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Abstract

Background: The binding of peptide fragments of extracellular peptides to class II MHC is a crucial event in the
adaptive immune response. Each MHC allotype generally binds a distinct subset of peptides and the enormous
number of possible peptide epitopes prevents their complete experimental characterization. Computational
methods can utilize the limited experimental data to predict the binding affinities of peptides to class II MHC.

Results: We have developed the Regularized Thermodynamic Average, or RTA, method for predicting the affinities
of peptides binding to class II MHC. RTA accounts for all possible peptide binding conformations using a
thermodynamic average and includes a parameter constraint for regularization to improve accuracy on novel data.
RTA was shown to achieve higher accuracy, as measured by AUC, than SMM-align on the same data for all 17
MHC allotypes examined. RTA also gave the highest accuracy on all but three allotypes when compared with
results from 9 different prediction methods applied to the same data. In addition, the method correctly predicted
the peptide binding register of 17 out of 18 peptide-MHC complexes. Finally, we found that suboptimal peptide
binding registers, which are often ignored in other prediction methods, made significant contributions of at least
50% of the total binding energy for approximately 20% of the peptides.

Conclusions: The RTA method accurately predicts peptide binding affinities to class II MHC and accounts for
multiple peptide binding registers while reducing overfitting through regularization. The method has potential
applications in vaccine design and in understanding autoimmune disorders. A web server implementing the RTA
prediction method is available at http://bordnerlab.org/RTA/.

Background
Class II MHC is an essential protein complex in the
adaptive immune system that is involved in activating
helper T cells. It is found on the surfaces of specialized
immune system cells, such as dendritic cells and macro-
phages, where it binds fragments of extracellular pep-
tides and presents them to CD4+ helper T cells. Class II
MHC is highly polymorphic and each allotype generally
has different peptide binding preferences. The computa-
tional prediction of such binding affinities can be
applied to the important problem of finding promiscu-
ous epitopes that bind to multiple allotypes for use in
rational vaccine design. Also these predictions may aid

in understanding autoimmune diseases, many of which
have been linked to particular class II MHC alleles [1].
Characteristic properties of peptide binding to class II

MHC molecules can be inferred from available high-
resolution X-ray structures of peptide-MHC complexes.
The binding cleft in class II MHC is open at both ends
so that it generally binds longer peptides, 15-25 residues
in length, with the peptide N- and C-terminii extending
out of the cleft. This is in contrast to class I MHC,
which has a peptide binding cleft that is closed at both
ends so that it only accommodates shorter peptides of
8-11 residues. An examination of X-ray crystal struc-
tures of peptide bound class II MHC molecules reveals
that the peptides bind in an extended polyproline II
helix with the conserved backbone structure maintained
by conserved hydrogen bonds with the MHC [2]. Pep-
tide side chains within a contacting nine residue core* Correspondence: bordner.andrew@mayo.edu
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segment of the peptide bind into pockets on the MHC
surface [1]. Many of the polymorphic residues occur in
these pockets and so determine the distinctive peptide
binding preferences of each MHC allotype. Although
the core residues of the bound peptide assume similar
backbone conformations, each peptide can generally
bind in multiple registers. This makes the prediction of
peptide binding affinities for class II MHC particularly
challenging since, unlike class I MHC, all possible bind-
ing registers must be considered.
Prediction methods for class II epitopes remains an

active area of research, motivated both by their biomedi-
cal importance and the difficulty of achieving high accu-
racy. Early prediction methods fit the total peptide
binding energy [3-6], binding motif [7], geometric aver-
age binding affinity [8], or sequence alignment profile
[9] in a particular register to a linear combination of
contributions from individual residues, and represented
them as binding profile matrices. The scores for all pos-
sible peptide binding registers were calculated and either
the maximum value or sum were used as a total peptide
binding score. Later methods employed various machine
learning and data fitting approaches to prediction
including partial least squares (PLS) [10,11], Gibbs sam-
pling [12], linear programming [13], Support Vector
Machines (SVMs) [14-16], and kernel methods [17].
One prediction method, called SMM-align, successfully
combined two methods, binding profile matrices and
Gibbs sampling [18].
We introduce a new model for predicting binding affi-

nities of peptides to class II MHC called the Regularized
Thermodynamic Average, or RTA, model. Three fea-
tures are incorporated into the model: (1) independent
binding of individual peptide residues so that the total
binding energy is a sum of the binding energies of each
core peptide residue, (2) a thermodynamic average over
all possible peptide binding registers, and (3) regulariza-
tion of the model to prevent overfitting. Feature #1, the
approximate independence of peptide binding on pep-
tide residue interactions, is supported experimentally [3]
and is a basic assumption in most prediction models to
date. Indeed, it is the primary basis for binding profile
methods. The importance of contributions of subopti-
mal peptide binding registers to the total binding affinity
motivates Feature #2. Experimental studies have found
such cases in which a peptide binds with significant affi-
nity to class II MHC in multiple registers [19-21]. In
fact, such peptide binding in multiple registers may be
involved in the origin of autoimmune diseases [22]. The
thermodynamic average in the RTA model insures that
contributions from suboptimal binding registers, which
may be significant, also contribute to the total binding
affinity. Regularization (feature #3) is especially impor-
tant in prediction models that contain a relatively large

number of parameters, such as ours. Regularization is
implemented in RTA using an L1 penalty function, like
in lasso regression [23]. This has the advantage over
alternative penalty functions, such as the L2 penalty
employed in SMM-align, that many coefficients vanish
at lower cutoff values so that the number of model
parameters is reduced. In addition, unlike in many pre-
vious prediction methods, the P1 residue for peptides
binding to HLA-DR is not restricted to be hydrophobic
in the RTA model. Finally, we use deterministic local
optimization methods to fit the model parameters,
which we found to converge to better solutions than
commonly employed stochastic optimization methods.
The RTA prediction method was tested using cross-

validation sets from an SMM-align study [18], for com-
parison with results from 9 different prediction methods
examined in that study, and also using larger cross-vali-
dation sets created from binding data from the IEDB
database [24]. The RTA method was also evaluated using
additional peptide binding data sets from Lin et al. 2008
[25] and El-Manzalawy et al. 2008 [26]. A novel method
to efficiently create data sets with minimal sequence
overlap was developed to create the new cross-validation
sets. The performance of RTA in predicting peptide
binding affinities and in predicting the correct peptide
core binding residues were tested. Finally, we examined
the relative contribution of suboptimal peptide binding
registers to the overall binding affinity.

Methods
Peptide-MHC binding data set
Peptide binding data for the 16 MHC allotypes in Table
1 were downloaded from the IEDB database http://www.
immuneepitope.org[24]. All IC50 values from either
radioactively or fluorescently labeled peptide competi-
tion binding assays were collected. The median value
was used for the few cases in which multiple experimen-
tal values were measured. The total numbers of data for
each allotype are given in Table 1. These datasets were
then divided into minimally overlapping 5-fold cross-
validation sets using the method described in “Creating
independent cross-validation sets”.
Prediction Model
As mentioned above, the prediction of peptide - class II
MHC binding affinity involves not only estimating the
affinity of the bound core portion of the peptide but
also accounting for multiple binding registers. The
model begins with the approximation that the contribu-
tions to the total binding free energy of binding indivi-
dual peptide residues to each MHC pocket are
approximately independent. This assumption has been
tested experimentally [3] and is the basis of matrix-
based prediction methods in which the total peptide-
MHC binding energy is a sum of pocket specific residue
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binding energies [5]. Furthermore, X-ray structures of
peptide - class II MHC complexes show that the 9-resi-
due core bound portions of the peptides adopt similar
backbone conformations so that the total score over an
ungapped 9-residue segment of the peptide sequence is
appropriate.
The peptide-MHC binding data from competition

experiments are given as IC50 values. IC50 is not a direct
measure of binding affinity but it can be related to the
inhibition constant, Ki, through the Cheng-Prusoff equa-
tion

K
IC
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
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[ ]

.
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[L] is the concentration of the free labeled peptide and
Kd is its binding affinity to the MHC molecule [27]. It is
assumed that the labeled peptide concentration is suffi-
ciently low, i.e. [L] = Kd, so that Ki ≈ IC50. This is an
implicit assumption in other prediction methods as well.
According to this approximation, experimental binding
affinities were calculated as ΔGexp = - kT log(IC50), in
which kT is the Boltzmann constant times the absolute
temperature, which is approximately 0.586 kcal/mol at
room temperature.
Each peptide can bind the MHC molecule in different

registers defined by which 9-residue core peptide segment
contacts the MHC. The length of peptide k is denoted by
L(k). The register will be denoted by the index M, which
varies from 0 for the first 9 residues as the core segment
to L(k) - 9 for the last 9 residues as the core segment. The
sequence of peptide k is represented by matrix elements
xi j

k
,
  , which are equal to 1 if residue type j appears at

position i in the peptide sequence and are equal to 0
otherwise. The affinity of peptide k binding to the MHC
molecule in register M is then the linear function
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in which the coefficients bij are to be fit using the
experimental data.
The apparent total binding affinity for peptide k can

be calculated as
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in which fM
k  is the fraction of bound peptides bind-

ing in register M and GM
k  is the affinity for binding

in register M, calculated in the model using Eq. 2. An
entropic contribution to the free energy in Eq. 3 was
omitted because it did not improve prediction perfor-
mance (data not shown). The fraction of peptide bound
in a particular register is related to the binding affinities
in Eq. 2 by
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Table 1 Cross-validation prediction results for the IEDB data sets

MHC allele AUC RMS error
(kcal/mol)

Correlation coefficient Number of data

DRB1*0101 0.749 1.43 0.530 5648

DRB1*0301 0.762 1.46 0.425 837

DRB1*0401 0.715 1.72 0.340 1014

DRB1*0404 0.792 1.38 0.487 617

DRB1*0405 0.757 1.35 0.442 642

DRB1*0701 0.790 1.62 0.484 833

DRB1*0802 0.747 1.34 0.412 557

DRB1*0901 0.711 1.68 0.369 551

DRB1*1101 0.753 1.45 0.450 812

DRB1*1302 0.765 1.64 0.464 636

DRB1*1501 0.736 1.53 0.438 879

DRB3*0101 0.825 1.13 0.425 483

DRB4*0101 0.799 1.33 0.522 664

DRB5*0101 0.732 1.57 0.434 835

H2-IAb 0.828 1.15 0.556 526

H2-IAd 0.814 1.53 0.563 306
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[p(k)], [MHC], and [ pM
k  - MHC] are the concentra-

tions of unbound peptide, unbound MHC and peptide

bound to the MHC in register M, respectively. Kd M

k  

is the dissociation constant for peptide k binding to the
MHC in register M. By combining Eqs. 3 and 4 one
arrives at an expression for the total binding affinity as
an exponentially-weighted average of the affinities for
the peptide binding in different registers
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Many prediction methods for peptide-MHC binding
make the further approximation that the largest binding
affinity dominates the sum in Eq. 5 so that only the lar-
gest binding affinity over all possible registers is
included in the prediction model. Because suboptimal
terms are comparable in magnitude to the optimal term
in many cases, we will retain all terms in Eq. 5.
The final component in the prediction model is regu-

larization. This is needed to avoid overfitting, since the
model contains 180 parameters, which is relatively large
compared to the number of binding data for each MHC
type. Regularization is accomplished by imposing an
upper bound on the L1 norm of the coefficient ampli-
tudes
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with the cutoff parameter t. This type of constraint is
also used in lasso regression [23] and has the desirable
property that as the cutoff t is lowered, an increasing
number of coefficients become zero so that the number
of nonzero parameters in the model is reduced.
By combining these components, the binding affinity

for peptide k, ΔG(k), is calculated as
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The parameters in this model, {bij, i = 1, K, 9, j = 1, K,
20}, are fit to the experimental binding affinities, G k

exp
  ,

by minimizing the mean square error (MSE)
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subject to the constraint in Eq. 6.
Optimization method
To solve the optimization problem minimizing Eq. 8
under the constraint in Eq. 6 one first splits the variable

bij into the difference of two nonnegative variables  ij


and  ij
 , so that bij =  ij

 -  ij
 . The constraint Eq. 6

then has as the left side the sum over both new vari-
ables. Overall one has a linearly constrained nonlinear
and nonconvex optimization problem. In principle, glo-
bal optimization methods would have to be applied to
find the global minimizer. Due to the dimensions of the
problems these would be non-deterministic methods
such as some of the many metaheuristics, which include
simulated annealing and genetic algorithms. These
methods require a large number of evaluations and due
to their stochastic character would have to be run sev-
eral times in order to increase the likelihood of finding
the global optimum, although a guarantee for that is
impossible. After initial tests we decided to instead use
local solvers. These are very efficient and through var-
ious measures the chances of getting very good local
minima can be increased substantially.
Using local solvers with “multistart” or several often

randomly generated starting guesses is another way of
solving global optimization problems. It is also imple-
mented in several software packages. We instead used
simple constant starting guesses. All of our results were
obtained using the constant starting values of 1 or 2 for
all components of b+ and b-. We did, however, use a
sequence of different t values in the regularization con-
straint Eq. 6 and then chose the best (local) minimum
found for the solvers used. It is significant that the best
solutions were obtained with values of the regularization
parameter t that were small enough to restrict the fit bij
values. This shows that the additional L1 constraint in
Eq. 6 helps alleviate overfitting. In order to be able to
easily call a variety of solvers we phrased the problem in
the modeling language AMPL [28]. In order not to have
to list many separate citations we state that we used the
applicable (NLP) solvers installed at NEOS (Network
Enabled Optimization Server, http://neos.mcs.anl.gov/)
but run locally, not through this free service in which
we (HDM) are also heavily involved.
In the way described above we generated the values in

Tables 1 and 2. For Table 3 it was possible to just run
the solver that had best solved the corresponding case
in Table 1 on the data set and evaluate for the test sets.
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We did not use the optimal coefficients found but
applied our method to the full training set in each case.
Creating independent cross-validation sets
The most relevant measure of a prediction model’s
accuracy is how well it performs on novel peptide
sequences that are dissimilar to those used to fit the
model. A model with a large number of parameters,
such as most peptide-MHC binding prediction models,
can potentially overfit the data so that its accuracy is
good on the training set but poor on unrelated peptide
sequences. Cross-validation is one procedure that can be
used to estimate the accuracy of the prediction model
for novel data. We have used 5-fold cross-validation in
which the data is divided into 5 approximately equal
size subsets and predictions are made in turn on each
subset using a model fit to the remaining data in the
other 4 subsets. Because many of the peptide sequences
in the experimental binding data are similar it is impor-
tant to create the cross-validation sets with the fewest
possible sequence similarities between subsets. The
binding data from the IEDB database was divided into
5-fold cross-validation data sets using a method that
minimizes the number of common 9-mer subsequences
shared between different cross-validation sets while
keeping the size of the 5 sets approximately the same
size. The method was able to achieve perfect separation,
i.e. no common 9-mers between sets, for all MHC

allotypes except for HLA-DRB1*0101, which had only 7
common subsequences (0.12%).
We briefly outline the method here; details are given

in Additional File 1. The peptide sequences are first
divided into sets of similar sequences such that every
sequence within a given set shares a common 9-mer
with at least one other sequence in the same set but
does not share any common 9-mers with sequences in
other sets. If these sets are sufficiently small then per-
fectly separated 5-fold cross-validation sets can be cre-
ated simply by partitioning these sequence sets into 5
parts, each part containing sets with approximately 1/5
of the total number of sequences. Because there are no
common 9-mers between sequence sets and because
each sequence set is entirely contained within a cross-
validation set there are no common 9-mers between
cross-validation sets. The only impediment to generating
perfectly separated cross-validation sets, without any
inter-set sequence similarities, is if some of the sets con-
tain more than 1/5 of the sequences and so must be
split.
The peptide sequences are divided into sets sharing

common 9-mers using a graph representation of their
similarities. The nodes in the graph represent sequences
and edges connect nodes for sequences sharing a com-
mon 9-mer. The sequences corresponding to the nodes
in each connected component of this graph are then the
initial sets of similar sequences referred to above. If one
of these connected subgraphs is too large then it needs
to be split in two in a way that minimizes the number
of similar sequence similarities between the two new
parts. Since edges represent sequence similarities, this is
accomplished by finding a graph cut that has few edges
between the two new subgraphs. This graph cut pro-
blem is formulated as the sparsest cut problem in which
the goal is to find a set of nodes S that minimizes the
sparsity sp(S) defined by

sp S
E S S

S S
  

 
 

,

min ,
, (9)

in which the numerator is the number of edges
between nodes in S and nodes outside of S and the
denominator is the minimum number of nodes in either
subset. This measure insures that not only does the cut
cross few edges, it also divides the graph approximately
in half. It would be easy, but not very productive, to
find a cut that separates only one node, for example.
Furthermore we chose to solve this NP-hard problem
using an approximate algorithm based on spectral graph
theory. Although there are alternative algorithms that
achieve tighter worst-case approximation bounds, the
spectral method has worked well in applications. Also it

Table 2 Comparison of prediction results for the RTA
method, described in this article, and the SMM-align
method

AUC

MHC allele RTA SMM-Align Number of data

DRB1*0101 0.748 0.702 1203

DRB1*0301 0.843 0.779 474

DRB1*0401 0.779 0.741 457

DRB1*0404 0.829 0.798 168

DRB1*0405 0.823 0.727 171

DRB1*0701 0.813 0.768 310

DRB1*0802 0.806 0.724 174

DRB1*0901 0.752 0.726 117

DRB1*1101 0.829 0.715 359

DRB1*1302 0.882 0.810 179

DRB1*1501 0.792 0.715 365

DRB3*0101 0.960 0.620 102

DRB4*0101 0.820 0.730 181

DRB5*0101 0.772 0.664 343

H2-IAb 0.926 0.913 76

H2-IAd 0.894 0.819 342

H2-IAs 0.891 0.877 126

The RTA results were calculated using the cross-validation sets from Ref. [18].
The SMM-align results were taken from the same reference.
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is much easier to implement, since it only requires cal-
culating matrix eigenvalues and eigenvectors, for which
we used SVD.
The approximate solution of the sparsest cut problem

is based on the bound on the sparsity

  2
2

22 2     sp S dmax , (10)

in which dmax is the maximum node degree and l2 is
the second smallest eigenvalue of the graph Laplacian
matrix L defined by
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with d(i) the degree of node i.
This bound implies that an efficient cut, with low

sparsity, is guaranteed if l2 is small [29]. Furthermore,
the cut can be found using the associated eigenvector
v2, or so-called Fiedler vector. The cut is defined by
dividing the graph into subgraphs S and S according to
the eigenvector components with

S i cc i
    : ,v 2 (12)

for some cutoff c [30,31]. The approximate solution to
the sparsest cut problem is found by calculating the
sparsity for all |V|-1 such cuts, defined by Sc with cutoff
c equal to each vector component, and choosing the
one with the minimimum sp(Sc).
The overall algorithm to find optimal cross-validation

sets begins by grouping the peptide sequences by simi-
larity according to connected components or, in cases in
which the groups are too large, connected components
split using the spectral partitioning algorithm just
described. The groups only needed to be split for HLA-
DRB1*0101 and only a single iteration of splitting was
necessary. Each group is then iteratively added to the
cross-validation set with the fewest sequences starting
with the largest groups. The total number of pairs of
similar sequences between the training and test sets,
which ideally should be small, is equal to the total num-
ber of edges removed in the sparsest cut portion of the
algorithm. This means that perfect separation is
achieved for all MHC allotypes except for HLA-
DRB1*0101. The generated cross-validation sets are pro-
vided in Additional File 2.

Table 3 A comparison of peptide binding register prediction results for the peptide-MHC complexes listed in Table 5
using RTA and seven other prediction methods

Prediction Method

Class II MHC allotype PDB
entry

RTA ARB MHC2Pred NN-align ProPred RANKPEP SMM-align SVRMHC

DRB1*0101 1AQD ✔ ✘ ✘ ✔ ✔ ✔ ✔ ✔

1DLH ✔ NA ✔ ✔ ✔ ✔ NA ✔

1KLG ✔ ✔ ✘ ✔ ✔ ✔ ✔ ✘

1KLU ✔ ✔ ✘ ✔ ✔ ✔ ✔ ✘

1SJE ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔

1T5W ✔ ✔ ✘ ✔ ✔ ✔ ✔ ✘

2FSE ✔ NA ✘ ✔ ✔ ✔ NA ✘

DRB1*0301 1A6A ✔ ✔ ✘ ✔ ✔ ✘ ✔ NA

DRB1*0401 1J8H ✔ NA ✔ ✔ ✔ ✔ NA ✘

2SEB ✔ NA ✔ ✘ ✔ ✘ NA ✘

DRB1*1501 1BX2 ✔ ✘ ✘ ✔ ✔ ✔ ✔ ✔

DRB3*0101 2Q6W ✔ NA NA ✔ ✔ NA NA NA

DRB5*0101 1FV1 ✔ ✘ ✘ ✔ ✔ ✘ ✘ ✔

1H15 ✔ NA ✘ ✔ ✔ ✘ NA ✔

H2-IAb 1LNU ✔ NA ✘ ✘ NA ✔ NA NA

1MUJ ✔ ✔ ✘ ✔ NA ✔ ✘ NA

H2-IAd 1IAO ✘ ✔ ✘ ✘ NA ✘ ✘ NA

2IAD ✔ ✔ ✘ ✘ NA ✘ ✘ NA

Total correct 17/18 8/11 4/17 14/18 14/14 10/17 7/11 6/12

“✔” indicates a correct prediction and “✘” indicates an incorrect one. “NA” denotes that a prediction is not available either because the method does not have a
prediction model for that MHC type or the method cannot be applied to a peptide shorter than 15 residues.
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Results and Discussion
Binding affinity prediction
The RTA prediction method was evaluated both with
the 5-fold cross-validation sets in the SMM-align refer-
ence [18], so that its performance could be compared
with the results for the 9 different prediction methods
examined in that paper, and also with the generally lar-
ger 5-fold cross-validation sets created using the method
described above, which minimizes the overlap between
training and test set peptide sequences. The prediction
performance was evaluated using the area under the
Receiver Operating Characteristic (ROC) curve [32], or
AUC, the root mean squared error (RMSE), and the
Pearson correlation coefficient. The latter two statistics
were not calculated for the SMM-align data sets because
the data for low affinity binders in those data sets were
assigned a fixed cutoff value, which renders those statis-
tics less meaningful. The prediction results for the new
data sets are given in Table 1 and the results for the
SMM-align data sets are in Table 2.
It may be seen from Table 2 that RTA had better per-

formance than SMM-align on the same data sets for all
MHC allotypes examined. The improvement is espe-
cially large for HLA-DRB3*0101, with an AUC for RTA
of 0.960 compared with only 0.620 for SMM-align.
However this SMM-align data set is exceptional since it
contains only 3 strong binders, with IC50 < 500 nM, and
has the highest percentage (85%) of thresholded low-
affinity values (IC50 > 50 μM).
Ref. [18] also provides AUC values obtained by 8

other prediction methods applied to the same SMM-
align data sets. The methods examined were a Gibbs
sampler [12], TEPITOPE [5,6], SVRMHC [33],
MHCpred [10], ARB [8], NetMHCII [34], PREDBALB/c

[35], and a variant of SMM-align that includes informa-
tion on the peptide length and flanking residues called
SMM-PRF [18]. A total of 4 of the methods could make
predictions for all 14 HLA-DR allotypes, while 3 other
methods could only be used for a subset of these allo-
types. Only NetMHCII could be used for all 3 murine
allotypes while two other methods, ARB and PREDBALB/

c, could be applied to some of these allotypes. Overall,
RTA was more accurate than the other 8 prediction
methods. RTA yielded the same AUC value as TEPI-
TOPE for HLA-DRB1*0404 and the same value as ARB
for HLA-DRB1*1501. It gave a lower AUC value than
one of other the other methods only for HLA-
DRB1*0901, HLA-DRB1*1302, and H2-IAs. Significantly,
RTA yielded the highest AUC values for all 9 methods
examined in that study for 14 out of the 17 allotypes,
even though 6 of the methods were evaluated without
cross-validation so that some of the training data may
have been included in the test sets.

In general, the AUC values for the IEDB data sets are
slightly lower than for the corresponding SMM-align
data sets for the same MHC allotypes. One factor that
likely contributes to this difference is that the composi-
tion of the IEDB and SMM-align data sets are quite dif-
ferent. Whereas the median percentage of low affinity
peptides, with IC50 > 50 μM, in the IEDB data set is
only 1.5%, it is 52% for the SMM-align sets. One com-
mon trend between the results for the IEDB and SMM-
align data sets is that the AUC for the murine MHC
allotypes is generally higher than for the human ones.
The RTA prediction results for the IEDB data sets

were not compared with results using other prediction
methods because these other methods were fit to pep-
tide-MHC binding data that likely significantly overlap
the IEDB data, especially considering that IEDB is one
of the most comprehensive databases. The occurrence
of similar test set data in the training data can signifi-
cantly increase the apparent prediction accuracy, leading
to overly optimistic accuracy estimates. In the extreme
case in which the RTA model was trained on both the
training and test set data, close to perfect AUC values
of > 0.995 were obtained (data not shown). This also
emphasizes the importance of using minimally similar
training and test data sets in order to reliably estimate
the prediction accuracy for novel peptide sequences.
The IEDB cross-validation sets, created using the algo-
rithm described above, had no overlap at all, defined by
identical 9-residue segments, for all but one MHC allo-
type. Likewise, the SMM-align cross-validation data sets
used for comparison with that method had low overlap
of about 0.5-2%. Finally, we point out that using more
cross-validation sets, will allow a larger fraction of the
limited data to be used for training but it will also gen-
erally increase the overlap between corresponding train-
ing and test sets. In the extreme case of leave-one-out
cross-validation this overlap will be large, leading to
overly optimistic performance estimates, unless all simi-
lar peptide sequences are removed.
The RTA method was also evaluated by making pre-

dictions for the peptide binding data in Lin et al. 2008
[25]. That study evaluated 21 class II MHC binding pre-
diction servers using binding affinity data for 103 pep-
tides binding to seven different allotypes. The peptides
comprise overlapping segments of four allergens and
were chosen as an unbiased test set for comparing dif-
ferent binding prediction methods. RTA predictions
were made for all allotypes except for HLA-DRB1*0301,
for which insufficient binding data was available for
training. The prediction performance, as evaluated by
AUC values, is shown in Table 4. A comparison with
the results for the prediction servers in Ref. [25] shows
that RTA yields among the most accurate results for
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HLA-DRB1*0101, DRB1*0301, DRB1*0701, and
DRB1*1501 and about average results for HLA-
DRB1*0401 and HLA-DRB1*1101. One potential uncer-
tainty in this evaluation is how many of the peptides in
this test set were used to train the individual prediction
methods. As mentioned above, significant overlap
between the test and training sets is expected to give an
overly optimistic assessment of accuracy. This problem
can be reduced through cross-validation, however this
procedure is infeasible for evaluating prediction servers
on the Internet.
Finally, the RTA method was evaluated using the

IEDB similarity reduced data sets from El-Manzalawy et
al. 2008 [26]. These data sets were compiled from bind-
ing data downloaded from the IEDB database by remov-
ing similar peptides at different similarity thresholds:
unique sequences (UPDS), no common 9-mer subse-
quences (SRDS1), and pairwise sequence identity < 80%
(SRDS2). The prediction results for RTA as well as the
three prediction methods evaluated in Ref. [26] are
given in Tables S1-S3 in Additional File 3. These results
show that the RTA method performed significantly bet-
ter than the other three prediction methods. RTA had
the highest AUC out of all four methods for 9/12 MHC
allotypes for the UPDS data set and the highest AUC
for all 12 MHC allotypes for both the SRDS1 and
SRDS2 sets.
Peptide binding register prediction
The peptide-MHC binding prediction model is based on
the observation in X-ray structures of complexes that
only a portion of the peptide binds to the MHC. The
model predicts peptide binding at ambient temperature
by summing the contributions of all possible 9-mer seg-
ments binding to the MHC. The difference between the
binding affinity of the strongest binding 9-mer segment
and that of other possible binding segments will be lar-
ger at the low temperatures used to determine X-ray
structures and presumably is represented in the struc-
ture of the complex. The available X-ray structures of
peptide-MHC complexes can be used to check this
assumption by comparing the prediction of the binding
register, defined by the largest term in the Boltzmann-

weighted average in Eq. 7, with the actual binding regis-
ter observed in the X-ray crystal structure. The peptide
binding registers inferred from the X-ray structures pro-
vide additional experimental data that is unrelated to
the binding affinity data and so allow an independent
estimate of the model’s accuracy. Finally, we note that
there has been some confusion in the literature since
the sequence of the peptide appearing in the X-ray crys-
tal structure may in fact be different from the sequence
of the actual co-crystallized peptide. This is because the
peptide N- and C-termini may be disordered and so
missing from the structure. In addition, some peptide
residues with disordered side chains are modeled as ala-
nines in the structure. Because of this potential discre-
pancy the peptide sequences in Table 5 were obtained
from papers reporting the PDB structures rather than
the structure itself.
Peptide binding register predictions were made for all

unique peptide-MHC complexes with available X-ray
structures. These are shown in Table 5. The 9-mer seg-
ment in the structure begins with the residue binding in
the P1 pocket and the predicted 9-mer segment extends
from residue Mmax +1 to Mmax + 9 in which Mmax is
the M index of the largest term in the Boltzmann sum
appearing in Eq. 7. All peptides similar to those for
which the predictions were made were removed from
the training set. The results showed that the RTA

Table 4 RTA prediction results for the test set of 103
overlapping antigen peptides from Lin et al. 2008(Ref.
[25])

MHC allele AUC

DRB1*0101 0.810

DRB1*0301 0.778

DRB1*0401 0.641

DRB1*0701 0.778

DRB1*1101 0.728

DRB1*1501 0.795

Table 5 Available X-ray structures of peptide - class II
MHC complexes in the Protein Data Bank.

MHC Allele PDB Entry Peptide Sequence

DRB1*0101 1AQD VGSDWRFLRGYHQYA

DRB1*0101 1DLH,
2G9H

PKYVKQNTLKLAT

DRB1*0101 1KLG GELIGILNAAKVPAD

DRB1*0101 1KLU GELIGTLNAAKVPAD

DRB1*0101 1SJE PEVIPMFSALSEGATP

DRB1*0101 1T5W AAYSDQATPLLLSPR

DRB1*0101 2FSE AGFKGEQGPKGEPG

DRB1*0301 1A6A LPKPPKPVSKMRMATPLLMQALPM

DRB1*0401 1J8H PKYVKQNTLKLAT

DRB1*0401 2SEB QYMRADQAAGGLR

DRB1*1501 1BX2 ENPVVHFFKNIVTPR

DRB3*0101 2Q6W AWRSDEALPLGS

DRB5*0101 1FV1 NPVVHFFKNIVTPRTPPPSQ

DRB5*0101 1H15 GGVYHFVKKHVHES

H2-IAb 1LNU FEAQKAKANKAVD

H2-IAb 1MUJ LPKPPKPVSKMRMATPLLMQALPM

H2-IAd 1IAO RGISQAVHAAHAEINEAGR

H2-IAd 2IAD RGHNTNGVTAASSHE

The 9-residue core segment of the peptide that binds to the MHC molecule,
which begins with the P1 residue, is highlighted in boldface in the peptide
sequence. These structures show which peptide segment binds to the MHC
molecule and so are used to evaluate how well the RTA method predicts the
correct peptide binding register.
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method predicted the peptide binding registers accu-
rately. The predictions for all peptides in Table 5 were
correct except for one, the peptide RGISQAVHAA-
HAEINEAGR binding to H2-IAd from PDB entry 1IAO.
Interestingly, the core segment for the CLIP peptide is
the same for binding to both HLA-DRB1*0301 (PDB
entry 1A6A) and H2-IAb (PDB entry 1MUJ), as has
been observed for most other human and murine MHC
allotypes [36,37]. CLIP binds to all class II MHC mole-
cules as an intermediate step in MHC processing and
peptide loading.
For comparison, peptide binding register predictions

were made for the peptide-MHC complexes listed in
Table 5 using seven other prediction methods imple-
mented as web servers: ARB [8], MHC2Pred [38], NN-
align [39], ProPred [6], RANKPEP [9], SMM-align [18],
and SVRMHC [33]. Each of these methods uses differ-
ent computational approaches to predicting peptide-
MHC binding affinities. ARB, ProPred, and RANKPEP
use position specific scoring matrices (PSSMs),
SVRMHC and MHC2Pred use Support Vector
Machines (SVMs), NN-align uses artificial neural net-
works (ANNs), and SMM-align uses a combination of
scoring matrices and a novel Gibbs sampler method
[12]. The overall prediction results for RTA and these
other methods are given in Table 3. The performance of
the different prediction methods could not be directly
compared since most methods could not be applied to
all peptide-MHC complexes. However, RTA is clearly
among the most accurate methods for this data set, with
17 out of the 18 peptide binding cores correctly pre-
dicted. A recent study by Wang et al. [40] performed a
similar analysis using an overlapping but slightly differ-
ent set of peptide-MHC complexes and obtained quali-
tatively similar results for the same prediction methods
examined in that study. That study concluded that the
TEPITOPE method [5], as implemented by the ProPred
web server [6], achieved the best overall performance.
We found similar results, with only RTA and ProPred
correctly predicting all 14 HLA-DR peptide binding reg-
isters. NN-align achieved similar performance with 13
correctly predicted HLA-DR peptide binding cores. Sig-
nificantly, some prediction methods, which generally
attain accuracies that are comparable to or better than
the earlier TEPITOPE method in predicting peptide
binding affinities, had significantly worse accuracy than
TEPITOPE in predicting the peptide binding cores. This
demonstrates that a prediction model that achieves high
accuracy for peptide binding affinity does not necessarily
achieve corresponding high accuracy for predicting the
peptide binding core. The fact that our RTA method
does perform well for both prediction tasks suggests
that the underlying approximate physical model for the

contribution of each binding register to the total binding
affinity is correct and accurate.
Importance of suboptimal terms in the Boltzmann sum
A common approximation in other prediction models,
such as TEPITOPE, is to use only the peptide binding
register with the highest affinity and so neglect the con-
tributions of suboptimal binding registers. Under this
approximation Eq. 7 would become

G xk
M L k ij i M j

k

ji

 
    

 



 arg max ., , ,0 9
1

20

1

9

  (13)

This approximation is accurate if only one term domi-
nates the Boltzmann average in Eq. 7. In order to esti-
mate the importance of the suboptimal terms included in

our model, we calculated the ratios T Ti
i

1  and |T2/

T1|, in which Ti are the terms in the Boltzmann sum in
Eq. 7 ordered so that |T1| ≥ |T2| ≥ L ≥ |TL-8|. T1 (T2) are
then the terms with the largest (2nd largest) absolute
values. Both ratios vary from 0.0 to 1.0. These ratios were
calculated for the largest IEDB data set, containing 5648
peptides binding to HLA-DRB1*0101. A low value of

T Ti
i

1  indicates that suboptimal terms make a sig-

nificant contribution to the sum so that the approxima-
tion using only the optimal term is inaccurate. The
cumulative distribution of this quantity is shown in Fig-
ure 1(a). For example, suboptimal terms contribute at
least 50% to the Boltzmann sum for about 20% of the
peptide sequences. Likewise Figure 1(b) shows the cumu-
lative distribution for the relative contribution of the
leading suboptimal term relative to the optimal term, |
T2/T1|. For example, it can be seen that this ratio is
greater than 0.4 for about 40% of the sequences. The
ratios for other data sets are expected to have a similar
distribution. To the extent that these predicted values are
accurate, the distributions of these ratios indicate that
suboptimal terms make significant contributions to the
total binding affinity for many peptides so that the
assumption that only one binding register dominates is
incorrect for these peptides. The error in the predicted
binding affinity for these peptides in a prediction model
including only the optimal term may not be as large as
expected since the model parameters are fit directly to
experimental binding affinities and so the model may
compensate to some degree for the contribution of miss-
ing suboptimal terms. In any case, to the extent that
these estimates of the contributions of suboptimal terms
are correct, prediction models, such as RTA, that incor-
porate these terms are expected to be more accurate.
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Conclusions
The prediction results for the RTA method show (1)
that suboptimal peptide binding registers make a signifi-
cant contribution to the total peptide binding affinity
for many peptides, (2) regularization with the L1 para-
meter constraint improves prediction accuracy for novel
data, (3) the method achieves good accuracy in predict-
ing peptide-MHC binding affinities with generally higher
AUC values than other prediction methods evaluated on
the same data sets, and (4) the method accurately pre-
dicts the 9-residue binding core for all but one out of

18 peptide-MHC complexes examined. While peptide-
MHC binding affinities can be quickly calculated using
Eq. 7, the efficient solution of the difficult global optimi-
zation problem for fitting parameters using local optimi-
zation methods contributed to the success of the
method. The accuracy of the method is expected to con-
tinually improve as more experimental binding data
become available, particularly for certain MHC allotypes
with limited current data.
One direction for future work is to extend the RTA

model to a multi-allotype model by including another

Figure 1 the cumulative distribution of the magnitudes of terms in the Boltzmann sum. (a) shows the cumulative distribution of the

magnitudes of the ratio of the largest term in the Boltzmann sum in Eq. 7 to the total sum, T Ti
i

1  . (b) shows the cumulative distribution

of the magnitudes of the second largest term to the largest term in the Boltzmann sum, |T2/T1|. The distributions were calculated using the 5648
peptides in the IEDB data set for HLA-DRB1*0101.
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parameter dimension reflecting the MHC peptide bind-
ing determinants, either through unique binding pock-
ets, as in TEPITOPE, or through polymorphic pocket
residues, as in NetMHCIIpan [41]. Another possible
extension is to include interaction terms for nearby pep-
tide residues. The approximation that contributions of
individual peptide residues to the total binding free
energy are largely independent is supported by side
chain scanning experiments [3] and by the accuracy of
prediction models, such as RTA, that are based on this
approximation. However, recent experimental studies
[42,43] have found evidence for cooperative effects
between peptide residues so that additional pairwise
interaction terms may improve prediction accuracy.
Both of these modifications will significantly increase
the number of model parameters, making regularization
even more crucial for prediction accuracy.

Additional file 1: Detailed description of the algorithm for creating
cross-validation data sets with minimal peptide sequence overlap.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
41-S1.PDF ]

Additional file 2: This zip archive contains tab-separated files with the
5-fold cross-validation sets for 16 different MHC allotypes created for this
study and also a separate text file describing the table format.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
41-S2.ZIP ]

Additional file 3: Tables S1-S3 present the prediction results for the
IEDB benchmark sets from El-Manzawaly et al. 2008 [26]. Prediction
accuracies are given for RTA as well as the three prediction methods
studied in that paper.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
41-S3.PDF ]
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