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Abstract

Background: At present, the organization of system modules is typically limited to either a multilevel hierarchy
that describes the “vertical” relationships between modules at different levels (e.g, module A at level two is
included in module B at level one), or a single-level graph that represents the “horizontal” relationships among
modules (e.g., genetic interactions between module A and module B). Both types of organizations fail to provide a
broader and deeper view of the complex systems that arise from an integration of vertical and horizontal
relationships.

Results: We propose a complex network analysis tool, Pyramabs, which was developed to integrate vertical and
horizontal relationships and extract information at various granularities to create a pyramid from a complex system
of interacting objects. The pyramid depicts the nested structure implied in a complex system, and shows the
vertical relationships between abstract networks at different levels. In addition, at each level the abstract network of
modules, which are connected by weighted links, represents the modules’ horizontal relationships. We first tested
Pyramabs on hierarchical random networks to verify its ability to find the module organization pre-embedded in
the networks. We later tested it on a protein-protein interaction (PPI) network and a metabolic network. According
to Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG), the vertical relationships
identified from the PPl and metabolic pathways correctly characterized the inclusion (i.e., part-of) relationship, and
the horizontal relationships provided a good indication of the functional closeness between modules. Our
experiments with Pyramabs demonstrated its ability to perform knowledge mining in complex systems.

Conclusions: Networks are a flexible and convenient method of representing interactions in a complex system,
and an increasing amount of information in real-world situations is described by complex networks. We considered
the analysis of a complex network as an iterative process for extracting meaningful information at multiple
granularities from a system of interacting objects. The quality of the interpretation of the networks depends on the
completeness and expressiveness of the extracted knowledge representations. Pyramabs was designed to interpret
a complex network through a disclosure of a pyramid of abstractions. The abstraction pyramid is a new knowledge
representation that combines vertical and horizontal viewpoints at different degrees of abstraction. Interpretations
in this form are more accurate and more meaningful than multilevel dendrograms or single-level graphs. Pyramabs
can be accessed at http://140.113.166.165/pyramabs.php/.

Background

Networks provide a natural representation for the com-
plex interactions of heterogeneous entities in complex
systems. Many complex networks have been studied in
recent years, for example in the fields of biology, sociol-
ogy, and ecology [1-4]. As high-throughput techniques
have advanced, biological networks have become
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increasingly complex, and it has become more challen-
ging to interpret them accurately and clearly by extract-
ing and representing the knowledge embedded in the
networks.

The concept of modularity has a long history in biol-
ogy; for example, it has been proposed that biological
processes within individual cells are modular [5,6]. Mod-
ule-level studies have accelerated the progress of system
biology, e.g., modular organizations of cellular networks,
module-level analyses in gene networks, and modular
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network models of aging [7-9]. One common approach
to mining complex networks based on modularity is
first to identify modules as knowledge building blocks,
and then to use their organization to depict the knowl-
edge contained in the networks. However, most module
organizations are limited to either a “vertical” or “hori-
zontal” representation. A vertical relationship is repre-
sented by a multilevel dendrogram that only describes
the inclusion/part-of relationships between modules at
different hierarchical levels [4,10,11], and the horizontal
relationship is a single-level graph that only shows how
modules are connected [7-9]. Neither of them provides
an integrated view of the complex systems they repre-
sent; consequently, it is difficult to further explore these
complex domains. In this work, we combine vertical and
horizontal relationships in order to organize the mod-
ules into a multilevel pyramid, as illustrated in Figure 1.
At each level, we describe the horizontal relationships
by a network of modules that is by itself the abstraction
of the network at a lower level [3]. In contrast, the verti-
cal relationships, shown as links between layers, repre-
sent the inclusion relationship between modules at
different levels. Using an abstraction pyramid, not only
can domain experts gain a global multilevel view of a
complex system from two different perspectives (hori-
zontal and vertical), but they can also investigate the
interconnection of the modules at a particular abstrac-
tion level of interest in the hierarchy.
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Figure 1 lllustration of vertical and horizontal relationships.
Each circle represents a module. Vertical relationships and horizontal
relationships are denoted by dashed lines and solid lines,
respectively. The thickness of a solid line increases with the
importance of the connection. The original network is at the
bottom (Level 4). Higher-level networks are an abstraction, to a
certain degree, of the next lowest network.
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Our approach, named Pyramabs (Pyramid of abstrac-
tions), identifies the modules and simultaneously con-
structs the pyramid based on the network topology.
Prior domain knowledge is not used. We tested Pyra-
mabs on artificial random networks, a protein-protein
interaction network, and a metabolic network. We com-
pared Pyramabs with other methods and verified our
results based on those published in the literature and
public databases.

Results

The two overarching goals of our work are to (1) pro-
pose an alternative knowledge representation for
improved network interpretations, and (2) introduce a
novel approach for extracting knowledge from networks
and describing it using the new representation. The
abstraction pyramid discovered by Pyramabs does not
replace the known structure of ontology (e.g., the Gene
Ontology (GO)), but instead provides other information
that may be missing. For example, an abstraction pyra-
mid identified from a protein-protein interaction net-
work could illuminate the protein interactions at various
levels. Some vertical or horizontal relationships can pro-
vide additional biological meaning that may not be char-
acterized in the GO’s Directed Acyclic Graph (DAG)
structure.

We divide the analysis of complex networks into two
tasks: module discovery and module organization. The
novelty of our two-way approach is derived from the
synergy of top-down and bottom-up clustering algo-
rithms. This method identifies modules in a top-down
fashion and constructs a hierarchy implied in a complex
network from the bottom up. In addition, it produces
an abstraction of the network to different degrees at dif-
ferent levels in the hierarchy. Our method can be
divided into three procedures: (1) computing the proxi-
mity between nodes; (2) extracting the backbone from
the network, represented by a spanning tree, and then
partitioning the network based on that backbone; and
(3) generating an abstract network. By iteratively apply-
ing the same procedures to a newly generated abstract
network, we can disclose an abstraction hierarchy
implied in a complex network. The Pyramabs flowchart
provided in Figure 2 includes the following steps:

Step 1. Input a given network of nodes to Pyramabs.
Step 2. Calculate the proximity between all pairs of
nodes and use as the link weights.

Step 3. Normalize the proximity by computing the
z-scores; then discard the links with a z-score below
a specified threshold to reduce the search space of
the network.

Step 4. Obtain the maximum-weight spanning tree
from the network and use as the backbone.
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Step 5. Partition the network into modules based on
its backbone.

Step 6. Construct a network of the modules found in
Step 5. This network forms a hierarchical level of a
pyramid.

Step 7. If the network produced in Step 6 contains
more than one node (i.e., one module), go to Step 2
to find a higher hierarchical level.

Step 8. Otherwise, return the pyramid.

We conducted a series of experiments that applied our
approach to datasets from various domains, including
artificial and real-world data. Following Sales-Pardo
et al. [4], we first tested our approach on hierarchically
nested random networks with a hierarchical structure.
Since the theoretical partition is known in these net-
works, we can use the results to validate our method’s
ability to identify the inclusion hierarchy implied in the
network. Furthermore, to evaluate the method’s general-
ity and its applicability to real-world problems, we tested
it on several real-world datasets with different character-
istics: protein-protein interactions, metabolic pathways,
and social networks [see Additional file 1]. The experi-
mental results indicated that this new method could not
only uncover the inherent hierarchy and the significant
modules in a complex network, but could also provide
different degrees of abstraction of the network.

Hierarchically nested random networks: inclusion
hierarchy

We verified the ability of Pyramabs to uncover the
inclusion hierarchy within an ensemble of random net-
works proposed by Sales-Pardo et al. [4]. There are
three levels in the hierarchy, illustrated in Figure 3(A).
The top level (level 1) comprises four modules of 160
nodes each. Each top-level module is organized into

four sub-modules of 40 nodes each (level 2). Every
level-2 module is further divided into four level-3 mod-
ules of 10 nodes each. After assigning the nodes to
modules, following Sales-Pardo et al., we drew an edge
between pairs of nodes that have a larger probability of
both nodes being assigned to a higher-level module. The
probability thus implied a horizontal relationship
between nodes. An example random network is shown
in Figure 3(B). When tested on 30 randomly generated
three-level 640-node artificial networks, Pyramabs per-
formed as well as box clustering [4], and better than a
standard module-finding algorithm based on the edge
betweenness and modularity measure [12,13] (Figure 3
(C)). The density of the random networks tested was
0.0225. To investigate the effect of density on the per-
formance of Pyramabs, we varied the network density by
randomly removing links; these results are shown in Fig-
ure 3(D). As the density decreased, the mutual informa-
tion decreased as expected. Nevertheless, Pyramabs
could still find the correct hierarchy from the random
networks with densities between 0.0225 and 0.0169. The
mutual information did not drop noticeably until the
graph density fell below 0.0141.

To increase efficiency, Pyramabs reduces the search
space using a z-score threshold to filter out “weak”
links; the tradeoff is a loss of information. We con-
ducted a series of experiments on random networks,
using z-score thresholds ranging from -2 to 2, to evalu-
ate their effect on the results. Pyramabs identified the
correct hierarchy with threshold values of -2, -1, -0.5,
and 0 (Figure 3(E)). As we further increased the thresh-
old, some supernodes became isolated due to their lim-
ited number of links. These experiments illustrated a
limitation of Pyramabs that the information loss caused
by a low network density or a high z-score threshold
has greater influence at the higher levels in the
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Figure 3 Validation of two-way module-finding-hierarchy-building strategy. Pyramabs was validated using 640-node hierarchically nested
random networks. (A) The pre-specified nested structures of the random network. (B) An example of a 640-node hierarchically nested random
network. Thirty random networks were generated for validation using various values for parameter p, which controls the probability that an
edge between nodes i and j exists. The smaller the value of p, the more cohesive the levels (see Supporting Information of [4]). (C) The
measured accuracy based on the mutual information between the predicted and the real partitions. The accuracy averaged over 30 random
networks is provided in the histogram, and shows that Pyramabs was comparable to box clustering, and performed better than the standard
module-finding algorithm based on edge betweenness and a modularity measure of the GN algorithm [12,13]. (D) The performance of Pyramabs
depending on density. (E) The performance of Pyramabs depending on z-score threshold values.

hierarchy, as seen in Figure 3(D) and 3(E). Based on
these test results, we set the z-score threshold to zero
for the remaining experiments. Because the optimum
threshold balancing efficiency and accuracy will vary
depending on the network and may not be known
beforehand, we made the threshold a user-specified
parameter in Pyramabs, with a default value of zero.

Analysis of a Protein-Protein Interaction Network

We tested Pyramabs on the yeast core protein interaction
network previously investigated in [14,15]. The network
consists of 2440 proteins connected by 6241 links. As a
result of running Pyramabs, we discovered a hierarchy of
five abstraction levels. The numbers of modules at each
level were 207, 72, 16, 3, and 1; for the 5™ (bottom) level
to the 1% (top) level, respectively. We evaluated the biolo-
gical significance of the identified modules based on the
Gene Ontology (GO) biological process annotations,
using the GO Term Finder of SGD (Saccharomyces Gen-
ome Database, http://www.yeastgenome.org/). The GO
Term Finder calculates a p-value that reflects the prob-
ability of observing the chance co-occurrence of proteins
with a given GO annotation in a certain module. The
smaller the p-value, the more consistent the module is
with the GO annotations. We used a random assignment
of the pool of proteins in the PPI network as the null
model. The p-value results are presented in Table 1. We

included the results of Luo et al. [14] and Raddichi et al.
[15] for reference only, as neither study was capable of
extracting a hierarchy from a complex network. To com-
pare the hierarchy detection, we tested the same network
using Sales-Pardo et al.’s box clustering [4].

From Table 1, it is seen that the average p-value
decreased at higher levels. This suggested that the verti-
cal relationships in the hierarchy identified by Pyramabs
correctly corresponded to the GO hierarchy, since the
modules at lower levels correctly merged into larger
modules at higher levels. Note that the average cluster
sizes at levels 2 and 3 (723 and 152) in our pyramid are
much greater than the average level 2 cluster size using
box clustering (26). With a closer examination of our
level 4 compared with level 3 in box clustering, we
found that the total number of clusters was similar (72
vs. 77), as was the average cluster size (34 vs. 26). We
further compared these 72 modules with the 77 mod-
ules, and found there were a significant number of com-
mon module member proteins. The average overlap was
over 80%. Based on these findings, Pyramabs was proven
to be more useful for disclosing higher-level module
organizations than was box clustering. On the other
hand, when comparing the bottom level in both hierar-
chies, our average cluster size was larger (10 vs. 5). This
suggests that box clustering has a greater tendency to
partition modules into smaller ones than does Pyramabs.
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Table 1 Summary of biological significance of modules
based on GO biological process annotations

Total Clusters Avg. Avg.

Cluster Size p-value

Pyramabs 3 723 2.69E-32
(Level 2)

Pyramabs 16 152 2.59E-20
(Level 3)

Pyramabs 72 34 2.58E-14
(Level 4)

Pyramabs 221 10 5.00E-08
(Level 5)

Luo et al? 86 19 9.74E-14

Raddichi et al? 155 13 3.82E-13

Sales-Pardo et al. 77 26 5A45E-14
(Level 2)P

Sales-Pardo et al. 101 11 8.24E-11
(Level 3)°

Sales-Pardo et al. 88 8 6.86E-07
(Level 4)b

Sales-Pardo et al. 12 5 2.12E-04
(Level 5)°

®Both Luo et al.s and Raddichi et al.’s methods could only identify single-level
modules.

PIn Sales-Pardo et al.'s method, a higher-level module will not necessarily be
further partitioned into lower-level sub-modules. Thus, the number of
modules does not necessarily increase as the level goes down (e.g., 88
modules at level 4, but only 12 modules at level 5).

We also analyzed the horizontal relationship in the
abstract network at each level to ascertain its ability to
characterize biological meaning. The proximity between
two supernodes (modules) in an abstract network, as
defined in Eq. [3] (see Methods), reflects the significance
of the relationship between the nodes. For example,
assume there are two pairs of nodes in the abstract net-
work, (a, b) and (c, d), for which there is greater proxi-
mity between 4 and b (denoted by P,;) than there is
between ¢ and d (denoted by P.,). Thus, P,;, >P., and a
and b have a closer relationship to each other than ¢
and d. We assume that if 2 and b are related biologi-
cally, then the p-value calculated by the GO Term Fin-
der will decrease after we merge a and b. Therefore, if a
and b are closer to each other biologically than c is with
d, then the ratio of decrease in the p-value calculated by
the GO Term Finder after merging a and » would be
larger than that after merging ¢ and d. The ratio of
decrease in p-value is defined as:

p — DecreaseRatio(pv ,, pvy)
_ min(pvg,prp)=prab
min(pvg,pp)

where pv, and pv, are the p-values of nodes a and b
calculated by the GO Term Finder, and pv,, is the
p-value of the new node consisting of 2 merged with b.
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We used min(pv,, pvy) in the definition, so a positive
p-DecreaseRatio indicates that pv,;, is smaller than both
pv, and pv,, i.e, the merge of a and b is more biologi-
cally significant than either 4 or b.

In our analysis of protein-protein interactions, we veri-
fied whether a4 and b actually had a closer biological
relationship than ¢ and d when P,, >P_; this was
accomplished by evaluating the change in p-value calcu-
lated by the GO Term Finder before and after the node
(module) merging. We ran a sign test on the abstract
network at each level in the hierarchy, and we found a
significantly greater number of positive cases in which
the ratio of the p-value decrease after merging 4 and b
was larger than that after merging ¢ and d, when P,
>P.; (at the significance level 0.01). These results
demonstrated the feasibility of applying a horizontal
relationship measured by proximity to the characteriza-
tion of closeness in biological functions.

Due to the complexity of Figure 4(A), we show the
backbone of the abstract network at levels 4 and 5 in
the hierarchy instead of the complete abstract networks.
The biological meaning behind the pyramid structure
represents how these proteins relate and interact at dif-
ferent hierarchical levels. One example, marked by two
red circles of the vertical relationship, was selected for
further study, and involved one level-4 module and five
level-5 modules, as detailed in Figure 4(B). We also
selected one example of the horizontal relationship for
further analysis, marked by a red rectangle. This
included four level-5 modules, described in Figure 4(C).
The vertical relationships corresponded correctly to the
GO hierarchy, and the strength of the horizontal rela-
tionships provides a good indication of the functional
closeness between protein modules.

Analysis of a Metabolic Network
Thousands of components in a living cell are dynami-
cally interconnected within a complex network that
determines the cell’s functional properties [5,16]. One of
the primary examples is cellular metabolism arising
from sophisticated biochemical networks, in which
numerous metabolites are integrated through biochem-
ical reactions. To facilitate the identification and charac-
terization of system-level features in biological
organizations, we can partition cellular functionality into
a collection of modules and organize them in a hierar-
chy [11]. We tested Pyramabs on the metabolic network
of E. coli that was used previously [4]. This network
contained 507 nodes and 947 links, where each node
represented a metabolic substrate, and each link
described a reaction.

In KEGG [17], metabolic pathways are classified into
11 categories: Carbohydrate, Energy, Lipid, Nucleotide,
Amino acid, Other amino acid, Glycan, PK/NRP,
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Figure 4 Vertical relationship between levels 4 and 5, and horizontal relationships among modules at levels 4 and 5 in PPl Network.
(A) The vertical relationship is visualized by dashed green links, and the horizontal relationships at levels 4 and 5 are shown by the solid blue
and solid gray links, respectively. With horizontal relationships at the same level, modules enriched by the same annotation category are linked
with thicker and darker lines. In contrast, with vertical relationships between different levels, modules enriched by the same annotation category
are often merged into a larger module at a higher level. This suggests that Pyramabs can produce a meaningful abstraction hierarchy from the
PPI network that corresponds well to known biological processes. (B) The discovered vertical relationships for the five level-5 modules, indexed
by 80-83 and 70, which combined to module 46 at level 4. Note that the p-value (next to dashed line) for module 46 at level 4 is much smaller
than that for each of the modules (80-83 and 70) at level 5. This justified the merge of these modules into a higher-level module. (C) There is
greater proximity between modules 267 and 91 than between modules 91 and 84 and between 91 and 172, as indicated by the thickness and
darkness of the links. By merging modules 267 and 91 into a new module, we noted a drop in p-value by 49.49%. Compared with combining
modules 91 and 84 (19.76% drop in p-value) or modules 91 and 172 (3.17% drop in p-value), the greater proximity between modules 267 and

91 in the horizontal relationship correctly demonstrates their greater functional similarity.

Cofactor/vitamin, Secondary metabolite, and Xenobio-
tics. Each category consists of several sub-categories
(e.g., nucleotide metabolism includes purine metabolism
and pyrimidine metabolism). In addition to the KEGG
PATHWAY classifications, KEGG also provides Pathway
Modules that are specifications of sub-networks corre-
sponding to tighter functional units. Following previous
work [18-20], we evaluated the biological relevance of a
module by conducting an enrichment analysis based on
the KEGG annotation categories. Likewise, we used the
hypergeometric distribution to obtain a p-value for the
fraction of metabolites in each module associated with an
annotation category of KEGG; this was used to measure
the within-module consistency of metabolic pathway clas-
sification. The p-values were calculated according to the
KEGG PATHWAY category, PATHWAY sub-category,
and Pathway Module, respectively. The results are

summarized in Table 2. For comparison, we tested the
same network using box clustering [4], with results shown
in Table 3. From these results, we noted that both the
total number of clusters and the average cluster size were
similar between the Pyramabs level 3 and the box cluster-
ing level 2 (26 vs. 28 for the number of clusters, and 20 vs.
18 for the average cluster size). However, the average clus-
ter size in the Pyramabs level 2 was much larger than that
in the box clustering level 2 (85 vs. 18). This demonstrated
that Pyramabs identified one additional higher level in the
module organization than did box clustering. We also
observed that the average cluster size for levels 3, 4, and 5
for the box clustering was smaller than that for Pyramabs’
bottom level (3 vs. 5). Similar to the findings in the PPI
network, these results suggest that box clustering is more
likely to produce organizations of smaller modules in the
hierarchy compared with Pyramabs. This analysis suggests

Table 2 Summary of the within-module consistency of metabolic pathway classification by Pyramabs based on KEGG

Total Clusters Avg. PATHWAY Category PATHWAY Pathway
Cluster Size Avg. p-value Sub-category Module

Avg. p-value Avg. p-value
Level 2 6 85 4.77E-12 4.79E-15 1.57E-07
Level 3 26 20 4.27E-07 471E-12 4.15E-08
Level 4 104 5 2.06E-03 3.68E-06 4.79E-05

We do not show level 1, which has only one cluster.
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Table 3 Summary of the within-module consistency of metabolic pathway classification by Sales-Pardo et al.’s box

clustering based on KEGG

Total Clusters Avg. PATHWAY Category PATHWAY Pathway
Cluster Avg. p-value Sub-category Module

Size Avg. p-value Avg. p-value
Level 2 28 18 5.67E-06 141E-10 7.37E-07
Level 3 63 [§ 1.34E-03 3.86E-06 8.03E-05
Level 4 48 3 1.96E-02 5.60E-04 3.20E-03
Level 5 50 3 2.21E-02 7.14E-04 3.00E-03

We do not show level 1, which has only one cluster.

the possibility of combining the two complemen-
tary approaches to identify more detailed module
organizations.

Figure 5(A) shows the abstraction pyramid extracted
from the metabolic network. To enhance readability, we
only presented the spanning tree of the abstract network
at each level. An example of the vertical relationship
between different hierarchical levels was marked by red
circles for further analysis (Figure 5(B)). We also used a
red rectangle to highlight an example of the horizontal
relationship at the 2" level, and compared it against the
KEGG PATHWAY (Figure 5(C)). The vertical relation-
ships disclosed by Pyramabs correctly characterized
inclusion (or part-of) relationships (e.g., “Pyrimidine
metabolism” is included in “Nucleotide metabolism”);
the horizontal relationships showed that the modules
with greater proximity between them are more likely to
belong to the same pathway category.

Discussion

One widely used method for finding the organization
within data is hierarchical clustering [11,21,22]. Hier-
archical clustering techniques group data into a
sequence of nested clusters, either by treating each sin-
gleton as a cluster and merging them into larger clusters
(agglomerative or “bottom-up”), or by dividing an initial
single cluster into successively smaller clusters (divisive
or “top-down”). Both techniques organize data into a
hierarchical structure, typically depicted as a den-
drogram. Both agglomerative and divisive clustering
techniques produce a hierarchical tree allowing the
visualization of the internal hierarchical structure within
data, regardless of whether or not the data are actually
organized hierarchically. It can be argued that a “height
threshold” in a dendrogram can be judiciously selected
according to some metric, above which any clusters and
their hierarchical relationships are regarded as genuine.

Figure 5 Abstraction pyramid disclosed from metabolic network. (A) Modules denoted by different shapes at each level, with shape sizes
representing the relative module sizes. Vertical relationships between two levels are visualized by black, pink, and green dashed lines. Horizontal
relationships are shown by solid brown, blue, and gray lines at the 2™ 39 and 4™ levels, respectively. (B) Modules 31, 32, and 33 at level 4 were
most consistent with “Pyrimidine metabolism,” a sub-category of the KEGG PATHWAY “Nucleotide metabolism,” with p-values of 2.37E-15, 2.17E-
05, and 1.03E-04, respectively. We marked the modules with the red, green, and blue dashed lines on the pyrimidine metabolism map provided
in KEGG. Merging modules 31, 32, and 33 into a larger module 15 showed higher within-module consistency with the Pyrimidine metabolism
sub-category (p-value = 4.20E-25). Module 15, combined with others, formed a level-2 module 5, which mapped most consistently onto the
“Nucleotide metabolism” metabolism pathway category, with a p-value of 2.73E-26. These results demonstrated that the vertical relationships
disclosed by Pyramabs could characterize inclusion (or part-of) relationships, e.g. “Pyrimidine metabolism” is a sub-category of “Nucleotide
metabolism.” (C) Modules 1 and 2 are marked with the blue dashed line and the red dashed line on the purine metabolism map in KEGG. The
remaining modules in the horizontal relationship mapped onto different pathway categories. The greatest proximity in the horizontal
relationship occurred between modules 1 and 2. This result is consistent with modules 1 and 2 belonging to the same metabolism pathway
category, while the others belong to various other categories.
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Nevertheless, it is debatable if any post-clustering analy-
sis that is independent of the clustering process will be
effective. Box clustering has been proposed as a variant
of divisive unsupervised clustering [4]. This method
iteratively identifies the modules at each level in the
hierarchy until no further hierarchical levels can be
found through module division. Although it visualizes
the final clustering result by a box-model clustering
tree, it only shows vertical relationships between differ-
ent hierarchical levels.

The quality of the network interpretation depends on
the completeness of the knowledge extracted and the
expressiveness of the knowledge representations. The
present paper provides two contributions to this area.
First, we proposed the abstraction pyramid, a new
representation that combined vertical and horizontal
viewpoints and is capable of interpreting a complex
biological network at different degrees of abstraction.
Interpretations in this form are more accurate and
more meaningful than multilevel dendrograms or sin-
gle-level graphs. Second, we developed Pyramabs, a
two-way approach combining top-down and bottom-
up clustering techniques to detect modules and orga-
nize them into a multilevel pyramid. As an improve-
ment, the abstraction pyramid gives us the opportunity
to achieve a new perspective on cellular organization,
by traversing the pyramid freely through the links ver-
tically and horizontally. For example, in one pyramid,
we can learn how the metabolites in the metabolic
pathways at the bottom level are merged into func-
tional modules through vertical links. We can also ver-
ify if the higher-level modules connected by the
horizontal links show any topological property, e.g.,
scale-free connectivity, that is shared by natural and
social networks [11,23]. With a macro view, we can
investigate the changes in topological properties and
the biological meanings from one abstraction level to
another. In contrast, with a micro view, we can analyze
all possible routes going through the modules across
levels, to identify interesting attributes or patterns. The
modularity and hierarchy concepts have long been
popular in various fields, e.g., biology, psychology,
sociology, and digital system design [21,24-26]. Our
abstraction pyramid combines these two concepts. It
allows the details of each module to be dealt with in
isolation, or the overall characteristics of a coherent
system to be dealt with at different levels. This inte-
grated concept is similar to a computer architecture
design or system engineering, in which computing
modules are organized in a hierarchy according to
functionality and implementation details. We expect
that future studies in these directions will shed light
on new research topics within these fields.
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Conclusions

To evaluate the interpretations made on complex biolo-
gical networks by Pyramabs, we experimented on PPI
and metabolic networks. The experiments showed that
the abstraction pyramids were biologically meaningful.
The vertical relationships successfully characterized the
inclusion relationship according to the GO and KEGG
category hierarchy, and the strength of the horizontal
relationships correctly reflected the functional closeness
according to the GO and KEGG annotations. In addi-
tion, we tested Pyramabs on two social networks to
demonstrate its generality: Zachary’s karate club net-
work and an NCAA college football network [see Addi-
tional file 1]. These results were encouraging.

We can extend this work in several directions. One
future improvement of Pyramabs is to identify overlap-
ping modules. Currently the modules at the same level
are not allowed to overlap, although overlapping mod-
ules exist in some real-world domains. Second, although
the performance of Pyramabs has been demonstrated in
real-world domains, we can refine the proximity mea-
sure and utilize domain knowledge to improve its
robustness for situations in which networks may contain
spurious links and nodes, or may be missing crucial
links or nodes. Pyramabs currently assumes that the
given network is correct when it extracts the abstraction
pyramid from the complex network. Third, we can char-
acterize an algorithm for network community analysis,
using the proximity measure applied to evaluate the
association between nodes, and using the construction
procedure it takes to organize the communities. A more
thorough comparative study of Pyramabs with other
methods provides the opportunity to integrate various
complementary algorithms to increase its applicability to
various domains and its accuracy in interpreting the
networks.

Methods

Proximity Measure

There is great flexibility in how we define the proximity
between a pair of nodes, and the selection of an appro-
priate proximity function is crucial since it will affect
the formation of the resulting modules. Several mea-
sures are commonly used, including Euclidean distance,
correlation coefficient, and cosine similarity [22,27].
Here, we investigated the use of clustering based on net-
work topology alone. Conventional proximity measures
are not applicable to clustering problems if the network
topology is the only information given (e.g., we cannot
calculate Euclidean distance without the node coor-
dinates). Other proximity measures, such as edge
betweenness [12,13,21] and topological overlap
[11,28,29], were recently proposed and used in the study
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of social, metabolic, protein-protein interaction, and
gene networks. In spite of having some successful appli-
cations, they have limitations. The edge betweenness of
a pair of nodes reflects the global characteristics of a
network, but suffers from high computational cost
[13,15,21] and the effects of incompleteness and noise in
the network [14,30]. The topological overlap is a local
measure, and may fail to identify any module beyond a
locally dense connectivity pattern [4].

Most of the current proximity measures do not
account for link direction or link weight. We propose a
new proximity function with expanded applicability that
handles link directions and weights. For simplicity, we
describe a directed weighted network of n nodes by an
n x n adjacency matrix A, in which each element 4; is
the weight of the link from node i to j. A zero valued
weight (A; = 0) indicates no link from node i to j. We
define the proximity function prox(ij) from node i to j, i
# J, as

prox(i, j)
= Ax/
Ailz0, Akjz0

S M)
k Wi _Aij W

k
n
Wiout _ 2 A
m

where W is the sum of the weights of all outgoing
links of node i. Our proximity function considers not
only the effects of common neighbors (i.e., node k), but
also the link direction and the link weight. According to
studies of protein-protein interaction [31-33], often two
interacting proteins share no functional pathways, but
reveal substantial functional similarity to their common
neighbors. These observations suggest that we treat
direct links and indirect paths differently. We assume
that the weight of the direct link, A;;, directly contri-
butes to the proximity, prox(i,j), as indicated by the first
term in Eq. [1].

On the other hand, to calculate the proximity between i
to j based on an indirect path from i to j by way of k, we
divide the path into two sub-paths, i to k and k to ;.
Unlike direct links, we hypothesize that on an indirect
path, one node does not always affect all its neighbors;
rather, it acts probabilistically. For an indirect path from i
to j by way of k, the probability that node i affects node k
is defined as the ratio of the link weight between i and k
to the sum of the weights of all outgoing links of node i,
except the direct link from i to j. The probability that
node k affects node j is defined as the ratio of the link
weight between k and j to the sum of the weights of all
outgoing links of node k. The probability of the complete
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indirect path from i to j by way of k is then the product
of the probabilities of the path from i to k and the path
from k to j. The proximity contributed by the indirect
path from i to j by way of k is determined by both the
probability of the indirect path and the link weights A
and Ay;. If there is more than one common neighbor of i
and j, we sum the proximity of each indirect path, as
shown in the second term in Eq. [1]. Although the pro-
posed proximity function is a local measure, like topolo-
gical overlap, it has better discrimination in network
topology [see Additional file 2], and requires less
computational effort than a global measure (e.g., edge
betweenness). Incorporating the proximity function into
a two-way module-finding-hierarchy-building strategy,
we can gather the local and global characteristics, and
detect the hierarchical structure of the network.

Extracting Network Backbone and Partitioning Network
The optimal solution to the partition of a network,
based on some criterion function, can be found by enu-
merating all possibilities. However, this is computation-
ally prohibitive for large practical networks. To reduce
the problem space, we adopted a graph-theoretic
approach to partitioning [34]. After computing the
proximity between all pairs of nodes, we build a maxi-
mum spanning tree [35] that includes all the nodes of
the network, and connect these nodes with the maxi-
mum sum of the link proximity. We view the maximum
spanning tree as the backbone of the network, and dis-
card the links with less significant proximities. We per-
form partitioning based on the maximum spanning tree,
rather than the original network, in order to reduce
computational cost.

We obtain two sub-trees by removing one link from a
tree; each sub-tree then represents a module. By repeat-
ing this process on each sub-tree in a top-down fashion,
we can partition a tree into many sub-trees (i.e., mod-
ules/clusters). Given the maximum spanning tree, we
examine the modules created by iteratively removing
one link from a (sub)tree. A link is selected for removal
if, after removing the link, the set of the modules M =
{M1,M,M3,...M,} meets the following criteria:

VM, My e M, a#b

Ma,Mb
> Sinter

2)

SM(:

Mo
intra S;

Ma,Mb
intra = Si

and inter

where S, =ZW,EM}¢ A is the sum of the proximity
of each intralink within M, and Sia Mo ZVie M, M, Ajj
is the sum of the proximity of each interlink between
M, and M,

Our criteria for modules are similar to those pre-
viously proposed [14,15], but with a focus on the link
weight (proximity) instead of on the degrees of nodes.
Note that the sum of proximity in Eq. [2] is calculated
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on the network rather than on the tree, to avoid infor-
mation loss. We use the tree only for evaluating which
nodes are clustered to reduce the search space of the
original network. We provide the pseudocode for the
top-down network partitioning procedure [see Addi-
tional file 3].

Network Abstraction

After partitioning the network, we treat each module as
a supernode [36]. The supernodes network is viewed as
an abstraction of the original network, and it reveals the
general framework of the original network without the
loss of its principal characteristics. We define the proxi-
mity between a pair of supernodes (e.g., modules M,
and M) as follows:

proxsuper(Ma' Mb)
- 1 z (3)
= prox(m, n)

|Ma | | Mb | VmeM, neM,

where |M,| is the number of nodes in module M,. We
first compute the proximity between all possible pairs of
supernodes, and then normalize the proximity to a z-
score. Those links with a z-score below a threshold (cur-
rently set to zero) are considered insignificant, and thus
discarded from the network. The resulting network of
supernodes is the abstraction of the original network,
and is placed one level higher than the original network
in the hierarchy. By repeating this process on the net-
works in the hierarchy, we can generate additional
abstract networks and continue building the pyramid of
abstraction consistently and systematically from the
bottom up, as illustrated in Figure 1.

Additional material

Additional file 1: Analysis of social networks. The data provided
represent the analysis of two social networks, Zachary's karate club
network and NCAA football game network.

Additional file 2: Comparison of proximity function and topological
overlap measure. The data provided represent the examples that show
the difference between our proximity function and previous topological
overlap measure.

Additional file 3: Pseudocode of network partition. The data
provided represent the pseudocode of our top-down network partition.
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