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Abstract

Background: While multiple alignment is the first step of usual classification schemes for biological sequences,
alignment-free methods are being increasingly used as alternatives when multiple alignments fail. Subword-based
combinatorial methods are popular for their low algorithmic complexity (suffix trees ...) or exhaustivity (motif
search), in general with fixed length word and/or number of mismatches. We developed previously a method to
detect local similarities (the N-local decoding) based on the occurrences of repeated subwords of fixed length,
which does not impose a fixed number of mismatches. The resulting similarities are, for some “good” values of N,
sufficiently relevant to form the basis of a reliable alignment-free classification. The aim of this paper is to develop
a method that uses the similarities detected by N-local decoding while not imposing a fixed value of N. We
present a procedure that selects for every position in the sequences an adaptive value of N, and we implement it
as the MS4 classification tool.

Results: Among the equivalence classes produced by the N-local decodings for all N, we select a (relatively) small
number of “relevant” classes corresponding to variable length subwords that carry enough information to perform
the classification. The parameter N, for which correct values are data-dependent and thus hard to guess, is here
replaced by the average repetitivity � of the sequences. We show that our approach yields classifications of several
sets of HIV/SIV sequences that agree with the accepted taxonomy, even on usually discarded repetitive regions
(like the non-coding part of LTR).

Conclusions: The method MS4 satisfactorily classifies a set of sequences that are notoriously hard to align. This
suggests that our approach forms the basis of a reliable alignment-free classification tool. The only parameter � of
MS4 seems to give reasonable results even for its default value, which can be a great advantage for sequence sets
for which little information is available.

Background
The classification of biological sequences is one of the
fundamental tasks of bioinformatics, and faces special
challenges in the genomic and post-genomic era. While
it is a classical paradigm to base it on an initial multiple
alignment of the sequences, a current trend is to provide
alignment-free classification methods (subword-based
[1], kernel-based [2], composition vector-based [3,4]...),
in order to tackle datasets that cannot be amenable to
multiple sequence alignment (MSA) methods.

Approaches based on k-mers have also been used for
more than a decade to detect anchoring zones for whole
genome alignments [5-8].
In this paper, we describe a method for the alignment-

free classification of families of nucleic or protein
sequences (composed of a few hundreds of members).
Our aim is to rapidly detect similarity segments shared
by these sequences without having to consider the order
in which they occur inside the sequences. Our approach
allows us to take into account shuffled domains as well
as repeated segments.
The local similarity detection uses a previously

described method called N-local decoding [9]. The basic
principle of the N-local decoding is to rely on the
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occurrences of similar substrings in sequences to cluster
together positions in the sequences. More precisely, two
positions in the considered sequences (that we will call
“sites” for short) are directly related when they occur at
the same position in two equal substrings of fixed length
N. The N-local decoding clusters together all indirectly
related sites, that is, sites related by a chain of direct
relations. This results in a partition of the set of sites.
For each subset of clustered sites (an equivalence class
or simply class), the segments of length 2N - 1 which
are centered on the sites exhibit local similarities.
Although it is based on exact matches, the indirect rela-
tion scheme results in the inclusion of an a priori
unknown number of mismatches.
We have previously used successfully this k-mer based

method for alignment-free classification [10], without
being able to solve the delicate problem of tuning the
parameter N. In the present paper, we tackle this pro-
blem by developing a procedure to select among all the
segments of similarity detected by N-local decoding for
all N, a subset on which to base the classification. We
call this alignment-free classification method MS4, for
Multi-Scale Selector of Sequence Signatures.
The N-local decoding has been efficiently implemen-

ted using suffix trees. Like in any k-mer based approach,
there is no sensible criterion to fix a value of the para-
meter N. Here, we follow how the partition of sites var-
ies with the parameter N. When N increases, site classes
tend to split into several subclasses, while for too low
values of N, classes tend to group sites that do not
share any detectable similarity. MS4 attempts to select
among all these classes of sites those that correspond to
relevant homologous segments. More precisely, MS4
selects for a given site the smallest N such that the aver-
age number of occurrences per sequence of the equiva-
lence class of this site is smaller than a given threshold
�. The resulting values of N are different for different
sites, and adapt to the context of appearence of the site
among the studied set of sequences. The parameter �,
unlike N, has a sensible global interpretation, and can
be tuned to a value reflecting the maximum number of
repetitions in the sequences. Finally, the classes selected
by MS4 are used to compute a dissimilarity matrix on
which the classification is based (using the NeighborNet
option of SplitsTree [11,12]).
In this paper, we describe the implementation of the

MS4 classification tool, which is accessible via a Web-
based interface. We also give a validation on some real
biological data that are not so easy to classify: MS4 is
illustrated on several families of HIV/SIV sequences.
These sets have already been classified by us with the
help of N-local decoding method [13], and it was shown
that the N-local decoding classes correspond to

segments of homology for these sequences [10]. The
results obtained in [10] were in good agreement with
the accepted classification [14,15], for several values of
N. These “good” values are however data-dependent and
hard to guess. The approach described in this paper
replaces this parameter with the more intuitive para-
meter �.
Our present results show that MS4 gives correct clas-

sifications on coding and non-coding regions of HIV/
SIV. Moreover the results are robust with respect to the
variations of the parameter �. In fact, even on sequences
containing repetitions (like the non-coding regions of
the HIV/SIV LTR), the choice of � = 1 gives satisfying
results. Therefore, MS4 may be expected to give reason-
able results for this default value for � when no other
information on the sequences is available.

Methods
As mentioned in the Background section, we use the N-
local decoding (NLD) in order to produce partitions of
the set of all sites in the sequences under study [9]. A
short recapitulation of NLD is found here. The central
part of this paper is the introduction of an object that
describes the embedding of successive partitions as N
increases. It turns out that this object is a tree. The tree
structure is essential, because it provides a criterion for
choosing “relevant” partitions of sites, which may occur
at several values of N. We use the chosen classes to
construct a dissimilarity matrix between sequences
(taxa). This matrix becomes then the input for standard
tree construction methods (SplitsTree4 [11,12] in our
case).

N-Local Decoding
We consider a collection S of sequences s over a finite
alphabet  . The site space consists of all pairs s = (s, p)
where s is a sequence, and p a position in it. This set is

= ( ) ∈ ≤ ≤ ( ){ }∑ s p s S p s, | ,1  (1)

where ℓ (s) is the length of sequence s. The NLD pro-
cedure starts with a collection of sequences and with an
integer N ≥ 1. It consists of two steps:

1. To every site s in ∑, associate a neighborhood of
length 2N - 1, consisting of s and of N - 1 sites on
each side of s (neighborhoods that are too near the
beginning or the end of a sequence are accordingly
truncated, but this case will not be considered for
simplicity’s sake in the rest of the description). This
neighborhood carries a word W of length 2N - 1.
We consider all subwords w of length N of this
word W. They can be “identified” by their position
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relative to s, i.e. the index of the beginning of w
inside W. The subword w of W at relative position i
will be denoted by wi. Given two sites s and s’, we
say that they are directly related if there exists an i
such that the subword wi of W is identical to the
subword wi’ of W’ . If two sites s, s’ are directly
related, we write s ≃N s’.
2. We define the equivalence relation ~N as the tran-
sitive closure of ≃N . In other words, we say that s1

~N s2 if there is a chain of directly related sites con-
necting s1 and s2.

We illustrate this on an example (Fig. 1). We consider
here a set of protein sequences, and examine one of the
equivalence classes obtained by N-local decoding with N
= 7. This class consists of 6 sites. The first site is
described by the pair (0,571): this means that it lies at
position 571 of the sequence number “0”, and similarly
for the other five sites. Since N = 7, the neighborhoods
around these sites are of length 2N - 1 = 13. The words
in these neighborhoods are shown on the picture, with
the central letter displayed in red.
Directly related sites are connected by solid lines. For

instance, the sites (0, 571); (3, 630) and (8, 614) share
the word LREIDED starting at the third position of
their environment. The sites that are related (but not
directly related) are connected by broken lines. For
instance, the sites (1, 580) and (5, 528) are connected by
the chain (1, 580) ® (0, 571) ® (3, 630) ® (5, 528).
The fact that every site is connected to every other site
means that this set of sites is a class.

The Partition Tree
A recurring problem of N-mer-based methods is that
there does not seem to be a good criterion to tune this
parameter N to an acceptable value. There is moreover
no real reason to believe that a single “optimal” value

will always be meaningful, since the similarity between
sequences can depend very much on the position of
neighborhoods in sequences.
In the case of N-local decoding, we combine the dif-

ferent equivalence classes for various values of N by
introducing a new construction, the partition tree,
which encodes the way in which equivalence classes for
successive values of N are related. This tree will allow
us to choose a set of “relevant” NLD-classes. Let ℰN be
the partition of ∑ induced by ~N.
Lemma 1. For all N ≥ 0, the partitions ℰN satisfy ℰN+1

⊂ℰN.
Proof. Compare the partitions of ∑ produced by ~(N+1)

with the partitions produced by ~N. If any two sites s1

and s2 are ~(N+1)-equivalent, we have to show that they
are ~N-equivalent. Notice that s(N+1) equivalence is
reduced to a set of direct ≃(N+1) relations, and that s1 ≃
(N+1) s2 implies trivially s1 ≃N s2. If two neighborhoods
share a word of length N + 1 at a given relative position,
they also share words of length N at the same relative
positions.
This simple lemma is crucial, and corresponds to the

intuitive idea that it is harder to lump together big
words than small words. We are now ready to define
the partition tree.
Definition 1. For N > 0, denote by ℰN the set of

equivalence classes defined by the relation ~N. Letting
ℰ0 = {  }(which will correspond to the root of the tree),
we can encode the set V = ∪i ≥ 0 ℰ

i of equivalence classes
for different values of N into the partition tree P = (V,
EP), defined by

E u v v uN NP = ∈ × ⊂{ }+( , ) | .  1

In other words: the vertices of P are all the equiva-
lence classes that correspond to ~N for all values of N.
The edges are drawn between pairs of classes that

Figure 1 NLD illustration. Graphical representation of relatedness within an NLD class, with N = 7. For each one of six sites, the word
occupying its neighborhood is shown on the right hand of the picture. Directly related sites are connected by solid lines: each color
corresponds to (at least) one word of length 7 shared by two neighborhoods. Broken lines connect sites that are connected but not directly
connected.
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correspond to successive values of N and such that one
is a subset of the other. By the above lemma, any two
sites that are (N + 1)-equivalent are also N-equivalent.
On the other hand two sites that are N-equivalent are
not necessarily (N + 1)-equivalent. In other words, the
N-classes split as N increases. The edges are drawn pre-
cisely between any N-class C and all the (N + 1)-classes
into which C splits. From this definition, it is clear that
any vertex of P has at most one ancestor, i.e. that P is a
tree. Finally, for memory saving purposes, all valency 2
nodes are suppressed from P (resulting in the com-
pacted partition tree). Examples of partition trees are
given in Fig. 2 and Fig. 3.

A choice of classes
When we examine N-equivalence classes for all possible
N, we face a deluge of information, moreover altogether
redundant. We shall now use the tree of partitions to
alleviate this problem. Given any set C of sites, we can
define the size of C as the number of sites in C and the
spread of C as the number of sequences which contain
at least one element of C. Define �(C) as the ratio
between the size and the spread of C as follows.

For letC C C s S p s p CN∈ = ∈ ∃ ∈ ≥ , ( ) | | / |{ | ,( , ) }| . 1 (2)

For a given value � ≥ 1, the condition � (C) ≤ �
means that the average number of occurrences of class
C per sequence where it occurs is less or equal than �.
In particular, � (C) = 1 means that no sequence con-
tains more than one element of C (of course we take
here C to be an NLD-class). We call the parameter �
the maximum average repetitivity. We use this para-
meter to select nodes in the partition tree that satisfy
� (C) ≤ �.
This condition is not sufficient to make these classes

relevant (see an example in Fig. 2). Indeed, the bottom of
the partition tree is occupied by classes corresponding to

large N, which occur in only one sequence. Such classes
are of no interest. In order to find relevant classes, we
have to “climb upward” (towards smaller values of N).
Since any vertex of a tree has only one ancestor, the fol-
lowing definition does make sense.
Definition 2. An NLD class C will be called �-rele-

vant, if it satisfies � (C) ≤ �, while its ancestor does not.
The MS4 method consists in choosing all relevant

classes in a set of sequences, and ignoring the others. The
algorithm describing the implementation of MS4 is given
in section Appendix. An explicit toy example on which we
can see both the N-local decoding and the selection of
relevant classes at work for � = 1 is shown in Fig. 3.

The Dissimilarity matrix
At the end of the MS4 procedure, each sequence can be
rewritten, by replacing the letter originally found at a
given site by the identifier of the relevant MS4-class to
which the site belongs (e.g. Fig. 4). We use the number
of MS4 classes shared by 2 sequences to define a simi-
larity index in a similar way as described in [10]. This
measure is closely related to the percentage of identity
classically used for sequence comparison.
Given any two sequences seqi and seqj, we compute a

number dij as follows. For a class c, let ni(c) be the number
of occurrences of c in seqi. Denote by Cij the set of relevant
classes that have representatives both in seqi and seqj.
Since the two sequences can contain a different number of
occurrences, we put n n c n cij c C i jij

= ∑ ∈ min( ( ), ( )) . Let ℓ be
the minimum of the lengths of seqi and seqj . We define
then a dissimilarity dij by

d
nij

ij = −1


(3)

In fact, nij is the sum of local similarities shared by 2
sequences. Any exact common word of length M corre-
sponds to M common MS4 classes (e.g. Fig. 4).

Figure 2 Selection of relevant classes. Selection of relevant classes in a partition tree. On the right, the green nodes satisfy � = 1 while the
red ones do not. On the left, only the relevant classes are shown.
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When � = 1, nij is simply the number of relevant
classes having representatives in both seqi and seqj .
This dissimilarity matrix is used as input in Neighbor-
Net of SplitsTree4 [11,12] to produce the split networks
displayed in Fig. 5 and Fig. 6.

Results and Discussion
MS4-classification of complete HIV/SIV genomes
We have applied the MS4-method, followed by a com-
putation of the dissimilarity matrix (see section Meth-
ods), and the construction of a split-network (with the

option NeighborNet [12] of SplitsTree4 [11]) to a family
of 70 HIV/SIV genomes. The input for the calculation
of the dissimilarity matrix consists of the classes selected
by MS4 with � = 1, for values of N between 2 and 60.
We use here the same 70 non-recombinant HIV
(Human immunodeficiency virus)/SIV (Simian immuno-
deficiency virus) nucleotide sequences that we studied
previously in [10] by using the N-local decoding
method. These sequences include four incomplete (gag)
sequences (HIV-2 subtype C, D, E, F). These short
sequences are subtyped in the sequence databases, so

Figure 3 Didactic example. Toy example of Multi-Scale Selector of Sequence Signatures (MS4 selection of classes). On the first row (top) we
see the input sequences and the output of eligible classes (MS4 classes). The second row shows the NLD re-writing from N = 1 to 5. The
partition tree constructed on the basis of the re-writing is shown on the lower part of the picture. The leaves correspond to classes that contain
a single site (singletons). The dotted nodes should normally disappear from the compacted tree, and are only shown for clarity’s sake. The
eligible classes are colored in green. Nodes are labelled with identifiers like C0_3 where C0 is an arbitrary class identifier and 3 the value of N.
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they appear to have kept subtyping signals that are in
the complete genome sequences. The 66 complete
sequences range in length from 8555 to 11443 nucleo-
tides. All these sequences can be retrieved from the Los
Alamos HIV sequence database [16] (their accession
numbers are given in Fig. 5). The accepted groups are
as follows:

1. HIV-1 group M (subtypes A-D, F-H, J, K; A is
split into A1 and A2, and F is divided into F1 and
F2),
2. HIV-1 group N,
3. HIV-1 group O,

4. HIV-2 groups A, B, G,
5. SIV-CPZ (chimpanzee)
6. SIV-SMM (sooty mangabey)

We produce a network by application of SplitsTree4
on the basis of a dissimilarity matrix given by the MS4
method. Fig. 5 shows the network obtained by our cal-
culation. The network is quite tree-like. The two types
of HIV are clearly distinguished: HIV-1 is closer to SIV-
CPZ and HIV-2 is closer to SIV-SMM. The HIV-1
group M, on the left, is clearly separated from the rest.
The nine subtypes of HIV-1 group M (major) cluster
distinctly, with sub-subtypes significantly more closely

Figure 4 Example of similarity blocks found by MS4 in the non-coding LTR sequences. Part of the alignment from 29 out of the 43 non-
coding LTR sequences centered on the NF�B binding site. The complete alignment of the 43 sequences is shown in Additional Files 8 and 9.
The alignment is focused on the transcription factor NF�B binding site (GGGACTTTCC[A|G]) and its flanking regions. The names of sequences are
indicated with their accession number in Los Alamos HIV sequence databank. The sequence are regrouped according to their phylogeny. The
position of the first letter of the displayed region is given on the left. The letters are rewritten by applying the MS4 method to the whole non
coding LTR sequences. As seen in Additional File 8, the complete MS4 identifier is constructed as follows: e.g. C24_8 (class C24 for a N value of
8). Identical recoded letters that are in the same columns are displayed in the same colour. The MS4 identifier has been simplified as follows: we
have just indicated the letter and the value of N. Therefore it can be that two different MS4 classes that lie on the same column, with the same
letter and the same N value are only distinguished by their colour (e.g. A18 and also T18 HIV-1-M/G, that are red or green). The two or more
repeated segments of the same sequence are put one under the other. Therefore the sequences are often written on several lines to highlight
similarities between sequences and inside sequences. Most often the similarity blocks are aligned and the great majority of identical indexed
letters are on only one column. Some colored letters are unique because only 29 sequences (out of 43) are displayed on this figure.
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related to each other (A1 and A2, F1 and F2, B and D
that should be regarded as sub-subtypes [14,15]). Sub-
type K is more distant from sub-subtypes F1 and F2
than these are from each other, but closer to them that
to other subtypes. The HIV-1 group N intercalates
between HIV-1-M and SIV-CPZ (-CAM3, -CAM5,
-GAB, and -US). The HIV-1 group O is intercalated
between these CPZ and CPZ-ANT that is the borderline
in the HIV-1/SIV-CPZ lineages. HIV-2 groups also form
clear clusters, respectively, including C, D, E, and F that
cover about half of the gag region.
Within the HIV-2 viruses, notice that the HIV-2 area,

with the exception of the groups A and G, is less tree-
like than the rest. From the aspect of the network, it
seems that HIV-2-C tends to cluster both with HIV-2-B
and with SIV-SMM. Another example is SIV-SMM-
MAC which tend to group with both HIV-2-F and with
HIV-2-D. Notice that the sequences HIV-2-C, HIV-2-D
and HIV-2-F are short.
These groupings, which were obtained without align-

ments and without parameters, agree with accepted
classifications.

In our previous paper, we varied the parameter N and
we selected values of N that agree with existing knowl-
edge; it turned out that correct tree topologies were
found for N in the range from 13 to 35. The fact that
the same groupings were found by the MS4 method
with no other input than the sequences themselves gives
us some confidence in the validity of this approach.
HIV/SIV sequences from the Compendium 2000
We have also calculated a split network from the 46
HIV/SIV complete nucleotide sequences of the Com-
pendium 2000 (HIV-1/HIV-2/SIV Complete Genomes),
and compared it with a tree available at [17]. The result
of our calculation is tree-like, and agrees with the topol-
ogy of the Compendium tree (Additional File 1).
Major genes of HIV/SIV
The major genes (gag, pol, env) of the HIV/SIV
sequences (see above) were also tested.

1. For gag we have 70 sequences: 66 complete
sequences (1473 to 1569 nucleotides in length) and
4 partial sequences covering about half the gag
regions (771-781 nt).

Figure 5 Network from the HIV/SIV genomes. The split-network obtained from 70 HIV/SIV genome sequences (dissimilarity matrix calculated
by MS4). The sequences names are written as follows: their GenBank accession numbers, followed by their nomenclature names [15].
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2. For pol : we have 66 complete sequences (2993-
3360 nt).
3. For env : we have 66 complete sequences (2499-
2658 nt).

The regions pol and env were unavailable for the 4
HIV-2 groups C-F. The trees obtained for gag, pol and
env give a good classification and the same description
can be done for them as that detailed above for the 70
complete sequences (Additional Files 2, 3, 4).

MS4-classification of short sequences: nef and non-coding
LTR sequences
Non-coding LTR
In order to test our method, we have also looked at
parts of the HIV/SIV genomes that are notoriously hard
to align due to inner repetitions in the sequences. One
of them (retrieved from 43 of the 70 sequences) covers
the non-coding part of long terminal repeat (complete
non-coding LTR region or at least its portion including
the polyadenylation signal AATAAA). The lengths of
this part range from 211 to 328 nt in the HIV-1/SIV-
CPZ subset, and 433 to 508 nt in the HIV-2/SIV-SMM
subset. These short non-coding segments contain many
duplications/insertions/deletions that make them diffi-
cult for traditional alignment-based phylogenic studies.

The network obtained (Fig. 6) shows again a clear
separation between HIV-1 and HIV-2, even though it
was constructed with short and “difficult” subsequences.
It is less treelike than the network obtained from the
complete sequences, which is not surprising. The com-
parison between Fig. 5 and Fig. 6 show several features
which may require further investigation: While the com-
plete genomes produce very strong grouping of the sub-
types HIV-1-M, the non-coding LTR show several dis-
crepancies for these sub-types. The clustering of HIV-2
(and their groups), SIV-SMM, HIV-1-O, SIV-CPZ and
HIV-1-M is correct. The network (Fig. 6) is similar to
the tree in our previous paper [10].
It is interesting to notice that the two HIV-1-N are

not very clearly grouped together. The sequence
AJ271370_HIV-1-N is grouped both with the chimpan-
zee group (SIV-CPZ) and with AJ006022_HIV-1-N. On
the other hand, AJ006022_HIV-1-N tends to group both
with the other HIV-1-N and with AF061640_HIV-1-M-
G (but less clearly). In the Neighbor Joining tree of [10],
the two HIV-1-N are grouped together with a bootstrap
value of 95% and connected with the group SIV-CPZ
with bootstrap value of only 55%.
Even though our results show the difficulties of treat-

ing the non-coding part of LTR, it should be stressed
that our method says something about these sequences.

Figure 6 Network from the non-coding LTR sequences. The split-network obtained from 43 HIV/SIV non-coding parts of LTR nucleotide
sequences (distance matrix calculated by MS4 for � = 1 and N varying from 2 to 100). M15390 corresponds to the HIV-2-A ROD isolate just as
X05291 for Fig.5. Sequence names follow the same rule as in Fig.5.
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By contrast, these sequences are not tractable by stan-
dard alignment-based methods [10].
The featured sequences are reputedly hard to align,

because they exhibit several repeated segments. MS4,
used together with SplitsTree4, gives relevant results
on these data that are usually set aside for the typing
and subtyping of HIV-SIV, for lack of sufficient phylo-
genetic signal. This observation was already present in
our previous study which used only the N-local decod-
ing method. In this previous study, we proceeded to
the careful - and tedious - scrutiny of several trees,
resulting from the NLD method for various values of
the parameter N. We showed that, for the non coding
LTR sequences, the best tree (best fitting the reference
classification) was obtained for the value N = 11. The
splits networks that are obtained by MS4, or by NLD
for N = 11 (Additional File 5), are similar and yield
correct groupings of the non-coding LTR. One only
notes a discrepancy inside group M, NLD giving a bet-
ter clustering of the A subtypes, while MS4 groups H
subtypes better.
It should be noticed that when we have here varied

the maximum average repetitivity � from 1.0 to 10.0 (by
step of 0.5), the obtained classifications turned out to be
remarkably robust to this variation (e.g. Additional Files
6 and 7).
NFkB region
We focus now on the non-coding region of LTR, to
show how MS4 deals with repetitions in the sequences.
The fig. 4 and the figures in Additional Files 8 and 9,
show the binding site of the transcription factor NF�B
and its flanking regions [10]. This site is characterised
by the signature GGGACTTTCC[A|G], which is present
one or two times in the non-coding region of the LTR
of HIV/SIV genomes (one or two additional imperfect
copies may exist).
It clearly appears that, although the parameter � is

here set to 1, this zone contains relevant classes over
the whole repeated region. Each repeated motif of the
NF�B pattern is identified by a different set of MS4-
classes corresponding to N larger than the length of the
repeated motif. Fig. 4 illustrates how the MS4-classes on
this repetitive region participate to the overall MS4 clas-
sification. We clearly distinguish the HIV-1-N group
which has some similarity with SIV-CPZ, the group
HIV-1-O, and the group HIV-1-M in which we can dis-
tinguish e.g. the subtypes HIV-1-M/G, C and J. The
HIV-2 sequences are clearly separated into three groups
A, B and G which show similarities with SIV-MM. This
example illustrates the facts that (a) Repeated segments
are taken into account by the MS4 method, even for �
= 1 (which corresponds to one repetition of a class per
sequence) and (b) each repeated segment participates in
the classification of our set of sequences. Fig. 4 also

illustrates the way that the re-writing of sequences in
terms of MS4-classes defines the dissimilarity between
sequences (See Eq.3). For instance, in the sequences
HIV-1-M/J, a class, such as ‘A49’, corresponds to an
exact word of length 49 shared by the two sequences.
These classes correspond to the value N = 49 when the
similarity concerns only 2 sequences (this is a straight-
forward exact match) but a smaller N when it is shared
by more than 2 sequences (most often N = 18 for the
binding site of NF�B).
The nef sequences
We have also studied the 66 nef sequences (292-783 nt).
The classification by MS4 is correct except for a few
discrepancies (that have already been described in [10]):
in the group HIV-1-M, sub-subtypes F1 and F2 mix
together, and the position of subtype K is uncertain
between F1/F2 and J (Additional File 10). In both cases
(non coding LTR and nef) that we just saw, it is obvious
that a full classification is not possible due to conflicting
signals, and it is necessary to find homologous sites on a
multiple alignment (as we did for LTR with N-local
decoding in [18]).
Here we examine more precisely nef, a sequence

which is important for the virulence of the virus. We
show a multiple alignment of the 66 sequences (Fig. 7).
The Dialign [19] multiple alignment has been manually
edited by putting in the same column the sites corre-
sponding to one MS4 class (See section Methods). The
results have been visualized with the help of Jalview [20]
which is a multiple alignment editor which allows the
user to define, for each color, the set of sites that carry
that color. The fig. 7 shows an unambiguous sector of
this alignment. The identifiers of the classes are not
shown on the figure, but Jalview fortunately allows the
user to click on a letter and recover this information.
Identical letters (A, C, G or T) that are on the same col-
umn and with the same colour belong to the same class.
We clearly see on Fig. 7 that there are classes that
appear only in HIV-1, classes that appear only in HIV2,
and classes that appear in both. The fact that sequences
can be correctly classified by MS4, suggests that the
majority of sites regrouped in one class correspond to
blocks of homology between sequences.

Conclusions
This paper gives a description of the MultiScale Selector
of Sequence Signatures (MS4) method and uses it for an
alignment-free classification (virtually parameter-free) of
a family of sequences. The core of the method consists
in the selection of “relevant” classes of segments, which
are assumed to carry similarity information, although
the criterion for grouping them together is purely com-
binatorial (classification by context [9]). The point of
our method is that it does not require the specification
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of a word length parameter and it does not consider
only exact words.
The user may choose a parameter � which reflects the

average repetitivity of the set of sequences under consid-
eration. The default value � = 1 yields satisfying results
in the examples we have considered so far. MS4 sets
automatically a local length parameter N which depends
on the starting set of sequences and local similarities
between sequences.
In this paper, we test the method on a set of well-stu-

died HIV/SIV sequences [10,14,16] on which one of us
is an expert [10,18]. The results obtained are in excel-
lent agreement with the accepted knowledge. The MS4

method has also been applied to other data (not shown
here). It should be noted that it is not accurate on too
small datasets. In our experience, this program can be
applied in its present state to sets composed from a
dozen to a few hundreds of sequences (datasets consist-
ing of a few Mb). Note also that MS4 works for protein
data as well as genes (e.g. Additional File 11, and [21]).
As N decreases, the N-local decoding method detects

weaker similarities, before being flooded by spurious
ones [13]. Concerning the selection of equivalence
classes, our aim is to select as many non-redundant
homologous segments as possible, while keeping the
background noise at a low level. Our default criterion

Figure 7 Screenshot of local nef alignment. Jalview screenshot of positions 402 to 510 of the alignment of 66 nef sequences. Identical letters
(A, C, G or T) that are of the same color and on the same column, come from the same MS4 class. (It can happen that two neighboring colors
are hard to distinguish). In the left column, the sequences are identified by their accession number, the type of virus (HIV1 or 2, SIV-CPZ or SMM)
the group -for example HIV-1 M, N, O or HIV-2-A, the subtype, and the subtype in the case of HIV-1-M/C, for example. The sites that are not
colored belong to classes with only one element.
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for “relevant” classes locally sets N above this level, at
the cost of losing some occurrences of repeated similar
segments. By tuning the parameter �, it is possible to
accept a maximal average quantity of repetitions below
a given threshold. When � is set too high, the result of
the classification can degenerate, and tends towards the
mere letter-composition criterion as � tends to infinity.
By default, we exclude repetitions of any given class in
the same sequence. However, even for this value, the
repeated segments are not lost altogether. When the
value of N becomes larger than the size of the repeti-
tion, the MS4 classes only change (as subsets of sites)
up to the value where different repetitions are assigned
a different MS4 class. This can indeed result in a clearer
identification of the distinct homologous repetitions.
This phenomenon is illustrated on the well known repe-
titive NF�B binding regions of non-coding LTR (see Fig.
4 and Section Results sub-section NF�B region).
Although our current criterion can be tuned to take
repetitivity into account, the classifications of the HIV/
SIV sequences turn out to be remarkably robust to the
variations of the parameter � (for example see in addi-
tional files 6 and 7 the resulting SplitsTree from non
coding part of LTR sequences for � = 5 and 10). Never-
theless, it seems desirable to get a more significant cri-
terion, statistical-based, to prune the tree formed by the
whole set of embedded partitions (See section Methods
subsection Partition Tree and Choice of classes). The
last step concerns the computation of the similarity
matrix. Our similarity is straightforward: it consists in
counting the number of MS4 classes that are shared by
2 sequences. This corresponds to a usual basic scheme
for the comparison of two nucleic sequences (% iden-
tity). We group together similar sites (according to
MS4) as equivalence classes. As a result, a segment of
identity of length N between sequences will result in N
MS4 classes (Additional Files 8 and 9). Each MS4 class
has an equal weight in our dissimilarity computation
(See Eq.3). In the case of an exact repeated subword of
length N between two sequences, the contribution of
this subword to the dissimilarity is exactly N.
However, it could be also possible in the future to

obtain a SplitsTree by constructing directly the splits
themselves on the basis of the selected segment classes,
and to avoid the computation of the matrix. The pre-
sence of incompatible signals (resulting in parallelo-
grams) in the network constructed by SplitsTree4 [11]
from MS4 similarity matrices for short sequences,
shows, as otherwise expected, that this method must
usually be completed by visual expertise. This can be
achieved by coupling MS4 with multiple alignment edi-
tor like Jalview [22] (See Fig. 6 and Fig. 7). Therefore,
the classes detected by MS4 can be used to help the
manual editing of a multiple alignment. We also use

them to determine anchor points for the multiple align-
ment programs [21].

Availability
A user-friendly Web-interface is available at http://stat.
genopole.cnrs.fr/ms4/. It takes as input a file with sequences
in fasta format and gives the dissimilarity matrix in nexus
format to run the option NeighborNet of SplitsTree4. The
allowed parameters are � (default value 1) and the range of
N for computing the partition tree (default values: from 2
to Nmax which is the size of the maximal repeated word
shared by two sequences in the dataset). The Python code
is avalaible in Additional File 12 and upon request from the
corresponding author (for some implementation details see
the algorithm in section Appendix).

Additional material

Additional file 1: Network for Compendium2000 sequences. Network
for the 46 Compendium2000 sequences computed by SplitsTree4 on our
MS4 dissimilarity matrix with � = 1 (from N = 2 to N = 60).

Additional file 2: Network for gag sequences. Network for the 70 gag
sequences computed by SplitsTree4 on MS4 dissimilarity matrix with � =
1 (Nmax = 510).

Additional file 3: Network for the pol sequences. Network for the 66
pol sequences computed by SplitsTree4 on MS4 dissimilarity matrix with
� = 1 (Nmax = 962).

Additional file 4: Network for env sequences. Network for the 66 env
sequences computed by SplitsTree4 on MS4 dissimilarity matrix with � =
1 (Nmax = 794).

Additional file 5: Network for LTR sequences obtained with NLD.
The SplitsTree4 network for non-coding LTR sequences computed with
the NLD method for a fixed word length of N = 11. NLD method is
described in [10], it uses a similar similarity index but with a fixed length
word. In [10] we used Neighbor Joining instead of Splits Networks.

Additional file 6: SplitsTree network for k = 5 for LTR sequences.
Network for the 43 non coding sequences parts of HIV LTR computed by
SplitsTree4 on MS4 dissimilarity matrix for the value � = 5 (N from 2 to
100).

Additional file 7: SplitsTree network for k = 10 for LTR sequences.
Network for the 43 non coding sequences parts of HIV LTR computed by
SplitsTree4 on MS4 dissimilarity matrix for the value � = 10 (N from 2 to
100).

Additional file 8: Similarity blocks found by MS4 in non coding LTR
sequences. Superposition of MS4 classes on a manually expertised
alignment of the non coding part of 43 HIV-SIV LTR sequences focused
on NF�B region. This is a nucleotide sequences alignment of the 43
non-coding LTR sequences. Apart from minor modifications the
alignment is the same as that in Fig. 5 in [10]. The alignment is focused
on the transcription factor NF�B binding site (GGGACTTTCC[A|G]) and its
flanking regions. The names of sequences are indicated with their
accession number in Los Alamos HIV sequence databank. The sequence
are regrouped according to their phylogeny. The letters are rewritten by
applying the MS4 method to the whole non coding LTR sequences. The
MS4 identifier is constructed as follows: e.g. C24_8 (class C24 for a N
value of 8). Identical recoded letters that are in the same columns are
displayed in the same colour. When they are not all aligned on the same
column no colour is used (as well as when they are unique in this part
of the alignment). The repeated motifs inside one sequence are put one
under the other. Therefore the sequences are often written on several
lines to highlight similarities between sequences and inside sequences.
Most often the similarity blocks are aligned and the great majority of
identical indexed letters are on only one column.
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Additional file 9: Region of NF� B fixation site. The complete
alignment, part of which is featured in Fig. 4. This figure corresponds to
the figure in Additional File 8. The colours are the same as in the figure
in Additional File 8 but in this figure the MS4 identifier has been
simplified as follows: we have just indicated the letter and the value of
N. Therefore it can be that two different MS4 classes that lie on the same
column, with the same letter and the same N value are only
distinguished by their colour (e.g. A18 and also T18 HIV-1-M/G, that are
red or green).

Additional file 10: Network for the nef sequences. Network for the 66
nef nucleic sequences computed by SplitsTree4 on MS4 dissimilarity
matrix with � = 1 (for Nmax = 543).

Additional file 11: Network for the Nef protein sequences. Network
for the 66 Nef protein sequences on MS4 dissimilarity matrix with � = 1
(for N = 2 to N = 100).

Additional file 12: Python code source. Python implementation of
MS4 algorithm for linux systems. See INSTALL and README files to use it.
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Appendix
Algorithm 1 Main steps to select relevant classes in the partition tree
Input: All equivalence classes E Î ℰn, for n Î {nmin, ..., nmax}
Input: ∑ set of all sites
1:
2: // Initialize the MS4 equivalence classes
3: RelevantECList¬{∅}
4:
5: // Initialize the partition tree P: add leaves (Îℰ∞) in P
6: for each site s Î ∑, ∑ set of sites do
7: // Add a new node in the partition tree P and initialize �
8: addNode(P, s)
9: � (s)¬1
10: end
11:
12: // Main loop
13: n ¬ nmax

14: while n ≥ nmin do
15: for each equivalence class E Î ℰndo
16: // Build A, the highest ancestor set of E in P
17:  ¬ {∅}
18: for each site s Î E do
19:  ¬  ∪ getHighestAncestor(P, s)
20: end
21: // Compact the partition tree if only one ancestor is found
22: if card( ) > 1 then
23: // Add a new node in the partition tree P
24: addNode (P, E)
25: // Compute �(E): card (E) is the number of sequences where
equivalence class E appears
26: � (E) ¬ card(E)/ card (E)
27: for each equivalence class A Î  do
28: // Set inclusion relation A ⊂ E in the partition tree P
29: addEdge(P, (E, A)).
30: if � (E) <� and �(A) ≥ � then
31: RelevantECList ¬ RelevantECList ∪{A}
32: end
33: end
34: end
35: end
36: n ¬ n - 1
37: end while

38:
39: // Create root node (i.e. ℰ0), connect it to the highest ancestors in P
40: // Same as above
41:
42: return RelevantECList
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