
METHODOLOGY ARTICLE Open Access

Computing H/D-Exchange rates of single residues
from data of proteolytic fragments
Ernst Althaus1*, Stefan Canzar2, Carsten Ehrler3, Mark R Emmett4,5, Andreas Karrenbauer6, Alan G Marshall4,5,
Anke Meyer-Bäse7, Jeremiah D Tipton4, Hui-Min Zhang4

Abstract

Background: Protein conformation and protein/protein interaction can be elucidated by solution-phase Hydrogen/
Deuterium exchange (sHDX) coupled to high-resolution mass analysis of the digested protein or protein complex.
In sHDX experiments mutant proteins are compared to wild-type proteins or a ligand is added to the protein and
compared to the wild-type protein (or mutant). The number of deuteriums incorporated into the polypeptides
generated from the protease digest of the protein is related to the solvent accessibility of amide protons within
the original protein construct.

Results: In this work, sHDX data was collected on a 14.5 T FT-ICR MS. An algorithm was developed based on
combinatorial optimization that predicts deuterium exchange with high spatial resolution based on the sHDX data
of overlapping proteolytic fragments. Often the algorithm assigns deuterium exchange with single residue
resolution.

Conclusions: With our new method it is possible to automatically determine deuterium exchange with higher
spatial resolution than the level of digested fragments.

Background
In the solution-phase Hyrdogen/Deuterium ex-change
(sHDX) experiment, protein surface accessibility is
probed by exchange of labile hydrogen for deuterium.
Simply speaking, hydrogens located at solvent exposed
sites exchange at a higher rate with deuteriums from
the solution than others. From these exchange rates one
can therefore deduce information about protein solvent
accessibility and thus protein conformation.
There is controversy surrounding the effect of D2O

solvent on the conformation of proteins. Sheu et al. [1]
used molecular dynamic modeling of a small peptide to
illustrate compaction of the peptide conformation in
D2O versus H2O. This small compaction of the confor-
mation occurs when the pep-tide is fully deuterated
(which is never observed in the sHDX experiments).
Since sHDX monitors the incorporation of deuterium
over time the resulting slight compaction of the struc-
ture is minimized. Other methods used for the study of

protein/protein interaction or protein conformation
such as cross-linking [2,3] or hydroxyl radical addition
[4-6] result in large conformational change of the pro-
tein structure; leaving sHDX as the method of choice
for probing protein conformational changes in solution.
NMR spectroscopy has been the gold standard for

determination of protein structure, but it has limitations
on protein solubility and molecular weight (<50 kD).
Solution-phase HDX with mass spectrometry analysis
has higher sensitivity and is not limited by molecular
weight, but sHDX is hampered with a major difficulty.
One only obtains exchange data for peptic fragments
and assigning exchange rates to single residues has to
be done by manual interpretation.
We provide an automated method to resolve this pro-

blem. More precisely, we present an algorithm that enu-
merates all possible exchange rates for single residues
that explain the observed data of the peptic fragments.
As the number of possibilities is often very large, we
combine sets of assignments to equivalence classes
which are easily interpreted such that the number of
equivalence classes is typically very small.
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The assignment of exchange rates to single residues
from the data of the peptic fragments is a combinatorial
problem. Hence, we apply methods from combinatorial
optimization to it, i.e. we show how to formalize the
problem as an integer linear program and propose
methods to solve the problem.

Biochemical Background
Concerning the determination of protein-protein inter-
action, X-ray crystal diffraction and NMR [7] pro-vide
the highest resolution of the sites of interaction. On the
downside, both methods require large (milligram) quan-
tities of protein. Other techniques rely on chemical or
photo-induced reactions with MS analysis [8,9] to reveal
functional groups that are ex-posed to the solvent.
These methods also suffer from physical limitations.
Another method utilizes hydroxyl radical reactions

with alkyl CH bonds. The OH tends to re-act mainly
with surface-exposed residues providing a good foot-
print of the solvent exposed surface of the protein(s)
[4,6]. The modification is covalent and thus irreversible,
but each modification can potentially change the confor-
mation of the protein, thus skewing results.
Exchange of labile hydrogens for deuteriums (sHDX)

as a probe of protein surface accessibility does not
change the conformation of the protein. Advantages of
MS over NMR and X-ray crystallography structural
determination are the ability to work at low concentra-
tion and high molecular weight.
The experiment is initiated by dilution of the protein

solution into a biological buffer made with D2O. Solvent
accessible hydrogens are exchanged with deuterium. The
exchange is quenched (greatly slowed) by dropping the
pH to between pH 2.3 and pH 2.5 and lowering the tem-
perature to approximately 0°C. The protein complex is
digested with a protease that is active under quench con-
ditions (such as pepsin) and on-line liquid chromatogra-
phy is performed directly to the FT-ICR MS. Deuterium
in corporation is monitored by the increase in mass of
each peptic fragment as the deuterons are added.

These data sets are large, often with many over-lap-
ping proteolytic fragments. From these data, the
exchange rate is easily determined for the same peptic
fragments from the protein and the protein/protein
complex [10] (all other fragments are disregarded).
When peptic fragments are not directly comparable, but
are overlapping (Figure 1) manual interpretation must
be performed to assign exchange rate to single residues.
Data analysis is the greatest bottleneck in sHDX experi-
ments; thus automated data analysis is necessary.
Furthermore, we are interested in all such assignments,
as averaging over all solutions gives better results in
practice.

Mathematical Abstraction
In this section, we present our mathematical model for
the assignment of exchange rates to residues. A brief
overview of the introduced terms and symbols can be
found in Table 1. In an idealized setting, we consider
the following problem. We sequentially number the n
residues of a protein from1 to n, beginning at the N-
terminal residue and ending at the C-terminal residue.
The set of peptic fragments resulting from the diges-
tion of the protein is captured by a set ℱ of integer
intervals (i, j) := {k Î N | i ≤ k ≤ j}, for two positive
integers i, j with i ≤ j, representing the endpoints of
the corresponding fragment. In other words, the peptic
fragment represented by (i, j) spans residues i, i+1, ..., j.
Furthermore, K denotes the number of different
classes of exchange rates, arising from the discretiza-
tion of the experimentally measured deuterium uptake
rates [11]. The K distinct classes of exchange rates, to
which we simply refer as colors in the following, are
represented by set  . To simplify notation we num-
ber the colors from 1 to K and identify in the follow-
ing the colors by their respective number. The
experimentally found bulk information of how many
residues within each fragment (i, j) Î ℱ fall into each
of the exchange rate categories is given by “require-
ment” integers b i j

k
,( ) , for each fragment (i, j) Î ℱ

Figure 1 Sample data set. Overlap of peptic fragments obtained from our sHDX on myoglobin. The table on the right shows the number of
amide hydrogens predicted to be either slow, medium or fast (based on MEM). The vertical lines show the decomposition of the sequence into
parts induced by the fragments. We want to automatically draw conclusions on the exchange rates of single amino acids, like the one that the
second D residue has to have medium exchange rate, concluded from the restrictions imposed by fragments 3 and 5. Notice that we already
deleted the N-terminal amino acid as we cannot see them exchange.
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and each color k Î  . We call the vector bk of
“requirements” with respect to color k, indexed by
fragments from, ℱ the right hand side for color k. In
our experimental data, exactly three different colors
are distinguished (interpreted as slow, medium, and
fast exchange rates), i.e. K = 3. However, our method
is not restricted to this case.
The mathematical notion introduced above is illu-

strated in Figure 1. There the residues, numbered from
1 to 28, are spanned by 9 peptic fragments, i.e. |ℱ = 9|.
The third peptic fragment “VWGKVEAD” will then be
represented by the integer interval (12; 19). From the
experimental data we know that 5 out of the 8 residues
contained in this fragment exchanged slowly (s), two at
medium rate (m), and the last remaining residue
exchanged fast (f) and thus b s bm( , ) , ( , )12 19 5 12 19 2= = , and
b
f
( , )12 19 1= .
Determining the exchange rate of single residues from

the experimentally found data for the peptic fragments
then translates into finding a “consistent” assignment of
colors from  to the integer points from {1, ..., n},
representing the residues of the protein, that complies
with the constraints imposed by the “requirements”
b i j
k

,( ) . More precisely, we have to determine an assign-
ment π : {1, ..., n} ↦  such that |{i ≤ l ≤ j : π(l) = k}| =
b i j
k

,( ) for all given fragments (i, j) Î ℱ and all possible
colors k Î  . We call such an assignment feasible.
We say that two fragments (i, j) and (i′, j′) over-lap, if

they share at least one common residue, i.e. (i, j) ∩ (i′, j′) ≠
∅. The partition of the set of fragments ℱ into a maxi-
mum number of subsets, such that no two fragments from
different subsets overlap, defines independent subpro-
blems; an assignment of exchange rates to the residues
spanned by the fragments of one subset does not affect
the solution of a subproblem corresponding to any other
subset of fragments.
Furthermore, we denote by  the partition of the set

of residues {1, ..., n} into maximal subsets such that resi-
dues from the same subset are spanned by exactly the
same set of fragments. More precisely, for all residues i

and j in the same part of  and for all fragments f Î ℱ
it holds i Î f ⇔ j Î f. Hence, for each part p Î  and
each fragment f Î ℱ either p ⊆ f or p ∩ f = ∅. In Figure
1 for example, residues number 7 (Q), 8 (Q), and 9 (V),
are all contained in fragments number 1, 2, 6, and 8 and
thus form an element p of partition  . Note that for
the two neighboring residues the set of containing frag-
ments differs from {1, 2, 6, 8} and therefore part p = {7,
8, 9} is maximal.
However, data collected in real experiments usually con-

tain some noise, such that no feasible assignment of
exchange rates as defined above exists. Therefore, the goal
is to compute all assignments that minimize the total sum
of errors. Here, the error of an assignment π in fragment
(i, j) Î ℱ with respect to color k is defined as the surplus,
respectively the shortage, of residues in (i, j) that are
assigned color k, compared to the number of such residues
suggested by the experimental data. That is,

e i j
k b i j

k i l j l k( , ) | ( , ) |{ : ( ) }||= − ≤ ≤ = (1)

and thus the objective is to minimize the sum of this
deviations over all fragments and colors, i.e.

minimize e i j
k

i jk
,

,

.( )
( )∈∈
∑∑


(2)

In Figure 1 the colors green, yellow and red encode an
optimal assignment π* of the exchange rates slow, med-
ium and fast, with respect to objective (2). Under this
assignment, fragment 3 contributes an error of 1 both
w.r.t. color yellow (medium exchange rate)and color red
(fast rate) to the total error of 17, while it satisfies the
requirement for color green (slow rate, numbered 1)
b 12 19

1 5,( ) = exactly.

Results and Discussion
In the following, we present different approaches to
tackle the assingment problem that we have derrived
from the mathematical abstraction mentioned before.

Table 1 Overview of terms and symbols

Term/
Symbol

Meaning

fragment A fragment is a set of consecutive residues resulting from the digestion of the protein.

ℱ The set of all (possibly overlapping) fragments.

color We divide the exchange rates into classes and associate a color with each class.

 The set of the K distinct colors.

part A part is a maximal set of residues contained in the same set of fragments, i.e., an inclusion-wise maximal subset of a fragment that
is either contained in or disjoint from any other fragment.

 The partition of the residues into parts as defined above.

subproblem An instance decomposes into independent subproblems if there is no overlap between the fragments of the different subproblems.

Description of the terms and symbols used in the mathematical description.
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Integer linear programming formulation
First, we formulate the idealized version of the problem
assuming error-free experimental data as an integer lin-
ear program (ILP). That is, we give an ILP whose feasi-
ble solutions correspond one-to-one to the feasible
assignments of colors to residues.
Let π : {1, ..., n} ↦  be an assignment of colors to

residues. A binary variable xi
k for every color k Î 

and every residue i Î {1, ..., n} indicates whether residue
i is assigned color k or not, i.e.

xi
k i k

=
=⎧

⎨
⎩

1

0

if

otherwise

( )

.

We denote by x k k k
n
kx x x= ( )1 2, ,..., the vector of bin-

ary variables modeling the assignment of color k and let
x x x= ∈∈( ) , { , }k

k
Kn

 0 1 .
Since every residue is assigned exactly one color, it

must hold xi
k

k∈∑ =


1 for all i Î {1, ..., n}. Conversely,

every 0-1 assignment to variables x satisfying

xi
k

k∈∑ =


1 for all i Î {1, ..., n} corresponds to an

assignment of colors to residues. A 0-1 assignment to x
corresponds to a feasible color assignment π, if and only

if furthermore x bl
k

l i

j
i j
k

= ( )∑ = , holds for all (i, j) Î ℱ

and k Î  .
Now consider the problem of computing an assign-

ment with minimum total error. Translating the defini-
tion of the error that we make when assigning color k
(or not) to residues in fragment (i, j) (see equation (1))
to the context of 0-1 assignments to variables xk, the
problem of minimizing (2) becomes

minimize | | .,
,

b xi j
k

l
k

l i

j

i jk
( )

=( )∈∈

− ∑∑∑


Concerning the formulation of a minimum sum of
absolute values in terms of a linear objective function
and linear constraints, observe that | |,b xi j

k
l
k

l i

j
( ) =− ∑ is

the smallest number e i j
k

,( ) that satisfies

e x b

e x b

i j
k

l
k

l i

j

i j
k

i j
k

l
k

l i

j

i j
k

, ,

, ,

( )
=

( )

( )
=

( )

≥ −

≥ − +

∑

∑

and

Hence, after introducing a variable e i j
k

,( ) for every
color k Î  and every fragment (i, j) Î ℱ, the integer
linear program we are looking at is

min

. .

( , )

( , )

( , ) ( , )

e

e x b k

i j
k

i jk

i j
k

l
k

i j
k

l i

j

∈∈

=

∑∑

∑≥ − ∈



s t for all  

 



,( , )

,( , )( , ) ( , )

i J

e x b k i J

x

i j
k

l
k

i j
k

l i

j

l
k

k

∈

≥ − + ∈ ∈
=

∈

∑ for all

∑∑ = ≤ ≤

∈

1 1

0 1

for all l n

Knx { , }

We refer to this integer linear program as basic-ILP.
In our experiments, it turns out that finding a single

solution is very fast, whereas enumerating all solutions
takes quite some time due to their large number. This
large number can be explained as follows: Recall that
 is the partition of {1, ..., n} into a minimal number
of parts, such that for each element p Î  and each
fragment f Î F either p ⊆ f or p ∩ f = ∅. In other
words, no fragment starts or ends within such a part.
Therefore, from an assignment π we can derive further
assignments π’ exhibiting the same total error, by simply
permuting the colors within these parts, i.e. if i, j Î p
for p Î  and the total error of an assignment π is e1,
than π’ with π’ (i) = π (j), π’ (j) = π (i) and π’ (l) = π (l)
for l ≠ i, j has total error e2 with e2 = e1. We call two
assignments equivalent, if one can be obtained from the
other by iteratively applying this rule.
In order to enumerate equivalent solutions only once,

we modify our integer linear program as follows: For k
Î  and p Î  , we replace the binary variables

( )xl
k

l p∈ by a single integer variable yp
k with

y xp
k

l
k

l p
:= ∈∑ . Moreover, let A be the |ℱ| × | | inclu-

sion matrix, i.e. for every f Î ℱ and p Î  , the corre-
sponding entry is given by

a
p f

f p, .
=

⊆⎧
⎨
⎩

1

0

if 

otherwise

We denote by e k
i j
k

i je= ∈( )( , ) ( , )  the vector of errors

with respect to color k and by y k
p
k

py= ∈( )  the number

of residues colored k. In matrix notation the constraints
are then of the form

− + ≥ −

+ ≥

A

A

k k k

k k k

y e b

y e b
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for all k Î  . Hence our integer linear program be-
comes

min

.

e

A k

A k

f
k

fk

k k k

k k k

k

∈∈
∑∑

− + ≥ − ∈

+ ≥ ∈







s t. for all

for all

y e b

y e b

y ==

≥
∈
∑ P

y 0
k 

, integer

(3)

where P is the vector that contains |p| for each com-
ponent p Î  and y y= ∈( )k k  We refer to this integer
linear program as improved-ILP. We compute all solu-
tions within a certain error bound by following basically
the same approach as described above. However, the
number of solutions now is just a fraction of the num-
ber of solutions of the original basic-ILP yielding a sig-
nificant speed-up
Although there is commercial software for integer

programming which quickly solves instances of reason-
able size, there is no algorithm that is guaranteed to
find an optimum solution in polynomial time, since
integer programming is NP-complete in general. How-
ever, the problem of assigning exchange rates to resi-
dues in a way that is conform with the experimentally
found bulk data exhibits a certain combinatorial struc-
ture. In the next section, we exploit this fact to derive
an exact polynomial-time algorithm for the case of two
colors and use it as a building block for approximation
algorithms for more than two colors subsequently.

A Combinatorial Approach
First, let us consider the special case of two colors, i.e.
K = 2 and thus  = {1,2}. That is, we have constraints
of the form y y pp p

1 2+ = for all p Î  . This allows us
to simplify the linear program considerably. We replace
y p yp p

2 1= − and omit the superscript of the y-variables
in the following. This yields

− + ≥ − + ≥ −

+ ≥ − + ≥ − +

A A

A A

y e b y e F b

y e b y e F b

1 1 2 2

1 1 2 2

where F is the vector of fragment sizes. We may
get rid of half of the constraints by the following obser-
vation. Let b := max {b1, F - b2} and
b b F b: min{ , }= −1 2 where the maximum is taken
component-wise. Let y be an arbitrary feasible solution
with minimum total error ∑ ∈ +f f fe e

1 2 . We may con-
sider the contribution of each fragment independently
for that particular y. We may rename the error variables
e1 and e2 component-wise according to b and b , i.e.

e
e b b

e
e

e b b

e
f

f f f

f
f

f f f

f

: :=
=⎧

⎨
⎪

⎩⎪
=

=1 1

2

1 1

2

if

otherwise

if

otherwisee

⎧
⎨
⎪

⎩⎪
(4)

For each f Î ℱ with b bf f
T

f≤ ≤a y , we have e e b bf f f f
1 2+ = − .

If a yf
T

fb> , we get e e e b bf f f f f
1 2 2+ = + − . Analo-

gously, we get e e e b bf f f f f
1 2 2+ = + − if a yf

T
fb< .

Hence, it is sufficient to optimize the following linear
program

min

. .

, ,

e e

A

A

f f

f

+

− + ≥ −

+ ≥
− ≥ −

≥

∈
∑


s t y e b

y e b

y P

y e e 0

(5)

which is integral if b and b are integral since the
constraint matrix is totally unimodular. The correspond-
ing dual LP is given by

max

. .
,

− − +

− + − ≤

≤ ≤

≤

b f b f P f

f f f 0

0 f 1

0 f

T T T

T TA A

1 2 3

1 2 3

1 2

3

s t
(6)

which is equivalent to (multiplying the objective func-
tion by -1 and introducing slack variables)

− − − +

− + − + =

≤ ≤

≤

min

. .
,

,

b f b f P f

f f f f 0

0 f 1

0 f

T T T

T TA A

1 2 3

1 2 3 4

1 2

3 4

s t
(7)

We will show next that this LP is a Minimum Cost
Circulation Problem. To this end, let M be the matrix
of the equality constraints, i.e.

M A A I IT T: ( ).= − −

Note that this matrix has the column-wise consecu-
tive-ones property. By row operations like in Gaussian
elimination, we can easily transform M such that each
column contains exactly one +1 and one -1, as follows.
We add the dummy constraint 0 = 0 at the end and
subtract from each row its predecessor. The resulting
matrix, say M , can be considered as the node-arc-inci-
dence matrix of a directed graph. Since the right hand
side remains unchanged, we get a Minimum Cost Circu-
lation problem on a graph with | arcs [12]. As a mat-
ter of fact, we have for each variable yp two arcs
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corresponding to the constraint 0 ≤ yp ≤ |p| and for
each fragment (i, j) the arcs (i, j + 1) and (j + 1, i) as
depicted in Figure 2.
For three or more colors the complexity is open. The

totally unimodularity of the constraint matrix is
destroyed, i.e. there are instances with fractional ver-
tices, e.g. the one from Figure 2 with the appropriate
right hand sides. Moreover, there is an instance which
has a positive error, but the value of the LP is 0. Hence
the integrality gap is infinite. If the number of colors
is not fixed but part of the input, the problem is NP-
complete [13].

A Simple and Efficient Heuristic for the General Case
We present an algorithm that uses our combinatorial
approach for the 2-color case (K = 2) from previous sec-
tion as a subroutine to provide solutions that approxi-
mate (without performance guarantee) a coloring, i.e. an
assignment of colors to residues, with minimum total
error for instances with arbitrary but fixed number of
colors. The general idea is to reduce the problem to the
2-color case by merging all but one color, say color i, to
a single color and solve the resulting problem by an
algorithm for the minimum cost circulation problem, as
described in the section about the Combinatorial
Approach. We remove residues colored i by the
obtained solution and solve the coloring problem on the
remaining residues using K - 1 colors recursively.
Our approach works as follows. Consider an arbitrary

color k Î  . We compute a subset of the residues that
are assigned color k such that the total error with
respect to color k and the sum of all remaining colors is
minimized, i.e. we solve the two color problem with
requirements (= right hand sides)

( , ).b bk k

k k

′

′≠
∑

Residues assigned color k in an optimal solution to
this problem will be colored k in the final solution too,
the assignment of the remaining colors  \{k} to the
remaining residues is computed recursively.

Note that the order in which colors are selected to be
the next fixed color k in the recursive computation can
be arbitrary. Nevertheless, they might lead to solutions
of different total error. As we have only three different
colors in our experimental data, we evaluate all six
orderings and return the best solution found.
In the next section we present a Lagrangian relaxation

method to compute, based on our combinatorial
approach for the 2-color case, a bound on the minimum
total error, which is exploited in a branch-&-bound
manner to determine all optimal colorings.

A Lagrangian Relaxation Approach
In this section we propose a Lagrangian relaxation
approach for the problem, which is particularly suit-able
for finding all optimal solutions. It is based on the
improved-ILP formulation:

min e f
k

fk ∈∈
∑∑


(8)

s t for all. . − + ≥ − ∈A kk k ky e b  (9)

A kk k ky e b+ ≥ ∈for all  (10)

y P

y 0

k

k

=

≥
∈
∑


, integer

(11)

where P is the vector that contains the length of parts
in  . The problem can be considered to contain inde-
pendent structures for each color k Î  , namely the
set of positive integer vectors yk satisfying (9) and (10)
under the objective (8), that are linked by constraints
(11). Therefore, dualizing the linking constraints (11),
with Lagrangian multipliers l, splits the problem into an
independent problem for each color k Î  :

min ( ( ))

. .

e IP

A

f
k T k

kfk

k k k

+ −
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

− + ≥ −

∈∈∈
∑∑∑  y P

y e b



s t for aall

for all

for all

interger

k

A k

k

k k k

k

∈

+ ≥ ∈

≤ ≤ ∈







y e b

0 y P

y

Neglecting the constant term -lTP in the objective
function and replacing error variable e by e + ē we have

Figure 2 Fragment graph example. Example of a fragment graph
with |P| = 7 The corresponding fragments are (1, 3), (2, 5), (3, 6),
and (5, 7).
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to determine, for every color k Î  , an optimal integral
solution to the following linear program:

min

. .

∑
∈

+ +

− + ≥ −

( )
f

f
k

f
k T k

k k k

e e

A


 y

y e bs t

(12)

A k k ky e b+ ≥ (13)

e e 0

0 y P

k k

k

, ≥

≤ ≤
(14)

Note that we added constraint (14) to enforce e f
k or

e f
k to be zero if e f

k , respectively e f
k , corresponds to

the absolute value of the error, i.e. if the constraint (13),
respectively the constraint (12), for fragment f is tight.
Note that we have to enforce e f

k and e f
k to be nonne-

gative. In every optimum solution either e or ē (or both)
will be zero for each fragment f. Similar as for linear
program (5), its dual is given by (omitting the color
superscript k):

− +

− + − + =

≤ ≤

≤

−min

,

,

b f b f P f

f f f f

0 f 1

0 f

T T T

T TA A

1 2 3

1 2 3 4

1 2

3 4

s.t. 
(15)

This linear program differs from LP (7) only in the
right-hand sides of the equality constraints.

Conclusions
We applied our methods to process data from typical
biochemical experiments. We report our results for four
proteins: Calcium-binding protein (Cabin), Cytochrome
P450 (CytoC), FK506 binding protein(FKBP), with two
different digests (pepsin and XIII), and myoglobin. As a
preprocessing step, the single fragments were analyzed
with our integer linear programming based technique
[14], except for FKBP V2 (MEM) which was analyzed
with the MEM-method [15] and is based on the same
data as FKBP V1 (ILP). We analyzed FKBP with only
the xiii digestion (V3) and combined the datasets from
the two digestions (V1, V2 and V4). The number discre-
tized exchange rates per fragment obtained in this pre-
processing step serves as input to the algorithm.
The instances have between 74 and 152 residues and

between 18 and 49 fragments. The solutions with a
minimal number of errors could be computed in less
than 0.11 seconds for all instances. Computing all

(non-equivalent) solutions with a minimal number of
errors, from 96 up to almost 20 million in number, took
less than 7 minutes, where the running time greatly
depends on the number of solutions (see Table 2). Com-
puting all solutions using the basic-ILP takes much
longer as with the improved-ILP. For all instances, the
heuristic computes a solution with the minimal error.
Where available, we compared our assignments of

exchange rates to the results obtained by NMR-analysis
(FKBP and CytoC [16]). The error measure is based on
a comparison per part. Within each part, the rates
assigned by the algorithm are compared to the ones
from NMR. Table 3 summarizes the results. The table
also shows the importance of taking all solutions into
account, as averaging typically yields better results than
a single solution. The assignments coincide to 60 - 75%
to the ones obtained by NMR, when choosing the opti-
mal ordering with in the parts of equivalent residues.
Figure 3 provides the results for FK506 and Cytochrome
P450 at single residue resolution for manual inspection.
A structural view on the results for FK506 and myo-

globin is given in Figure 4. For myoglobin we do not
have NMR data at hand. Nevertheless does the figure
nicely agree with the expected out come, as buried parts
of the protein show on the average lower exchange rates
than exposed parts. The two figures have been produced
by use of PyMOL [17].
In our solutions, the resolution is significantly

increased compared to the input data, i.e., the length of
fragments obtained from the sHDX experiments. The
parts are typically small (see Table 2), between 2 and
4 residues. 75% of the parts are smaller than 8 residues.
For 46% of the amino-acids, we get single-residue reso-
lution on the data.
The results for the real instances are very promising,

as the small number of easily interpretable classes of
equivalent solutions can be used in protein structure
prediction tools and for manual inspection.

Methods
In this Section, we describe the computational methods,
which we use to solve the different formulation, as well
as the biochemical methods to obtain the experimental
data.

Solution of the integer linear program
We implemented our approach using the C++-Library
SCIL [18] to solve integer linear programs. SCIL uses
the libraries LEDA [19] and SCIP [20].SCIP uses CPLEX
[21] or SoPlex [22] as solver for linear programs. The
underlying solution method is branch-&-bound, that is
described in detail in [23].
In order to find all solutions within a given error

bound e, the constraint
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is added to the integer linear program and hence we
are faced with the problem of computing all feasible
solutions of an integer linear program. We do this with
a branching-approach similar to the classical branch-
&-bound method for finding an optimal solution: First,
the linear relaxation is solved. If the linear relaxation is
infeasible, the search on this branch terminates. If the
solution is integral, it is stored (provided the solution

Table 2 Results & Runtime

Instance Improved-ILP Lagrange Heuristic

Name n  n/ ℱ � T1 Tall #-Sol T1 Tall T1

Cabin 78 26 3.0 34 128 0.02 3.25 36 1.36 8.35 0.02

CytoC 74 18 4.1 17 40 0.03 0.37 1980 0.27 6.10 0.01

Subproblem 1 27 5 5.4 6 6 0.01 0.01 1 0.01 0.01 0.003

Subproblem 2 26 5 5.2 6 30 0.01 0.32 110 0.17 5.81 0.004

Subproblem 3 15 6 2.5 5 4 0.01 0.04 18 0.09 0.28 0.004

FKBP V1 (ilp) 101 34 3.0 31 47 0.04 1.18 37800 1.03 137.36 0.017

Subproblem 1 35 15 2.3 12 15 0.01 0.45 126 0.57 32.83 0.009

Subproblem 2 16 5 3.2 5 4 0.01 0.02 4 0.04 0.05 0.003

Subproblem 3 36 12 3.0 14 28 0.02 0.71 75 0.42 104.48 0.005

FKBP V2 (mem) 101 34 3.0 31 46 0.03 13.82 1160040 2.03 560.56 0.02

Subproblem 1 35 15 2.3 12 16 0.01 4.41 840 1.26 305.4 0.007

Subproblem 2 16 5 3.2 5 2 0.01 0.01 1 0.01 0.01 0.002

Subproblem 3 36 12 3.0 14 28 0.01 9.4 1381 0.76 255.15 0.007

FKBP V3 (xiii) 103 34 3.0 47 38 0.05 0.16 6 0.14 0.13 0.026

Subproblem 1 22 10 2.2 16 12 0.01 0.04 1 0.02 0.03 0.008

Subproblem 2 10 4 2.5 4 2 0.01 0.02 3 0.02 0.02 0.002

Subproblem 3 11 5 2.2 4 0 0.01 0.01 1 0.02 0.01 0.003

Subproblem 4 25 10 2.5 22 24 0.01 0.08 2 0.07 0.06 0.008

Subproblem 5 3 1 3.0 1 0 0.01 0.01 1 0.01 0.01 0.001

FKBP V4 (both) 105 43 2.4 56 58 0.05 0.96 1536 0.88 7.15 0.032

Subproblem 1 49 20 2.5 24 18 0.02 0.55 24 0.8 6.08 0.012

Subproblem 2 11 5 2.2 4 0 0.01 0.01 2 0.02 0.01 0.003

Subproblem 3 25 12 2.1 26 40 0.01 0.39 16 0.5 1.05 0.009

Subproblem 4 4 3 1.3 2 0 0.01 0.01 2 0.01 0.01 0.002

Myoglobin 152 49 3.1 48 42 0.1 0.98 1121760 1.13 13.25 0.023

Subproblem 1 17 9 1.9 10 14 0.02 0.16 20 0.22 1.98 0.004

Subproblem 2 12 2 6.0 4 2 0.01 0.01 2 0.01 0.01 0.002

Subproblem 3 22 8 2.8 8 8 0.01 0.26 82 0.34 8.56 0.005

Subproblem 4 37 14 2.6 17 14 0.01 0.49 38 0.45 2.51 0.009

Subproblem 5 3 1 3.0 1 0 0.01 0.01 1 0.01 0.01 0.002

Subproblem 6 21 6 3.5 6 4 0.02 0.03 9 0.08 0.16 0.003

Subproblem 7 4 1 4.0 1 0 0.01 0.01 1 0.01 0.01 0.001

Subproblem 8 7 1 7.0 1 0 0.01 0.01 1 0.01 0.01 0.002

We give the characteristics of the instance, i.e., the number of residues (n), the number of fragments (|ℱ|), the number of non-equivalent parts (||), the average
length of these parts (n/||) and the minimal error of an solution (�). We give the solution times in seconds to compute one (T1) and all (Tall) solutions and the
number of solutions found (#-Sol) all with respect to the improved-ILP. Furthermore we give the running times for our Lagrangian approach and the error and
running time of the heuristic.

Table 3 Comparison with NMR

Dataset Single solution Majority Vote Arithmetic Mean

CytoC 77.87 69.45 69.45

FKBP V1 (ilp) 58.03 67.09 74.69

FKBP V2 (mem) 67.09 67.68 67.09

FKBP V3 (xiii) 75 71.88 70.32

FKBP V4 (both) 58.03 62.97 64.20

Comparison of our results to those obtained by NMR. The error measure is based
on an comparison per part, hence taking the sequence positions into account. To
obtain an unique answer, we used two methods to average over all solutions,
namely taking the majority and the average. Then we counted the percentage of
amino acids that have the same exchange rates in both methods, according to
the optimal reordering within the parts of equivalent residues.
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Figure 3 Single residue results for FKBP and cytochrome C. Results for FKBP (top) and cytochrome C (bottom) at single residue resolution.
Rates from NMR are colored in red, our results from sHDX are colored in green. Vertical Black lines denote the boundary between consecutive
parts. Legend for Symbols: ‘0’ Rates agree on position, ‘X’ Rates disagree,’?’ NMR data is missing, ‘-’ sHDX data is missing. The horizontal lines
indicate the range of the discretized values. slow ≤ 0.1 h-1, and fast ≥ 8 h-1. Secondary structure is indicated by the horizontal bars on the top:
alpha helical in blue, beta sheets in green and loops in yellow.

Figure 4 Structural view of results. The exchange rates (fast, medium slow) are color-coded (red, yellow, green) in the structural view. The
color blue means that we have no fragments covering this part and hence we do not predict anything. We present FKBP on the left and
Myoglobin on the right.

Althaus et al. BMC Bioinformatics 2010, 11:424
http://www.biomedcentral.com/1471-2105/11/424

Page 9 of 12



was not found yet). If there is a binary variable which
was not fixed so far (i.e. not set to 0 or 1), one such
variable xl

k is picked and the two subproblems, in
which the variable is fixed o 0 or 1 recursively, are
solved. Notice that it is possible that we branch on a
variable which already has an integral value. In this case,
the solution of the linear relaxation of the subproblem
will be the same as in problem itself. Nevertheless, we
will terminate, as there are only a finite number of vari-
ables to branch on.

Solving the Combinatorial Problem
We may use any algorithm that solves the Minimum
Cost Circulation problem, e.g. Cycle Canceling or Suc-
cessive Shortest Path (see [12] for further reference).
Both approaches have their advantages. The former
always maintains a feasible circulation, i.e. we start with
the zero flow and augment flow along negative cycles in
the residual network until no negative cycle remains.
Since the residual network with respect to an optimal
circulation does not contain a directed negative circuit,
we can find node potentials, i.e. a corresponding dual
solution, using the Bellman-Ford algorithm in
O | | | | ⋅( ) time. The difference between the poten-
tial of two neighboring nodes then yields the value of
the corresponding y-variable. The errors are determined
straight forward. If there is a solution without error this
approach yields a solution within the running time of
Bellman-Ford. On the other hand, the Successive Short-
est Path algorithm maintains similar node potentials
such that the arc-weights remain non-negative. Since
the total excess is bounded by |  | in our case, the
running time of that algorithm is
O | | | | | | log | |   ⋅ +( )2 .

Solving the Lagrangian Dual
Instead of a minimum cost circulation problem(right-
hand side is 0), we have to solve the more general mini-
mum cost flow problem [12] where the supplies and
demands  of the nodes are determined by the differ-
ence of Lagrangian multipliers, i.e.  is of dimension
| | + 1 and   i i i= − −1 for 2 1 1≤ ≤ =i | |,   and
 | | | | + = −1 . A feasible flow of minimum cost can be
computed efficiently by, e.g., the cycle-canceling algo-
rithm and the successive shortest path algorithm, as well
as variants of them, like the capacity scaling algorithm
[12]. In our implementation (C++) we used the LEDA
library [19] to solve the Lagrangian subproblem by
analgorithm based on capacity scaling and successive
shortest path computation [12].
We improve the resulting bounds by the subgradient

optimization method described in the following and
incorporate the overall approach into a branch-&-bound
algorithm as the lower bounding scheme.

Let v(IP (l)) denote the optimal value of IP (l). Then
for any vector l of Lagrangian multipliers, the (non-
differentiable) Lagrangian function

z v IP( ) ( ( )) =

provides a lower bound on the minimum total error.
To benefit from the sharpest possible bound in the
branch-&-bound framework we are interested in solving
the Lagrangian dual problem

z z* max ( ).=




We apply the subgradient method to obtain near-opti-
mal Lagrangian multipliers. Following the approach by
Held and Karp [24] we iteratively determine values lℓ+1

for ℓ = 0,1, ..., of the Lagrangian multipliers by moving
in the direction of a subgradient with “step length” μℓ:

   
 +

∈

= + −
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟∑1 y Pk

k S

( ) ,

where ( ( ))y k
k S ∈ is any optimal solution to IP(lℓ).

The step length is computed according to formula


 






=

−⎛
⎝⎜

⎞
⎠⎟

∈ ( )−

( )UB z k

k S
kΣ y P

2
,

where UB is a previously computed upper bound on
z* and θ is a step size parameter assuming values in {x
Î R | 0 <x ≤ 2}. In the experiments it turns out, that
initializing the vector of Lagrangian multipliers l0 to the
length P of the corresponding intervals in  increases
the convergence rate dramatically. We also experienced
a fast convergence to near-optimal Lagrangian multi-
pliers when following the classical Held-Karp method to
choose the step size scalar θ: We start with θ0 = 2 and
half θℓ whenever the best Lagrangian bound v(IP(l))
found so far has not increased in a certain number of
iterations. As soon as the step size scalar falls below a
specified threshold or the number of iterations exceeds
a certain limit (which is adaptive with respect to the
depth of the branch-&-bound node), we branch on a
variable y k S pp

k , ,∈ ∈ , such that y yp
k

p
k− ⎢

⎣
⎥
⎦ is close

to 0.5, where yp
k is the average value of variable yp

k in
the last h = 10 Lagrangian solutions. Since we aim to
find all optimal colorings, we also branch on variables
that are integral. Incorporating the Lagrangian approach
as a lower bounding scheme into a branch-&-bound
frame work gives an alternative algorithm that does not
depend on commercial software packages.
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Experimental Setting
The entire sHDX experiment was automated with a
LEAP robot (HTS PAL, Leap Technologies, Carrboro,
NC).
Automation of the experiment reduces human error

and reduces deuterium for hydrogen back-exchange. All
time points where interlaced and performed in triplicate
to ensure experimental reproducibility. After digestion,
the protein digest was injected from a 10 μL loop to
either a 1 mm × 50 mm C5 column (Phenomenex) or a
Pro-Zap Pro-sphere HP C18 HR 1.5u 10 mm × 2.1 mm
(All-tech). A rapid gradient 2% B to 95% B in 1.5 min
(A: acetonitrile/H2O/formic acid 5/94.5/0.5, B: ace-toni-
trile/H2O/formic acid 95/4.5/0.5) was used to elute pep-
tides. The eluent was post-column split and infused by
microelectrospray ionization into a custom built 14.5 T
LTQ FT-ICR mass spectrometer. The extraction of the
peptic fragments and their deuterium uptakes from
these data was done by an in-house analysis package
[25]. Then we compute the cumulative exchange rates
from the deuterium uptakes with either the MEM-
method [15] or a new approach based on integer linear
programming [14].
A current limitation for implementation of this soft-

ware is back exchange of deuterium-to-hydrogen during
the separation of the samples. It has been reported that
different peptides have a different percentage of back
exchange due to the sequence of amino acids [26,27].
Furthermore, the peptide sequence overlap will limit the
ability to map single amino acid rate kinetics. Thus,
reduction of backexchange has been investigated [28,29],
along with multiple acid proteases to increase sequence
coverage [30]. The sHDX experiment is continually
being improved, but in its current state the sHDX
experiment does not take away from the integrity of the
algorithm to discern single amino acid exchange
kinetics.
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