide a balanced representation of the expected var-
iance in metagenomic studies. Moreover, care was taken
to choose species with well-studied genomes, having
many EC-annotated enzymes. Proteomic information
has been derived from Uniprot.
Each genome on this list has been randomly divided

into reads of length 50, with 5 fold coverage of each
genome, and submitted to SP analysis. To gather statis-
tics we have analyzed 15 combinations of 7 out of the
11 organisms of the training set. Each such set of
7 organisms served to define a super-organism (or artifi-
cial metagenome) with given annotated enzymes and SP
counts. The resulting numbers of SP hits were then
compared with the known numbers of enzyme-genes,
leading to the desired factors for each EC category. Nor-
malized factors of leading categories are presented in
Table 2.

Technical details
We utilize the Knuth Morris Pratt algorithm to perform
the search of SPs of length m amino-acids on the

Figure 1 Distribution of SP lengths. Distribution of numbers of
SPs as function of their length (number of amino-acids).
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six-mode translations of short reads of length n bases.
This leads to temporal complexity of order O(m + 2n).
Our system runs on a four-processors Intel(R) Xeon(R)
CPU 2.33 GHz Linux machine and performs a search of
the full SP list on approximately 50,000 nucleotides per
hour.
We provide an online web tool that processes short

read files provided by users. The system can be accessed
at http://horn.tau.ac.il/SPSR.

Taxon Specific Peptides
The SP methodology can be further developed to char-
acterize taxon-specific SPs, to be denoted as TSPs. This
is of interest for pervasive EC categories, some of which
we will encounter in our metagenomic analysis. The
idea is then, for a particular EC category (6.1.1, aminoa-
cyl tRNA synthetases, aaRS) to filter the SPs according
to whether they are specific to a given domain, given
phylum or class. The training data on the quoted EC
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categories are rich enough to allow separation into
Archaea, Eukarya and Bacteria, and further specification
of bacteria into Proteobacateria, Firmicutes, Cyanobac-
teria and Actinobacteria. The phylum Proteobacteria,
being the largest in the data, allows for further filtering
into alpha-, beta- and gammaproteobacteria.
We further concentrate on those aaRS EC numbers

that are known to have a single protein per species. An
analysis of all bacterial aaRS in Swiss-Prot leads to the
statistics displayed in Table 3. Confining ourselves to
aaRS that have up to 2% multiple entries, we select the
subgroup to be denoted S61 (single proteins in the 6.1.1
EC category), indicated on Table 3. It is this S61 set
that we will employ for taxon classification. Eliminating
aaRS categories with many multiples helps in reducing
the margin of error in our predictions.
TSPs are selected for their phylum-level and class-

level specificity, after scrutinizing the enzyme data-set of
Swiss-Prot. We make use of the same data-set to deter-
mine the raw-factors that may be associated with the
various TSPs. These would theoretically correspond to
very large reads, and only their ratios should be trusted
for short reads. Table 4 represents the factors for the
S61 subset of the EC category of 6.1.1.
We provide an online web tool that processes short

read files queried by users, leading to a prediction of

Table 1 Bacterial genomes used for training and testing the SPSR methodology

Organism Name ID Phyla Total Uniprot Proteins Total Uniprot Enzymes Choice

Mycobacterium tuberculosis. B01 Actinobacteria 5,971 1,371 Train

Mycobacterium bovis. B02 Actinobacteria 3,986 1,253 Test

Sulfurihydrogenibium azorense B03 Aquificae 1,708 486 Train

Aquifex aeolicus. B04 Aquificae 1,556 368 Test

Cytophaga hutchinsonii B05 Bacteroidetes 3,771 895 Test

Gramella forsetii B06 Bacteroidetes 3,554 992 Train

Pelodictyon luteolum B07 Chlorobi 2,078 496 Test

Chlorobium chlorochromatii B08 Chlorobi 1,991 609 Train

Nostoc punctiforme B09 Cyanobacteria 6,601 1,534 Train

Anabaena variabilis B10 Cyanobacteria 5,643 1,362 Test

Synechocystis sp B11 Cyanobacteria 3,529 575 Train

Bacillus cereus (strain ZK). B12 Firmicutes 5,638 1,469 Test

Bacillus cereus (strain ATCC). B13 Firmicutes 5,248 1,546 Train

Pseudomonas aeruginosa. B14 Proteobacteria 9,091 848 Train

Rhizobium meliloti B15 Proteobacteria 7,107 1,583 Test

Salmonella typhimurium. B16 Proteobacteria 5,768 1,279 Train

Shigella flexneri. B17 Proteobacteria 5,395 813 Test

Salmonella typhi. B18 Proteobacteria 5,351 942 Test

Escherichia coli (K12). B19 Proteobacteria 4,412 1,443 Train

Caulobacter crescentus B20 Proteobacteria 3,852 1,238 Test

Leptospira biflexa B21 Spirochaetes 3,730 957 Train

Thermotoga petrophila B22 Thermotogae 1,784 411 Test

Table 2 Factors normalized to the 6.1.1 raw factor,
derived from an analysis of SRs with length of l = 50
nucleotides belonging to 15 combinations of 7 out of the
11 organisms of the training set listed in Table 1

EC Normalized factor Standard Deviation

1.1.1 0.15 0.014

1.2.1 0.28 0.024

2.1.1 0.22 0.030

2.3.1 0.11 0.023

2.4.1 0.16 0.028

2.4.2 0.26 0.011

2.5.1 0.25 0.011

2.6.1 0.17 0.010

2.7.13 0.03 0.003

2.7.7 0.45 0.022

3.1.1 0.08 0.022

3.1.3 0.07 0.010

3.2.1 0.07 0.017

3.5.1 0.15 0.034

3.6.1 0.89 0.026

3.6.3 0.45 0.064

4.1.1 0.25 0.019

4.2.1 0.30 0.024

6.1.1 1.00 0.000
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relative taxonomic mixtures of the presented data. The
system can be accessed at http://horn.tau.ac.il/
S61TSPSR.

RESULTS: Analysis of the Methodology
Test of the SPSR methodology
In the present section we test the factors derived from
the artificial metagenomes (the super-organisms consist-
ing of 7 out of the 11 training set organisms) on the
test-set organisms listed in Table 1. Using the errors
(standard-deviations) determined by the training proce-
dure, we quote the quality of fits by using the chi-square
test, which is expected to be of the order of the number
of degrees of freedom, E[(X-μ)2/s2] = N (where E is the
expectation value, X is the variable whose average is μ
and standard-deviation is s, and N is the number of
degrees of freedom). Overall, when the factors are
applied to novel artificial 7 species metagenomes, the
generalization errors are about the same as expected
from the training set errors (see Figure 4), with E ~ 1.5
N. However, when the same factors are applied to single
species predictions (see Figure 5) the deviations are
much larger. The chi-squared test leads to E ~ 27N.
Somewhat better fits are obtained for raw predictions,
with E ~ 8N. The poor chi-square values reflect the fact
that metagenomic averages smooth-out differences

between single organisms. A similar behavior is
observed also for single species from the training set.
Another aspect of the same effect is seen when larger
metagenomes are considered, e.g. one composed of all
22 species, with predictions that are better than the
training-set errors shown in Figure 6, where E ~ 0.4 N.

Test of the TSPSR method at the phylum level
We have applied the S61 TSPs to the 22 bacteria of Table
1. In each case we have calculated the TP (true-positive)
signals (i.e. predicted numbers of enzymes associated with
the correct phylum) and the FP (false-positive) ones. The
results shown in Table 5 validate this methodology.
Although some of the data has been included in the train-
ing procedure, it should be emphasized that whereas train-
ing (i.e. assignment of TSPs) was carried out on all Swiss-
Prot enzymes, the calculations of Table 5 are carried out

Table 3 Statistics of bacterial aaRS enzymes in Swiss-Prot
data

EC # doublets # triplets # Proteins % multiples S61

6.1.1.1 18 0 474 3.80

6.1.1.2 3 0 125 2.40

6.1.1.3 1 0 616 0.16 x

6.1.1.4 2 0 703 0.28 x

6.1.1.5 10 0 524 1.91 x

6.1.1.6 60 3 527 12.52

6.1.1.7 1 0 628 0.16 x

6.1.1.9 0 0 293 0.00 x

6.1.1.10 2 0 421 0.48 x

6.1.1.11 4 0 735 0.54 x

6.1.1.12 2 0 688 0.29 x

6.1.1.13 68 1 172 40.70

6.1.1.14 276 0 825 33.45

6.1.1.15 10 0 762 1.31 x

6.1.1.16 14 0 691 2.03 x

6.1.1.17 114 0 808 14.11

6.1.1.18 0 0 139 0.00 x

6.1.1.19 4 0 675 0.59 x

6.1.1.20 251 0 877 28.62

6.1.1.21 6 0 627 0.96 x

6.1.1.22 1 0 256 0.39 x

The column ‘%multiples’ refers to the percentage of species that display
multiple proteins with the same EC number. The sub-set S61, defined by x
entries in the last column, is selected for taxonomic classification.

Table 4 Raw factors of TSPs corresponding to the S61
subset of EC category 6.1.1, as derived from TSP hits on
proteomes in the Enzyme Swiss-Prot data-base

Taxon #
enzymes

#
TSPs

#
hits

factor

Archaea 543 408 1807 3.33

Eukaryota 259 150 260 1.00

Bacteria 7752 8310 98556 12.71

Bacteria Proteobacteria 4341 3768 34376 7.92

Bacteria Firmicutes 1561 1130 7457 4.78

Bacteria Cyanobacteria 328 175 541 1.65

Bacteria Actinobacteria 494 392 1874 3.79

Bacteria Tenericutes 193 25 72 0.37

Bacteria Bacteroidetes 132 103 223 1.69

Bacteria Spirochaetes 185 71 173 0.94

Bacteria Thermotogae 81 9 22 0.27

Bacteria Chlamydiae 114 140 383 3.36

Bacteria Chlorobi 90 31 79 0.88

Archaea Crenarchaeota 165 53 158 0.96

Archaea Euryarchaeota 359 281 932 2.60

Proteobacteria Gammaproteobacteria 2372 1624 13622 5.74

Proteobacteria Alphaproteobacteria 870 675 3806 4.37

Proteobacteria Betaproteobacteria 638 394 1950 3.06

Proteobacteria Epsilonproteobacteria 223 178 430 1.93

Proteobacteria Deltaproteobacteria 229 9 19 0.08

Firmicutes Bacillales 614 327 1811 2.95

Firmicutes Clostridia 374 142 567 1.52

Firmicutes Lactobacillales 573 387 2543 4.44

Cyanobacteria Chroococcales 114 64 184 1.61

Bacterioidetes Bacteroidia 85 67 138 1.62

Shown are all taxa that have more than 80 aaRS enzymes listed in this data-
base, numbers of TSP associated with the S61 set corresponding to the
relevant taxa, their hits and the deduced raw factors. For bacteria and
archaea, predicted numbers of enzymes are assumed to be proportional to
numbers of cells present in the sample. In eukaryotes one should apply a
further reduction by 1.5, the average number of aaRS enzymes per cell known
to be detected in Uniprot data.
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on the full genomes of the 22 organisms, i.e. the procedure
includes processing all genic and intergenic regions of
these organisms. Precision is defined as TP/(TP + FP). No
assignment has been made if the number of predicted
enzymes, on the basis of TSPs, was less than 1. This was
the case for the two species of Aquificae, for which we
have no corresponding TSPs.

Results: Environmental Metagenomic Analysis
Enzymatic signatures of several metagenomes
Figure 7 displays our analysis of 3 metagenomes taken
from Dinsdale et al [3]. All of them comprise short
reads, with average lengths of around 100 nucleotides.
SPSR predictions are represented in absolute terms, i.e.
predicted numbers of enzymes, using the l = 100 raw

Figure 4 SPSR test on artificial metagenomes. SPSR tests, based on normalized factors derived from the training set. Shown are predicted
and known numbers of enzymatic genes relative to predicted and known aaRS enzymes (EC = 6.1.1). Error-bars reflect the standard deviations
of the factors derived from 15 trials of the artificial super-organisms. Shown here is a comparison of predicted relative amounts of EC = 1.1.1
enzymes for 11 artificial metagenomes containing 7 species from the test set. EC = 1.1.1 is a leading EC category containing alcohol
dehydrogenases with NAD+ or NADP+ as acceptor. The results imply a good generalization for metagenomes composed of 7 bacteria.

Figure 5 SPSR test on bacterial genomes. Predicted relative amounts of EC = 1.1.1 enzymes for single species of the test set show large
deviations. Similar results are obtained for single species of the training set.
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factors, to exhibit common and different trends among
these three examples.
The Rios Mesquites Stromatolites bacteria (to be

denoted Rios Mesquitos henceforth) and the Soudan
Mine Red biofilm data (to be denoted Soudan Red) have
more than 60 predicted proteins in the EC category

6.1.1., while the Soudan Mine Black biofilm (Soudan
Black) has only about 20 such proteins. Thus one would
conclude that the total coverage content of the first two
metagenomes is of the order of three cells or more,
while that of the Soudan Black should be only of the
order of one cell. In the two large metagenomes we find
large contributions of EC category 1.1.1 (alcohol dehy-
drogenases with NAD+ or NADP+ as acceptor) and EC
category 3.6.3 (hydrolases catalysing transmembrane
movement of substances). The Rios Mesquitos has the
strongest signal in EC 1.10.2, oxidoreductases acting on
diphenols with cytochrome as acceptor.
It is clear from Figure 7 that the Soudan Black meta-

genome is very different from the two others. In particu-
lar, it has a very strong signal for 5.4.99., intramolecular
transferases. Follow up analysis indicates that this signal
is due to 426 SRs that carry the EC 5.4.99.2 (methylma-
lonyl-CoA mutase) signature. Their identification is due
to two SPs with this assignment, NSISISGYH occurring
276 times, and ISISGYHMQEAG occurring 185 times in
these data. As these peptides partly overlap, there exist
many short reads on which the two occur together.
These results stand out for several reasons: their numer-
ous counts outnumber all other enzyme classes by more
than an order of magnitude; no other SP of the same
EC category is observed in the data; extending these SRs
by other partially overlapping short reads does not lead
to considerably larger putative proteins. These lines of
evidence hint that the Soudan Black data-set should be
reexamined, as some artifact has likely been introduced
at some point. While such an examination is outside the
scope of this paper, we wish to emphasize that the SPSR
methodology quickly highlights such anomalies and can
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Figure 6 SPSR test on a metagenome of all 22 bacteria. Predictions of relative amounts of enzymes belonging to many EC categories, for a
metagenome of all 22 bacteria, demonstrate a better fit than the training errors.

Table 5 Phylum predictions according to S61 TSPs for
the 22 species of Table 1

Organism Phylum Precision

Mycobacterium tuberculosis. Actinobacteria 96%

Mycobacterium bovis. Actinobacteria 96%

Sulfurihydrogenibium azorense Aquificae no prediction

Aquifex aeolicus. Aquificae no prediction

Cytophaga hutchinsonii Bacteroidetes 74%

Gramella forsetii Bacteroidetes 74%

Pelodictyon luteolum Chlorobi 91%

Chlorobium chlorochromatii Chlorobi 95%

Nostoc punctiforme Cyanobacteria 81%

Anabaena variabilis Cyanobacteria 89%

Synechocystis sp. Cyanobacteria 96%

Bacillus cereus (strain ZK). Firmicutes 94%

Bacillus cereus (strain ATCC 14579 ). Firmicutes 95%

Pseudomonas aeruginosa. Proteobacteria 94%

Rhizobium meliloti Proteobacteria 97%

Salmonella typhimurium. Proteobacteria 99%

Shigella flexneri. Proteobacteria 100%

Salmonella typhi. Proteobacteria 100%

Escherichia coli (K12). Proteobacteria 99%

Caulobacter crescentus Proteobacteria 88%

Leptospira biflexa serovar Patoc Spirochaetes 72%

Thermotoga petrophila Thermotogae 91%
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therefore serve, among other purposes, also as a rapid
quality assessment tool for metagenomic data.

Taxonomic analysis of metagenomes using TSPs
Taxonomic analysis of the three metagenomes analyzed
above has been carried out using S61 TSPs. In all of the
metagenomes examined we conclude that Bacteria are
the dominant kingdom (with small traces of Archaea in
the Soudan mine data). Both Soudan Red and Rios
Mesquitos show that, among Bacteria, there is an order
of magnitude difference in the quantities of Proteobac-
teria vs Firmicutes. Soudan Black data have the same
order of magnitude for both, but given the artifact we
have noted, this estimate should be taken with a grain
of salt. Predictions for classes of Proteobacteira in Sou-
dan Red are shown in Table 6, where they are com-
pared with the results of the 16S rRNA-based analysis
of Edwards et al [14] and with a CARMA analysis [8] of
the same data. The Edwards results were estimated
from Figure 1 of their paper, and the CARMA analysis
was carried out by us using their website. There is an
overall agreement regarding relative abundance of
alpha- and gamma-proteobacteria, but the details of the
minor classes differ among the different methods. This
may be because the three methods rely on three differ-
ent aspects of the data.
A fourth metagenomic data-set to which we have

applied our taxonomic analysis is that of DeLong et al.
[15] who have studied metagenomes in the ocean at dif-
ferent depths, thus obtaining stratified microbial assem-
blages. The latter have been analyzed according to
taxonomic groups, functional gene repertoires and

metabolic potential. Their data were assembled into
contigs of average length of 1000 nucleotides, and their
taxonomic analysis has been carried out by comparing
cumulative TBLASTX high-scoring sequence pairs bit
scores of each depth against one another. The different
depths were grouped into Photic Zone (10 m, 70 m and
130 m) and Deep Water zone (500 m, 770 m and 4000
m). Analysis of these data using S61 TSPs leads to the
results displayed in Table 7. Numbers shown are pre-
dicted numbers of enzymes in the data. Obviously the
quantity of the data amounts to just a few cells in total
of all depths. Data are dominated by bacteria although
there are some traces of archaea and eukaryotes (with
decrease of the latter in deep water). Among bacteria we
find a relatively large abundance of Cyanobacteria at low
depths (mostly 10 m and 70 m). Proteobacteria, whose
fraction in the community is relatively stable as function
of depth, may be further analyzed for their breakdown
into classes. We find the ratio of Alphaproteobacteria:
Gammaproteobacteria: Betaproteobacteria to be 4:3:1 in
the photic zone, and 3:4:1 in deep water, i.e. roughly
stable with depth (not shown in Table 7).

Figure 7 Enzymatic annotations predicted for three metagenomes. Predictions of number of enzymes in many EC categories for 3
metagenomes [Dinsdale et al., 2008] derived from SPSR analysis using raw factors for short reads of length l = 100 nucleotides.

Table 6 Comparison of class predictions within
proteobacteria for the Soudan Red data

Class Edwards CARMA S61TSP

Alphaproteobacteria 40% 37% 45%

Gammaproteobacteria 54% 40% 45%

Betaproteobacteria 2% 8% 8%

Epsilonproteobacteria 0% 2% 2%

Deltaproteobacteria 3% 13% 0%

Weingart et al. BMC Bioinformatics 2010, 11:390
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DeLong et al. [15] have constructed large contigs
(average length 1000 nucleotides) that can provide
much more specific taxonomic information than our EC
6.1.1 based analysis. Nonetheless the latter is consistent
with theirs. The advantage of the TSP analysis is that it
allows one to obtain a rough taxonomic breakdown of
the microbial community when short reads are the sole
source of information.
It should be noted that the raw factors of the TSPs

were determined by Swiss-Prot data. Since the latter
may be richer in SP hits than yet unassigned proteins
that are identified by our methodology, the absolute
values quoted in Table 7, being based on these raw fac-
tors, should be regarded as lower bound estimates of
the true taxonomic distribution.

Conclusions
The use of Specific Peptides allows deriving enzymatic
information directly from short reads of genomic and
metagenomic data. This is of great importance in view
of the large amount of data-analysis performed with
short read methods. It is of particular importance in
metagenomic studies, where the organismal composition
of the studied data is usually unknown and contig
assembly is often impossible. Thus one may functionally
study high complexity ecosystems, such as soil and sea-
water, overcoming the barrier of genome reconstruction,
by deriving enzymatic signatures in a straightforward
manner.
The enzymatic signatures obtained may serve for

coarse grain functional characterization of the environ-
ment. Lapierre and Gogarten [16] have pointed out that
“character genes” typical to taxonomic groups, such as
methanogen-specific enzymes, may also inform us of the
composition of the microbiome. We have shown that
the use of TSPs for aaRSs, can serve as the basis for
taxonomic analysis. Our SP signatures can also serve as

indicators for novel functionalities and, in extreme
cases, as indicators for the possible contamination of the
data-set that is being analyzed.
We provide a webtool at http://horn.tau.ac.il/SPSR

that analyzes sets of short reads, extracting all those that
have SP hits, together with the indication of their EC
categorization. These lists can be further processed, by
the tools explained above, to provide enzymatic spectra,
or to search for consistency of the analyzed data.
The aaRS super-family plays a special role in our ana-

lysis because of several reasons. The first is the large
over-all similarity of aaRS enzymes throughout all king-
doms of life, leading to extraordinarily large numbers of
6.1.1 SPs derived from the training-set. This is reflected
by the large factors of the 6.1.1 category in Figures 2
and 3. The second reason is their usefulness in discrimi-
nating among species, by providing a large number of
TSPs. Finally, the fact that for many of the aaRS enzyme
types there exists one corresponding protein on each
bacterial genome, allows using this super-family as a sui-
table calibrating device.
Our use of the aaRS SPs as taxonomic measures can

be compared to the phylogenetic classification based on
Environmental Gene Tags (EGTs) introduced by Krause
et al [8] in their CARMA tool. Their method is based
on selecting DNA fragments of lengths of order 100
bases, i.e. short reads, and comparing them to Pfam pro-
file HMMs. The identified short reads are defined as
EGTs. Incorporating them into phylogenetic trees, the
authors developed an algorithm that provides a taxo-
nomic distribution with relatively high accuracy. The
similarity between the two tools is that both depend on
protein-markers rather than on 16S rRNA ones, which
is the gold standard of prokaryotic taxonomy.
There are however many differences. First, they

employ Pfam domains over many protein families,
whereas we concentrate on SPs of aaRS enzymes only.
This guarantees that their tool is more powerful, in the
sense that its larger statistics allows for extension to
lower taxonomic levels than ours. Second, their metho-
dology relies on employing a battery of tools of the
trade, such as BLASTX for sequence matching, pHMM
for the Pfam generated ETGs, and PHYLIP for cluster-
ing phylogenetic trees. This is commonly regarded
necessary, in order to take into account all the gener-
ated know-how in bioinformatics. We, on the other
hand, rely on a simple look-up table of SPs that has
been generated from the enzymes that exist on Swiss-
Prot. Its advantage is its simplicity. Third, both methods
suffer from biases, since their tools are constructed on
existing labeled data. CARMA provides its final results
by counting the number of EGTs correlated with each
taxon. The analog in our case would have been to count
the TSPs. Because of the simplicity of our approach we

Table 7 Taxonomic predictions of DeLong data based on
S61 TSPs

Kingdom Photic Zone Deep Water

Archaea 3 3

Eukaryota 1 0

Bacteria 22 32

Phylum Photic Zone Deep Water

Proteobacteria 9 12

Firmicutes 1 2

Cyanobacteria 8 2

Actinobacteria 2 2

Numbers signify expected numbers of S61 aaRS enzymes. The latter are
proportional to the numbers of cells of the different taxa in the data.
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are aware of one explicit bias: TSP hits differ among
taxa because of differences in the sizes of TSP pools.
We are able to address this bias by correcting the num-
bers of TSP counts through the use of raw-factors, pro-
viding expected numbers of proteins that should be
proportional to numbers of cells. Thus, without dimin-
ishing the value of tools like CARMA, we believe that
our tool has some clear advantages, and should be used
as an additional source of information.
We provide a taxon-search webtool at http://horn.tau.

ac.il/S61TSPSR. Upon submission of a list of short
reads, it extracts taxonomic distributions at levels of
kingdoms, bacterial phyla, and bacterial classes.

Webtools
Webtool providing SP hits on queried lists of genomic
short reads is available at http://horn.tau.ac.il/SPSR.
Webtool providing taxonomic analysis of short read

data is available at http://horn.tau.ac.il/S61TSPSR.
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