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Abstract

neighbouring regions.

Background: Network co-regulated modules are believed to have the functionality of packaging multiple
biological entities, and can thus be assumed to coordinate many biological functions in their network

Results: Here, we weighted edges of a human protein interaction network and a transcriptional regulatory
network to construct an integrated network, and introduce a probabilistic model and a bipartite graph framework
to exploit human co-regulated modules and uncover their specific features in packaging different biological
entities (genes, protein complexes or metabolic pathways). Finally, we identified 96 human co-regulated modules
based on this method, and evaluate its effectiveness by comparing it with four other methods.

Conclusions: Dysfunctions in co-regulated interactions often occur in the development of cancer. Therefore, we
focussed on an example co-regulated module and found that it could integrate a number of cancer-related genes.
This was extended to causal dysfunctions of some complexes maintained by several physically interacting proteins,
thus coordinating several metabolic pathways that directly underlie cancer.

Background

One of key challenges of the post-genomic era is to
understand the complexity of molecular networks, and
describe their applications to elucidate essential princi-
ples of cellular systems and disease machinery [1,2].
Spurred by advances in technology, several types of mole-
cular networks, e.g. protein-protein interaction networks
(PPINs), transcriptional regulatory networks (TRNs), and
phenotype networks have been identified, providing us
with a global landscape of how biological molecules may
interact with one another. Many studies have demon-
strated that PPINs and TRNs are essential for controlling
the expression levels of genes and the activity of proteins,
which mediates coordinated responses and adapted mod-
ifications to multifarious cellular stimuli [3,4]. Given this
landscape, integrative analysis of both PPINs and TRNs
is a major focus in systems biology and bioinformatics.
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Many computational strategies based on integrated PPIN
and TRN networks have been devised and used to deci-
pher specific network structures [4,5] or their potential
biological implications [6] that underlie disease traits.

In molecular networks, genes, proteins, and other mole-
cules form components called ‘functional modules’ that
are densely interconnected, but relatively isolated from
other networks [7]. Recent surveys have shown that genes
within a module or a cluster appear to have similar expres-
sion patterns, share common underlying regulatory
mechanisms, and thus have strong associations with speci-
fic biological functions that determine the behaviour or
phenotype of the cell [8,9]. Complex diseases are known
to result from the loss of one or more normal essential
functions. One such example is cancer. In the recent
years, an increasing number of cancer studies have com-
bined human gene expression profiling and computa-
tional-based module searching algorithms to obtain a
more comprehensive view of the molecular underpinnings
and regulatory relationships of cancer [10]. Segal et al.
[11] have identified gene sets with similar behaviour across
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microarrays, and constructed ‘cancer module maps’ to
characterize a variety of clinical conditions. Whitfield et al.
[12] have detected modules in which genes shared both
similar expression profiles and similar transcription factor
binding profiles. Pomeroy et al. [13] have explored regula-
tory modules using the conservation of co-expression rela-
tionships across a diverse range of organisms. The utility
of microarray analysis provides more interpretable results
than using gene lists alone. A study by Chuang et al. [14]
have combined microarray analysis and the human PPIN
to identify sub-network biomarkers for breast cancer, and
proposed that integrated network-based approaches could
help researchers acquire additional and more accurate
molecular mechanisms for cancers. Another study by Cui
et al. [15] have demonstrated that the co-regulatory
mechanism of molecular networks could mediate cancer-
related genes, convey their abnormal states through
several functional modules, and eventually lead to uncon-
trolled cell growth, invasion, and metastasis in distant
planes of the body. Thus, uncovering co-regulated modu-
lar structures in integrated molecular networks could pro-
vide valuable insights into the pathogenesis of cancer.

In this paper, we introduce a probabilistic model
termed Co-Regulatory Analysis using Integrated Net-
works (CRAIN) to detect human co-regulated modules
using an integrative weighted network of a PPIN and a
TRN. Then the performance of our analysis is evaluated
by cross-validation with biological evidence. Further-
more, we figure out biological relevance of our modules
for assembling or rewiring biological entities such as
genes, protein complexes, and metabolic pathways.
Finally, exemplified by cancer, we investigate whether
co-regulated modules are capable of assembling different
biological entities with underlying mechanisms in
tumorigenesis.

Results and Discussion

Overview of the identification of co-regulated modules
We scaled and merged a human PPIN and TRN, and
constructed a highly quality integrated network of pro-
tein and transcription regulation interactions. Adopting
a probabilistic model, we evaluated whether a cluster of
co-regulated proteins was likely to form a module in the
integrated network. Under this model, we formulated a
log-likelihood ratio to compare the fit of a cluster to the
desired structure with its likelihood, given that the inter-
action map was randomly constructed. Highly scoring
sub-networks corresponded to likely modules. We used
a heuristic strategy for module-detecting procedures
consisting of: (i) seed initialization; (ii) seed expanding;
and (iii) overlap filtering. Finally, we obtained 96 co-
regulated modules (Additional file 1), each of which was
co-regulated by one or more specific transcription fac-
tors (TFs). And furthermore, we used three bipartite

Page 2 of 10

graphs to map our modules onto the biological entities
of genes, protein complexes, and metabolic pathways to
uncover the underlying biological significance of the
modules. From our analysis, we concluded that in each
module, co-regulated relationships might play important
roles in packaging their binding genes, then extending
to regulating complexes maintained by several physical
interacting proteins, and thus involving in some meta-
bolic pathways or disease traits.

Performance evaluation

Analysis of module robustness

We assessed the internal connectivity of each co-regu-
lated module by comparison with its control clusters.
To generate a control for a given module, we conducted
random replacements for 10%, 20% or 30% of the mod-
ule nodes with an equal number of proteins/TFs outside
the module. We repeated this replacement process 100
times, and used the average connectivity for all analyti-
cal runs. Figure 1A shows the internal connectivity of
the extracted modules and their controls. Inside connec-
tions of co-regulated modules decreased significantly
with an increase in the replacement size during rando-
mization experiments. We also studied the average con-
necting ratio of the nodes within each module to the
ones outside of it. We found that the ratio in the real
dataset was higher than in the randomization experi-
ments (Figure 1B), suggesting that each of the identified
modules was indeed densely connected, and robustly
formed a local sub-network.

Analysis of module functional coherency

Using the TANGO toolkit [16], we performed Gene
Ontology (GO) enrichment analysis for our extracted 96
modules, to identify strongly-associated functional cate-
gories. The TANGO algorithm includes all levels of GO,
and computes raw enrichment p-values using a standard
hyper-geometric test with a significant level of p < 0.001.
Annotation results showed that 77 modules (80%) were
significantly enriched in biological function (Additional
file 2).

To quantify the functional consistency of each discov-
ered module, we computed the Hit-rate and Miss-rate
proposed by Milenkoviae et al. [17] for each module M
(GO enrichment significant level p < 0.001):

max{‘ NII\/I H N12\4 ‘,...,‘ Nj\/l

t
| A Nig
Hit(M) =

| M|
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represents the number of GO terms for which the
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Figure 1 Robustness analysis of 96 co-regulated modules. (A) Internal connectivity of detected modules (real) and their controls (random).
(B) The ratio of average connections (RAC) (inside vs. outside). P: the significant level of Wilcoxon’s rank-sum test.

module M enriched) is the intersection gene set of mod-
ule M and its enriched GO term i, and |M| is the size of
M. A higher Hit-rate indicated that more genes in mod-
ule M convey a centralized biological function; a lower
Miss-rate provided additional confirmation of our
deduction. We binned the Hit-rates and Miss-rates in
grades of 10%, and compared the Hit-rates and Miss-
rates between our predicted modules and their controls
(30% nodes replacement) (Figure 2). In the GO: biologi-
cal process (BP) branch, 50 investigated modules in the
real team had a Hit-rate above 90%, and 79 had a Miss-
rate below 10%, while 17 modules in the control team
had a Hit-rate above 90%, and 38 had a Miss-rate below
10%. The same observations for higher Hit-rate and
lower Miss-rate were seen when analyzing the functional
consistency of our investigated modules in the molecu-
lar function (MF) and cellular component (CC) cate-
gories. These results suggested that our method was
capable of finding co-regulated modules with strong bio-
logical relevance. Similar results were found for the 10%
and 20% node replacements (data not shown).

Multiple methods comparison

We validated the performance of CRAIN by comparison
with four other module identification algorithms [18-20]:
connected components (Connected), biconnected compo-
nents (Biconnected), clique percolation method (CPM),
and Markov cluster algorithm (MCL). For this process, we
predicted modules using these four methods. Enrichment
was computed using the standard hyper-geometric test by
TANGO toolkit (significance level p < 0.001). For each
method, we defined sensitivity as the proportion of anno-
tations enriched in at least one module at p < 10™%, and
specificity as the proportion of modules enriched with at
least one annotation at p < 10™* [21]:

No. of annotations enriched in at least one module at P<10~%

Sensitivity = -
No. of annotations

No. of modules enriched at least one annotation at P<10™%

Specificity =
pecificity No. of modules

The F-score summarizes the two measures, and is
defined as follows:

F 2 X Sensitivity x Specificity
Sensitivity + Specificity

Figure 3 is a histogram of three measures: sensitivity,
specificity and the summary measurement F-measure,
for each algorithm. The results indicated that the F-
score of our method was superior to the other methods.
This suggested that CRAIN could return co-regulated
modules with more affluent biological meanings.

Biological association of co-regulated modules with
cancer

Cancer-related genes are often assumed to mediate each
other through the co-regulatory mechanisms of molecu-
lar networks, causing abnormal states through several
functional modules, and eventually leading to uncon-
trolled cell growth, invasion, and metastasis to distant
planes of the body [15]. To investigate this, we used
Fisher’s exact test to check biological associations
between cancer-mutated genes and each of the 96 iden-
tified modules. We found that 42 (43%) of modules
were associated with cancer (p < 0.05, Additional file 3).

Packaging features of co-regulated modules

Furthermore, to determine the biological importance of
the co-regulated modules, we investigated the role of
transcription regulation in assembling or rewiring genes,
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Figure 2 Functional consistency analysis of 96 co-regulated modules vs. random control modules (30% nodes replacement). Horizontal
axis symbols represent three branches of GO (BP: biological process, MF: molecular function, CC: cellular component). Vertical axis symbols
represent the corresponding percentages with different Hit-rates or Miss-rates for all modules.
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protein complexes, and metabolic pathways within
modules.

Gene packaging

For all 96 co-regulated modules, we labelled TFs and
proteins with their associated biological functions. We
found that each module could work as an ‘assembler’ to
assemble a set of genes with similar biological functions
that were regulated by one or more TFs. For example,
Figure 4 illustrates one module associated with a ‘biopo-
lymer metabolic process’ (module 27). In this module,
two groups of regulated subsets were identified: one
group consisted of JUN and three tumour-mutated
genes (CCND1, MSH2 and BRCAI). Recent studies have
reported that JUN, a key cancer-related regulator, is
important in carcinogenesis: inappropriate gene activa-
tion or numerous different genetic defects of JUN or its
target genes could lead to cell growth inhibition, DNA
damage or cell cycle delay, and these series of unex-
pected variations could finally have effects on tumour
emergence, promotion and metastasis [22,23]. Another
group contained five TFs (RPAI, RPA2, TP53BP1,
FUBPI, and JUN) and their target genes (BRCAI
and BRCA2). BRCAI and BRCA2 are important tumour
suppressor genes, whose loss of function is closely asso-
ciated with tumorigenesis [24,25]. Several studies have
reported that these two genes are involved in DNA
recombination and DNA repair [26-28]. A mutation in
BRCA1I or BRCA2 compromises interaction with replica-
tion protein A (RPAI and RPA2), and these two proteins
are essential for DNA replication, repair, and recombi-
nation [29,30]. Lack of interaction first inhibits the
recruitment of double-strand break repair proteins, then
leads to an accumulation of carcinogenic DNA abnorm-
alities, eventually causing predisposition to early onset

group1

group2

Figure 4 A sample module associated with ‘biopolymer
metabolic process’. Blue nodes represent TFs, red nodes represent
cancer-mutated genes, and green nodes represent non-mutated
genes. Interactions between TFs and proteins are blue; interactions
between protein pairs are gray.
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cancer. These findings demonstrated that one or more
TFs in co-regulated modules could package different
genes with specific functions. Cancer-related modules
could assemble a set of cancer-mutated genes and regu-
late specific biological functions associated with cancer,
thus contributing to the pathogenesis of disease traits.
To address whether genes that link to genes mutated
in cancer in co-regulated modules are more likely to be
cancer-associated, we interrogated non-mutated genes
within modules associated with ‘biopolymer metabolic
process’ (module 27), using manual literature validation.
We found that all non-mutated genes were implicated
in tumorigenesis (Additional file 4). These results sug-
gested that genes in cancer-related co-regulated modules
had a high disease risk for tumours, and might be
tumour candidate biomarkers. Additional analysis found
that similar results could be obtained for all other can-
cer related co-regulated modules (data not shown).
Complex packaging
To access the association of co-regulated modules with
protein complexes, we acquired 1347 human protein
complexes from the MIPS database as a reference set,
and analyzed the packaging characteristic of our mod-
ules [31,32]. A hyper-geometric test was used to evalu-
ate the significance of overlap between our modules and
the MIPS functional categories. The results showed 90
(94%) modules that could organize numerous protein
complexes (p < 0.05, Additional file 5). As an example
of these significant results, a sample module that is
involved in ‘biopolymer metabolic process’ (module 27),
packages 98 protein complexes involved in eight func-
tional classes (Figure 5, Additional file 6). The com-
plexes and this module share a set of cancer-related
functions such as DNA repair, cell cycle regulation, and
transcription from RNA polymerase II promoters. Many
studies have shown that gene alterations in cancer
patients, such as malignant changes in DNA sequence
and chromosomal fragment amplifications, cause subtle
divergence of the DNA sequence with subsequent mis-
takes in replication during ‘DNA repair’ and ‘DNA repli-
cation’, altering ‘transcription activity’ and ‘cell cycle’,
resulting in the evolution of mutinous cells, and result-
ing in the ability to invade and metastasise [33-37].
Similar packaging results for the other co-regulated
modules are in additional file 5. These results suggested
that our co-regulated modules had the functionality of
rewiring different protein complexes, and that cancer-
related modules could package complexes that underlie
carcinogenesis.
Pathway packaging
To further investigate the assembling power of co-
regulated modules on metabolic pathways, we per-
formed KEGG annotation analysis for each module
using DAVID (Count > = 2; EASE < = 0.05) [38,39],



Chen et al. BMC Bioinformatics 2010, 11:392
http://www.biomedcentral.com/1471-2105/11/392

Page 6 of 10

Small conjug %‘. rote
ligase activit

of complexes in each function group.

Figure 5 Complex packaging of the ‘biopolymer metabolic process’ module. As an assembler, this co-regulated module organized eight
groups of protein complexes. The ellipses mark groups of complexes belonging to similar functional classes. Node size depends on the number

a useful tool that integrates different sources of biologi-
cal information to obtain biological annotations, and
ranks them by statistical significance. We found that
79 (82%) modules had significant annotated pathway
information (Additional file 7). A sample module ('bio-
polymer metabolic process’) assembled eight divergent
metabolic pathways (Figure 6). We discovered two

cancer-related TFs (RPA1 and RPA2) that function as
hub TFs, forming focal nodes in information exchange
between eight metabolic pathways. These two TFs and
their binding proteins in the module work in a comple-
mentary manner to rewire the mismatch repair, cell
cycle, and homologous recombination pathways leading
to the dysfunction of different cancer pathways [40-42].
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Figure 6 Pathway packaging of the ‘biopolymer metabolic process’ module. As an assembler, this co-regulated module organized eight
divergent metabolic pathways. Cancer pathways are in purple, and cancer-related pathways are in blue.
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In our prior studies, we found that genes in cancer
development and progression are distributed sparsely
among different metabolic pathways. According to path-
way analysis, we concluded that our modules had the
functionality of organizing multiple biological pathways
and controlling numerous cell behaviours, which even-
tually contribute to cancer pathogenesis.

Conclusions

We devised and implemented a probabilistic model and a
bipartite graph framework to infer human co-regulated
modules. We analyzed their specific features in packaging
different biological entities from an integrated molecular
network with high confidence. Through robustness ana-
lysis, we demonstrated that our algorithm identified
probable co-regulated modules for Homo sapiens. The
performance of our approach was evaluated by compari-
son with other four module identification approaches.
Further analysis using the bipartite graph framework
uncovered packaging features for co-regulated modules,
and showed that modules appeared to act as ‘assemblers’
dominated by several transcriptional regulations, and
tended to coordinate complexes maintained by several
physical interacting proteins, and indicating involvement
in metabolic pathway cross-talk within neighbouring
regions.

The success of our method can be attributed to the
following factors. PPINs and TRNs are based on the
curated literature and experimentally-determined inter-
actions, so an integrated molecular network can be used
to identify co-regulatory modules. In addition, we intro-
duced a bipartite graph framework to evaluate packaging
features of co-regulated modules with different biologi-
cal entities, which easily divided biological entities into
piles according to each module. As shown by various
examples, our method appears to be effective in the
identification of human co-regulated modules, and in
searching for their packaging features in biological
entities.

However, our proposed method has some limitations.
We introduced a greedy algorithm aimed to make the
locally optimal choice at each expanding step. Greedy
algorithms are known to generally fail in finding globally
optimal solutions, because they usually do not operate
exhaustively on all the data. However, from our analysis
results, we believe that the greedy algorithm was effective
for module identification. The limitations of the proposed
method for packaging (overlap) analysis are that two-
thirds of human genes are annotated by at least one func-
tional annotation, but the remaining one-third has yet
to be annotated [43]. In addition, the incompleteness
of information about complexes and biological path-
ways might miss some significant overlaps or packing rela-
tionships. Although our proposed method has these
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limitations, the packaging features of co-regulated mod-
ules could still be deciphered in integrated molecular net-
works. With the accumulation of human data, we expect
that our framework may facilitate the identification of
additional modules and their packaging features.

Methods

Human interaction data sources

Human protein-protein interaction data was extracted
from the HPRD databases (Release?7) [44]. The derived
network contained 34,083 interactions between 9014
proteins. We determined edge reliability weights for
these interactions with supporting evidence information
including experimental validation, computational meth-
ods, and public literature mining for a number of pro-
teins [45].

Transcriptional regulatory data was acquired from the
Transfac Database (Releasel1.4) [46]. The resulting reg-
ulatory network consisted of 281 TFs and 624 genes
with 1603 interactions. For further analysis, we assigned
an empirical weight to be 0.99 (a balanced confidence
level of each edge in a TRN) for each transcriptional
regulatory interaction.

Cancer mutated genes

Cancer mutated genes (384) were obtained from the
Cancer Gene Census [47], a well-known online database
cataloguing genes in which mutations have been causally
implicated in a wide variety of tumour types.

Human co-regulated module identification

Integrative weighted network construction

The human integrated network was represented as a
weighted graph. The vertices of the graph were proteins
or TFs, and the edges were protein-protein interactions
or transcription regulation interactions. All edges are set
confidence scores, as described above.

Probabilistic statistical model

We constructed a probabilistic model to evaluate
whether a cluster of co-regulated proteins is likely to
form a module in an integrated network. An underlying
assumption was that a module corresponds to a sub-
network that is typically dense. Under the probabilistic
model, we formulated a log-likelihood ratio used to
compare the fit of our model of a module against the
likelihood that it arose at random. Highly scoring sub-
networks corresponded to likely modules.

This approach requires constructing a sub-network
model and a background model for interactions [48]. We
defined two models: the sub-network model, Ms,
assumed that interactions between proteins have a high
probability o (set to 0.8), and that interactions between
transcription factors and their target genes have high
probability S (set to 0.9), according to the average level of
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the interaction’s confidence weight in the real PPIN or
TRN. In contrast, the background model, Mb, was
obtained from a long series of random edge crosses by
Monte Carlo simulations [49]. In this process, we chose
two links (g, b), (¢, d) uniformly at random from the inte-
grated network, and rewired them by exchanging their
partners. Note that this procedure preserved their
degrees distribution. We estimated the probabilities of
interactions in the random network based on the percen-
tage of the observed edges. We defined the likelihood
model as:

L(P,T) = Lpp; + Lg M
where,

B aP(u,v)+(1-a) (1-P(u,v))
Lpp = 2 log R(u,v)P(u,v)+(1-R(u,v))(1-P(u,v))

u,veP
and
BP(u,)+(1-B)(A-P(u.1))
R(u,t)P(u,t)+(1-R(u,t))(1-P(u,t))

Lygy = 2 log

uelteT

Here, the ratio score of each candidate cluster is cal-
culated by adding the log likelihood ratio score of the
PPIN to that of the TRN. P (u, v) represents the confi-
dence weight between two proteins u# and v, and P (u, t)
represents the confidence weight between protein # and
transcription factor ¢. The probabilities R (i, v) and R
(u, t) of the random network were estimated based on
the percentage of the observed edge.

Module searching

Each candidate cluster was generated from our search-
ing algorithm. The searching process consisted of three
basic processes: (i) seed initialization; (ii) seed expand-
ing; and (iii) overlap filtering.

We defined candidate seeds as a set with a TF and
two of its binding genes, and restricted to include two
protein-protein interactions. A greedy approach was
used to filter the candidate seeds, retaining those with
the highest L-score as the staring seed subunits.

In the second step, we expanded the starting seed sub-
units using a local search. In each seed expanding, we
iteratively added a node (a protein or TF) to modify the
current cluster, ensuring that each newly built candidate
cluster had the highest ratio score. This procedure was
repeated until the contribution gains passed a prede-
fined threshold, which we defined as 4. Finally, after all
expansion rounds, we checked overlaps between our
resulting modules via a simple overlap ratio (OR):

_ NO;

OR =
NO,,

Where NO; is the size of the overlaps between any
two modules, and NO,, is the union size of any two
modules. If the OR score of two modules was larger
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than 0.8, we merge the module with lower L-score into
larger one.

Bridging co-regulated modules with biological entities
using bipartite graphs

To access the packaging features of our resulting mod-
ules, we mapped them onto biological entities of genes,
protein complexes, or metabolic pathways. For each
module M, we constructed three ‘Module-biological
Entity’ bipartite graphs: (i) Gyg = (M,g,En.g) as a bipar-
tite graph of module M-gene associations, where Ey_, €
M x g; (ii) Gy = M,c,Epe) as a bipartite graph of mod-
ule M-complex associations, where Ey;.. € M x ¢; and
(iii) Gm-p = (M,p,Enm.p) as a bipartite graph of module M-
pathway associations, where Eyi., € M x p;. Finally, we
collected the biological relevance of our modules for
rewiring different biological entities. As exemplified by
cancer, we investigated whether cancer related co-regu-
lated modules could assemble different cancer-related
biological entities, and identified underlying biological
associations of our co-regulated modules with cancer.

Additional material

Additional file 1: Information about the 96 co-regulated modules

Additional file 2: Results of GO functional enrichment of co-
regulated modules

Additional file 3: Associations between co-regulated modules and
cancer genes

Additional file 4: Literature evidence for non-mutated genes in the
‘biopolymer metabolic process’ module

Additional file 5: Complex packaging results for all co-regulated
modules

Additional file 6: Complex packaging results for ‘biopolymer
metabolic process’ module

Additional file 7: Pathway packaging results for all co-regulated
modules.
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