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Abstract

Background: Generally speaking, different classifiers tend to work well for certain types of data and conversely, it
is usually not known a priori which algorithm will be optimal in any given classification application. In addition, for
most classification problems, selecting the best performing classification algorithm amongst a number of
competing algorithms is a difficult task for various reasons. As for example, the order of performance may depend
on the performance measure employed for such a comparison. In this work, we present a novel adaptive
ensemble classifier constructed by combining bagging and rank aggregation that is capable of adaptively
changing its performance depending on the type of data that is being classified. The attractive feature of the
proposed classifier is its multi-objective nature where the classification results can be simultaneously optimized
with respect to several performance measures, for example, accuracy, sensitivity and specificity. We also show that
our somewhat complex strategy has better predictive performance as judged on test samples than a more naive
approach that attempts to directly identify the optimal classifier based on the training data performances of the
individual classifiers.

Results: We illustrate the proposed method with two simulated and two real-data examples. In all cases, the
ensemble classifier performs at the level of the best individual classifier comprising the ensemble or better.

Conclusions: For complex high-dimensional datasets resulting from present day high-throughput experiments, it
may be wise to consider a number of classification algorithms combined with dimension reduction techniques
rather than a fixed standard algorithm set a priori.

Background
Sophisticated and advanced supervised learning techni-
ques, such as Neural Networks (NNs) and Support Vec-
tor Machines (SVMs), now have to face a legitimate,
even though somewhat surprising, competitor in the
form of ensemble classifiers. The latter are usually bag-
ging [1], boosting [2], or their variations (arching, wag-
ging) methods which improve the accuracy of “weak”
classifiers that individually are no match for NNs and
SVMs. Random Forests [3] and Adaboost [4] are the
two most notable examples of ensemble tree classifiers
that were shown to have superior performance in many
circumstances.

Unfortunately, combining “strong” or stable classifiers
characterized by small variance, for example, the K-
nearest neighbor (KNN) classifiers or SVMs, generally
will not result in smaller classification error rates. Thus,
there seems to be little or no incentive in running com-
putationally expensive classification methods on random
subsets of training data if the final classification accu-
racy will not improve. Looking from a slightly different
angle, it is also naive to expect significant improvements
in classifier’s accuracy when it is already very close to
that of the optimal Bayes classifier which cannot be
improved upon. However, in a real-world problem,
neither the optimal classification accuracy nor the true
accuracy of any individual classifier are known and it is
rather difficult to determine which classification algo-
rithm does have the best accuracy rates when applied to
specific observed training data.

* Correspondence: somnath.datta@louisville.edu
1Department of Bioinformatics and Biostatistics, University of Louisville,
Louisville, KY, USA
Full list of author information is available at the end of the article

Datta et al. BMC Bioinformatics 2010, 11:427
http://www.biomedcentral.com/1471-2105/11/427

© 2010 Datta et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:somnath.datta@louisville.edu
http://creativecommons.org/licenses/by/2.0


In a recent classification competition that took place
in the Netherlands several research groups were invited
to build predictive models for breast cancer diagnosis
based on proteomic mass spectrometry data [5]. Their
models were objectively compared on separate testing
data which were kept private before the competition.
Interestingly enough, despite the “controlled” environ-
ment and the objectivity in assessing the results, no sin-
gle group emerged as the winner. This was in part due
to the difficulty in determining the “best” model which
highly depended on what performance measure was
used (accuracy, sensitivity or specificity). The over-all
conclusion made after the fact was that no single classi-
fication algorithm was the best and that algorithms’ per-
formance highly correlated with user’s sophistication
and interaction with the method (setting tuning para-
meters, feature selection and so on). In general, since no
single classification algorithm performs optimally for all
types of data, it is desirable to create an ensemble classi-
fier consisting of commonly used “good” individual clas-
sification algorithms which would adaptively change its
performance depending on the type of data to that of
the best performing individual classifier.
In this work, we propose a novel adaptive ensemble

classification method which internally makes use of sev-
eral existing classification algorithms (user selectable)
and combines them in a flexible way to adaptively pro-
duce results, at least, as good as the best classification
algorithm from among those that comprise the ensem-
ble. The proposed method is inspired by a combination
of bagging and rank aggregation. In our earlier work,
the latter was successfully applied in the context of
aggregating clustering validation measures [6]. Out-of-
bag (OOB) samples play a crucial role in the estimation
of classification performance rates which are then aggre-
gated over through rank aggregation to obtain the
locally best performing classifier A j

( )1 given the jth boot-
strap sample.
Being an ensemble classification algorithm, the pro-

posed classifier differs from traditional ensemble classi-
fiers in at least two aspects. The first notable feature is
its adaptive nature, which introduces enough flexibility
for the classifier to exhibit consistently good perfor-
mance on many different types of data. The second
aspect is the multi-objective approach to classification
where the resulting classification model is optimized
with respect to several performance measures simulta-
neously through weighted rank aggregation. The pro-
posed adaptive multi-objective ensemble classifier brings
together several highly desirable properties at the
expense of increased computational times.
The manuscript is organized as follows. The Results

section presents two simulated (threenorm and simu-
lated microarray data) and two real-data examples

(breast cancer microarray data and prostate cancer pro-
teomics mass spectrometry data) which clearly demon-
strate the utility of the proposed method. This is
followed by a discussion and general comments. In the
Methods section, we describe the construction of the
adaptive ensemble classifier and introduce some com-
mon classification algorithms and dimension reduction
techniques that we use for demonstrating the ensemble
classifier.

Results and Discussion
Performance on Simulated Data
Threenorm data
This is a d-dimensional data with two class labels. The
first class is generated with equal probability from either
one of the two normal distributions MN({a, a, ..., a}, I)
and MN({-a,-a, ..., -a}, I) (I denotes the identity matrix),
and the second class is generated from a multivariate
normal distribution MN({a,-a, a,-a, ... a,-a}, I). a

d
= 2

depends on the number of features d. This benchmark
dataset was introduced in [7] and is available in the
mlbench R package.
We generate 100 training samples from 1000- dimen-

sional threenorm distribution. Eight individual classifica-
tion algorithms, including Support Vector Machines
(SVM), Lasso Penalized Logistic Regression (PLR), Ran-
dom Forest (RF), Partial Least Squares followed by RF
(PLS + RF), Linear Discriminant Analysis (PLS + LDA)
and Quadratic Discriminant Analysis (PLS + QDA),
Principal Component Analysis followed by Linear Dis-
criminant Analysis (PCA + LDA), and PLS, as well as
our proposed ensemble classifier are trained on these
data and their performance is assessed using a different
testing set consisting of a different set of 100 samples.
We also included a more direct but perhaps somewhat
naive ensemble, called the greedy ensemble. Internally,
the performance is optimized with respect to three per-
formance measures, namely, accuracy, sensitivity and
specificity. This procedure is repeated 100 times and
average accuracy, sensitivity, specificity and area under
the curve (AUC) along with corresponding standard
errors are reported in Table 1. Both the PCA and PLS
are used with five components (arbitrarily selected) and
the number of bootstrap samples was set to 101. For the
RF and SVM, default parameters in corresponding R
implementations were used. Selection of meta-para-
meters could be also based on a prior cross-validation
of an individual classifier as well as the inclusion of sev-
eral different choices as separate “algorithms” within the
ensemble itself, in a way analogous to including different
kernels for the SVM for the simulated microarray data
below.
For these datasets, the algorithm which uses the PCA

for dimension reduction, PCA + LDA, and SVM clearly
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underperform in comparison to the other six individual
classifiers. It is interesting to note that PLS-based classi-
fication methods exhibit very strong performances com-
parable to that of RF. Overall, PLS + RF has the best
scores among the eight individual classifiers for the
three out of four performance measures, while PLS +
QDA has the best sensitivity rate. The ensemble classi-
fier’s accuracy, sensitivity and specificity are very similar
to those of the top performing individual classifiers. The
greedy ensemble performs well but its overall perfor-
mance is consistently inferior to the proposed ensemble
classifier, albeit by not much. Standard errors for the
ensemble classifier are also a little smaller than the stan-
dard errors for the greedy algorithm. The AUC scores
were not used in the aggregation process where we opti-
mized with respect to accuracy, sensitivity and specifi-
city. So these scores are valid indicators of the
performance which take into consideration both sensi-
tivity and specificity. The ensemble classifier has the
largest AUC score.
Simulated microarray data
The simulation scheme incorporates the simplest model
for microarray data where d = 5000 individual probes
are generated independently of each other from N(μ, 1).
90% of probes do not differ between cases and controls
and their expression values come from normal distribu-
tion with unit variance. The other 10% of probes have
different means between cases whose expression values

are generated from N(.3, 1) and controls which are
generated from N(0, 1).
50 training and testing datasets were generated and

average accuracy, sensitivity, specificity and AUC were
computed for the testing data which are shown in Table 2.
To illustrate the point that the proposed ensemble

algorithm can be used with any combination of indivi-
dual classifiers or even same classifiers with different
settings of tuning parameters, for this example, we
selected the SVM algorithm with four different kernel
parameters: linear, polynomial, radial and sigmoid. The
default settings for each of the kernels were used. The
ensemble classifier performs similarly to the SVM with
the sigmoid kernel and clearly outperforms the greedy
algorithm.

Performance on real data
Breast cancer microarray data
These data are publicly available through the GEO data-
base with the accession number GSE16443 [8] and were
collected with the purpose of determining the potential
of gene expression profiling of peripheral blood cells for
early detection of blood cancer. It consists of 130 sam-
ples with 67 cases and 63 controls.
For our classification purposes we downloaded the

normalized data which contains 11217 probes. Six indi-
vidual classification algorithms were selected and they
are listed in Table 3. To estimate performance scores,
we performed double cross-validation where the inner
cross-validation was used to select the best performing
classification algorithm based on aggregated validation
measures (accuracy, sensitivity and specificity) followed
by the outer 10-fold cross-validation. The results are
reported in Table 3. In contrast to our simulated data,
we need to resort to 10-fold cross-validation to estimate

Table 1 Threenorm simulation data

Accuracy Sensitivity Specificity AUC

SVM 0.451900 0.468200 0.435600 0.429016

(0.00988) (0.02144) (0.02314) (0.01318)

RF 0.562200 0.557600 0.566800 0.591170

(0.00540) (0.00853) (0.00806) (0.00635)

PLS + LDA 0.610000 0.608000 0.612000 0.610032

(0.00561) (0.00860) (0.00797) (0.00561)

PCA + LDA 0.503600 0.501800 0.505400 0.505236

(0.00617) (0.00674) (0.00680) (0.00753)

PLS + RF 0.612200 0.586400 0.638000 0.648102

(0.00506) (0.01250) (0.01198) (0.00595)

PLS + QDA 0.607500 0.617200 0.597800 0.607500

(0.00577) (0.01142) (0.01218) (0.00577)

PLR 0.540800 0.538000 0.543600 0.557342

(0.00459) (0.00819) (0.00804) (0.00553)

PLS 0.600300 0.600400 0.600200 0.647896

(0.00542) (0.01319) (0.01361) (0.00609)

Greedy 0.596600 0.581800 0.611400 0.621590

(0.00559) (0.01117) (0.01045) (0.00657)

Ensemble 0.613000 0.606200 0.619800 0.653700

(0.00563) (0.00823) (0.00729) (0.00587)

Average accuracy, sensitivity, specificity and AUC for 100 datasets from the
threenorm data with N = 100 and d = 1000. Standard errors are reported in
parentheses.

Table 2 Simulated microarray data

Accuracy Sensitivity Specificity AUC

linear SVM 0.902200 0.907600 0.896800 0.967464

(0.00451) (0.00683) (0.00679) (0.00216)

polynomial SVM 0.506200 0.716400 0.296000 0.498772

(0.00383) (0.05493) (0.05477) (0.00640)

radial SVM 0.773200 0.882000 0.664400 0.833576

(0.03090) (0.02851) (0.04473) (0.03750)

sigmoid SVM 0.905000 0.910400 0.899600 0.968472

(0.00432) (0.00655) (0.00581) (0.00210)

greedy 0.671400 0.807200 0.535600 0.702040

(0.04177) (0.03811) (0.05508) (0.05016)

Ensemble 0.900600 0.902400 0.898800 0.968156

(0.00366) (0.00661) (0.00592) (0.00213)

Average accuracy, sensitivity, specificity and AUC for 50 datasets from the
simulated microarray data with N = 100 and d = 5000. Standard errors are
reported in parentheses. A single SVM classifier was used with four different
kernel settings.
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the performance measures in real dataset such as these.
Unlike earlier scenarios, none of the individual algo-
rithms appears to outperform all others according to all
performance measures which include accuracy, sensitiv-
ity and specificity. PLS + QDA has the best estimated
accuracy of .64 and the best estimated sensitivity rate of
.70, while PLS + LDA has the best estimated specificity
rate of .69. While the ensemble classifier falls a little
short on all these counts, it is clearly optimized with
respect to all three measures and the largest AUC when
compared to all individual estimates of AUC demon-
strates that.
Proteomics data
To assess the predictive power of proteomic patterns in
screening for all stages of ovarian cancer, [9] carried out
a case-control SELDI (surface-enhanced laser desorption
and ionization time-of-flight) study with 100 cases and
100 controls. Each spectrum was composed of 15200
intensities corresponding to m/z values on a range from
0 to 20000. Subsequently, the scientific findings of this
paper were questioned by other researchers [10,11] who
argued that the discriminatory signals in this dataset
may not be biological in nature. However, our use of
this dataset for the purpose of an illustrative example of
the comparative classification ability of our ensemble
classifier is still valid.
For this illustration, we applied five classification algo-

rithms to these high-dimensional data and our proposed
ensemble classifier with the number of bootstrap sam-
ples equal to 101. Once again, the internal optimization
of the ensemble classifier was performed with respect to
accuracy, sensitivity and specificity.

Similar to the microarray data, we implemented an
external 5-fold cross-validation and the average perfor-
mance scores are reported in Table 4. In this example,
PLS + LDA has the largest overall accuracy and sensitivity,
while SVM has the largest specificity and RF takes the top
spot according to AUC. Please note that our ensemble
method does have performance scores very close to those
of top classifiers in each performance category.

Conclusions and Discussion
For complex high dimensional datasets resulting from
present day high throughput experiments, it may be
wise to consider a number of reputable classification
algorithms combined with dimension reduction techni-
ques rather than a single standard algorithm. The pro-
posed classification strategy borrows elements from
bagging and rank aggregation to create an ensemble
classifier optimized with respect to several objective per-
formance functions. The ensemble classifier is capable
of adaptively adjusting its performance depending on
the data, reaching the performance levels of the best
performing individual classifier without explicitly know-
ing which one it is.
For a number of different data that we considered

here, the best performing method according to any par-
ticular performance measure changes from one dataset
to another. In some cases, if the three performance mea-
sures are considered (accuracy, sensitivity and specifi-
city), it is not even clear what the best algorithm is. In
such cases, the ensemble method appears to be opti-
mized with respect to all three measures which can be
concluded from it having the largest (or very close to
the largest) AUC scores.
The biggest drawback of the proposed ensemble clas-

sifier is the computational time it takes to fit M classifi-
cation algorithms on N bootstrap samples. In addition,
rank aggregation may also take considerable time if M is
large. We have implemented the procedure in R using
available classification routines to build the ensemble
classifier. On a workstation with an AMD Athlon 64 X2
4000+ Dual Core processor and 4GB of memory, it
takes about five hours to run the ensemble classifier
with 10-fold cross-validation on the breast cancer
microarray data. For a slightly larger proteomics exam-
ple, 101 boot-strap samples with 5-fold external cross-
validation take approximately 17 hours to complete
which is mainly due to the size of the dataset (15200
covariates) where even individual classifiers take consid-
erable time to build their models (in particular RF).
Computing variable importance is also very computa-
tionally intensive but is not essential for building an
ensemble classifier. It should be noted that it is

Table 3 Breast cancer microarray data

Accuracy Sensitivity Specificity AUC Count

SVM 0.5846 0.6679 0.5525 0.6845 168

PLR 0.6154 0.6859 0.5706 0.6503 197

PLS + RF 0.6077 0.6615 0.5562 0.6498 170

PLS + LDA 0.6846 0.6744 0.6887 0.6826 305

PLS + QDA 0.6462 0.7063 0.5799 0.6871 78

PCA + QDA 0.4692 0.3127 0.6645 0.5401 92

Ensemble 0.6385 0.6563 0.6227 0.7108

Average of 10-fold cross validation for the breast cancer microarray data. The
number of bootstraps N = 101. The count column shows the number of times
a particular individual algorithm was a locally “best” performing classifier
across all 10 folds.

Table 4 Proteomics ovarian cancer data

Accuracy Sensitivity Specificity AUC

RF 0.9550 0.9639 0.9520 0.9924

SVM 0.9350 0.9021 0.9731 0.9795

PLS + RF 0.9050 0.9040 0.9029 0.9703

PLS + LDA 0.9600 0.9639 0.9624 0.9784

PLS + QDA 0.9550 0.9539 0.9648 0.9781

Ensemble 0.9650 0.9639 0.9711 0.9871

Averages of 5-fold cross validation for the proteomics ovarian cancer data.
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relatively easy to parallelize the ensemble classifier
which would reduce the computing times dramatically if
run on a grid or cluster. If a cluster is not available and
one is dealing with high-dimensional data, feature selec-
tion is commonly performed prior to running the
ensemble classifier to reduce the dimensionality of the
data to more manageable sizes. As with any classifica-
tion algorithm, feature selection should be done with
great caution. If any cross-validation procedure is imple-
mented, feature selection should be performed sepa-
rately for every training set to avoid over-optimistic
accuracy estimates [12]. In simulation examples, the
greedy algorithm performs somewhat worse than the
proposed ensemble classifier which is why it was not
considered further for real data illustrations. Not sur-
prisingly, it still demonstrates good performance overall.
Generally speaking, it also takes less time to execute
because it is based on a k-fold cross-validation where
k is relatively small (usually between 5 and 10) instead
of a computationally intensive bootstrap sampling where
N is usually much larger. Also, the greedy algorithm
performs a single rank aggregation, while the proposed
ensemble classifier performs N of them, one for each
bootstrap sample. For a small number of individual clas-
sification algorithms, M ≤ 10 or so, this does not add a
substantial computational burden on the ensemble clas-
sifier. If one is willing to sacrifice on the number of
bootstrap samples N, then the running times of the two
algorithms not too different.
For the illustration purposes, we used some common

classification algorithms and dimension reduction tech-
niques in this paper. Obviously, many other individual
classifiers and dimension reduction techniques could be
incorporated into the ensemble. For example, one could
select features based on the importance scores returned
by the Random Forests to reduce the dimension of the
data [13,14] and follow that with any classification algo-
rithm. Also, performance measures are not limited to
the commonly used accuracy, sensitivity and specificity.
If moving beyond a binary classification problem, sensi-
tivity and specificity can easily be replaced by class-spe-
cific accuracies. Still other performance measures are
available which are functions of class assignment prob-
abilities, for example the Brier score [15] and the kappa
statistic [16]. It is beyond the scope of this paper to dis-
cuss or make specific recommendation as to which
component classification algorithms are to be included
in the ensemble and the selection and setting of tuning
parameters for individual classifiers. We have a few
more illustrations of the our ensemble classifier on the
supplementary web-site at http://www.somnathdatta.
org/Supp/ensemble/.
Following the standard bagging principle we have used

simple random sampling for generating our bootstrap

samples. Note that a certain bootstrap sample may not
include all the classes and thus prediction using these
samples will also be limited to these classes. As pointed
out by one of the reviewers, this may appear to be pro-
blematic, especially, in situations when one or more of
the classes are rare in the overall population. Since a
large number of bootstrap samples is taken, the princi-
ple of unbiasedness still applies to the overall aggrega-
tion; nevertheless, this may lead to inefficiencies.
Alternative sampling strategies (e.g., sampling separately
from each class to match the original training data, non-
uniform probability sampling related to the class preva-
lence, etc) that are more efficient can be considered in
such situations. Subsequent aggregation should then be
done through appropriate reweighing of the individual
predictions. A detailed investigation of such alternative
resampling strategies is beyond the scope of this paper
and will be explored elsewhere.

Methods
Construction of an adaptive ensemble classifier
The goal of any classification problem is to train classi-
fiers on the training data, X(n × p), with known class
labels y ={y1 ,..., yn} to be able to accurately predict class
labels y y y r

∧ ∧ ∧

= { ,..., }1
from the new testing data X r p( )×

∗ .
Here, both n and r are the number of samples in train-
ing and testing data respectively, and p is the number of
predictors (features). Suppose one considers M classifi-
cation algorithms, A1 ,..., AM, with the true, but
unknown, classification error rates of e1 , ..., eM. By
drawing random bootstrap samples [17] from the train-
ing data {X(n × p), y(n × 1)} and training each classifier on
them, it is possible to build a number of “independent”
models which can then be combined or averaged in
some meaningful fashion. Majority voting is a common
solution to model averaging but more complex schemes
have been proposed in the literature [18-20].
To build an ensemble classifier, we combine bootstrap

aggregation (bagging) and rank aggregation in a single
procedure. Bagging is one of the first model averaging
approaches to classification. The idea behind bagging is
that averaging models will reduce variance and improve
the accuracy of “weak” classifiers. “Weak” classifiers are
defined as classifiers whose final predictions change
drastically with little changes to training data. In bag-
ging, we repeatedly sample from a training set using
simple random sampling with replacement. For each
bootstrap sample, a single “weak” classifier is trained.
These classifiers are then used to predict class labels on
testing data and the class that obtains the majority of
the votes wins.
We adopt the same strategy for building our adaptive

ensemble classifier with the exception that we will train
several (M) classifiers on each bootstrap sample.
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A classifier with the best performance on OOB samples
will be kept and used for prediction on testing data. The
second major difference lies in the fact that we do not
seek to improve upon accuracies of individual classifiers.
“Strong” classifiers that we are using are quite difficult
to improve and the goal here is to create an ensemble
classifier whose performance is very close to that of the
best performing individual classifier which is not known
apriori. Our procedure is adaptive in a sense that it will
dynamically adjust its performance to reflect the perfor-
mance of the best individual method used for any given
classification problem.
How well a classification method can predict class

labels is quantified by common performance measures
such as an overall accuracy, and sensitivity/specificity
for binary classification problems (Table 5). A Receiver
Operating Characteristic (ROC) curve is a graphical tool
for assessing the performance of a binary classifier. It is
a plot of sensitivity versus 1-specificity computed for
varying thresholds of class probabilities. The area under
the curve (AUC) puts a numerical score which is equal
to 1 for a perfect classification at all threshold levels and
is around .5 for a random guess classification. Classifiers
with AUC smaller than .5 are considered inferior to ran-
dom guessing [21].
In many classification settings, in medical applications

domain in particular, the overall prediction accuracy
may not be the most important performance assessment
measure. Depending on a condition or treatment, mak-
ing one type of a misclassification can be much more
undesirable than the other. For binary prediction pro-
blems, sometimes large sensitivity and/or specificity
rates are highly sought after in addition to the overall
accuracy. Thus, it is important under many circum-
stances to consider several performance measures simul-
taneously. Explicit multi-objective optimization is very
attractive and the construction of a classifier which
would have an optimal performance according to all
performance measures, perhaps weighted according to
the degree of their importance, is very desirable.
It is straightforward to determine which classification

algorithm performs the best if a single performance
measure is considered. For example, if overall accuracy
is the only measure under consideration, a classifier

with the largest accuracy on OOB samples will be kept.
However, if several measures are of interest, determining
which classifier to keep becomes a challenging problem
in itself, since now we are interested in a classifier
whose performance is optimized with respect to all per-
formance measures.
Assume we want our classification model to have high

sensitivity rate in addition to high overall accuracy rate. In
the proposed ensemble classifier, this multi-objective opti-
mization is carried out via the weighted rank aggregation.
Each performance measure ranks classification algorithms
according to their performance under that particular mea-
sure. The ordered lists of classification algorithms, L1, ...,
LK, where K is the number of performance measures
under consideration, are then aggregated to produce a sin-
gle combined list which ranks algorithms according to
their performance under all K measures simultaneously.
The objective function is defined as

Φ( ) ( , ), =
=
∑w d Li

i

K

i

1

(1)

where δ is any valid ordered list of classification algo-
rithms of size M, d is a distance function that measures
the “closeness” between any two ordered lists and wi is
a weight factor associated with each performance mea-
sure. The two most common distance functions used in
the literature are Spearman footrule distance and Ken-
dall’s tau distance [22].
Here, we perform the rank aggregation in which the

minimization of F can be carried out using a brute
force approach if M is relatively small (< 8). For larger
optimization problems, many combinatorial optimiza-
tion algorithms could be adapted. We use the Cross-
Entropy [23] and/or Genetic [24] algorithms which are
described in the context of rank aggregation in [25].
The weights wi play an important role in aggregation
allowing for greater flexibility. If highly sensitive classifi-
cation is needed, more weight can be put on sensitivity
and algorithms having higher sensitivity will be ranked
higher by the aggregation scheme.
Next we present a step-by-step procedure for building

an adaptive ensemble classifier. Assume we are given
training data consisting of n samples {X(n × p), y(n × 1)}.

1. Initialization. Set N, the number of bootstrap
samples to draw. Let j = 1. Select the M classifica-
tion algorithms along with K performance measures
to be optimized.
2. Sampling. Draw the jth bootstrap sample of size n
from training samples using simple random sam-
pling with replacement to obtain { , }X yj j

∗ ∗ . Sampling
is repeated until samples from all classes are present
in a training set. Please note that some samples will

Table 5 Confusion matrix

True

Class 1 Class 0 Total

Predicted Class 1 a b a + b

Class 0 c d c + d

Total a + c b + d a + b + c + d

Confusion matrix from which many performance measures (accuracy,
sensitivity, specificity) can be computed.
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be repeated more than once, while others will be left
out of the bootstrap sample. Samples which are left
out of the bootstrap samples are called out-of-bag
(OOB) samples.
3. Classification. Using the jth bootstrap sample
train the M classifiers.
4. Performance assessment. The M models fitted in
the Classification step are then used to predict class
labels on the OOB cases which were not included
into the jth bootstrap sample, { },X yj

oob
j
oob∗ ∗

. Since
the true class labels are known, we can compute the
K performance measures. Each performance measure
will rank classification algorithms according to their
performance under that measure, producing K
ordered lists of size M, L1 ,..., LK.
5. Rank aggregation. The ordered lists L1 ,..., LK are
aggregated using the weighted rank aggregation pro-
cedure which determines the best performing classi-
fication algorithm A j

( )1 . Steps Sampling through
Rank aggregation are repeated N times.

The flowchart depicting both building the ensemble
classifier as well as using it to predict new samples is
shown in Figure 1.
In essence, bagging takes the form of a nested cross-vali-

dation in our procedure which is used to select the best
performing algorithm for each bootstrap sample. The outer
cross-validation can be added to estimate performance
rates and we use a k-fold cross-validation scheme for that
purpose (see the breast cancer microarray data results).
To predict new cases, the ensemble algorithm runs

them through the N fitted models. These will likely be
of different types, unlike classification trees in bagging,
since different classification algorithms will exhibit the
“best” local performance. Each model casts a “vote” as
to which class a particular sample belongs to. The final
prediction is based on the majority vote and the class
label with the most votes wins. A more detailed descrip-
tion of the prediction algorithm is given below.

•Individual Predictions. Use the N “best” individual
models, A AN

( ) ( ),...,1
1

1 , built on training data for each
bootstrap sample to make N class prediction for
each sample. Given a new sample x(p × 1), let

y yN
∧ ∧

1, ...,
denote N class predictions from N indivi-

dual classifiers.
•Majority voting. The final classification is based on
the most frequent class among the N predicted class
labels, also known as majority voting defined as

argmax ( ),
c

i

N

iI y c
=
∑

∧

=
1

where N is the number of bootstrap samples and c is
one of the class labels.

•Class probabilities. Compute the probability of
belonging to a particular class c by a simple propor-
tion of votes for that class

P C c X x
N

I y c
i

N

i( | ) ( ).= = = =
=
∑

∧1

1

Variable importance
Some classical classification algorithms allow for a for-
mal statistical inference about the contribution of each
predictor to the classification. For high-dimensional
data, variable importance becomes a challenge as most
classical methodologies fail to cope with high dimen-
sionality. Computationally intensive nonparametric
methods based on permutations can come to rescue in
those situations. In Random Forests, Breiman intro-
duced a permutation-based variable importance measure
which we adapt for our ensemble classifier [3].
In the context of Random Forests where many classifi-

cation trees are grown, the performance is assessed by
classifying the OOB samples Xoob. To assess the impor-
tance of the mth variable, Breiman proposes to randomly
permute the mth variable values in the OOB samples,
X m

oob
( ) , and then classify the OOB samples with one per-

muted variable using the built trees. Intuitively, if mis-
classification error rate increases rather dramatically
when compared to the non-permuted samples, the vari-
able is quite important. The formal measure that cap-
tures the raw importance of a variable m is defined as
the average difference between the error rates when
using non-permuted and permuted OOB data on all N
trees

I
N

e em i
X

i
X

i

N
m

oob

= −⎛
⎝⎜

⎞
⎠⎟

=
∑1

1

( ) .
oob

This idea can be easily adapted to the ensemble classi-
fier with the exception that instead of averaging across
the N trees, we average the misclassification error across
locally best performing algorithms as selected through
the rank aggregation.
An alternative greedy ensemble approach
In addition to the proposed ensemble classifier, we also
consider an alternative greedy ensemble classification
algorithm (greedy), which is more naive and direct.
Here, we simply determine the best performing indivi-
dual classifier using k-fold cross-validation where
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performance scores for each performance measure and
each individual algorithms are first averaged across the
k folds and then aggregated over the performance mea-
sures using the weighted rank aggregation. The top per-
forming individual classifier is used to predict testing
cases, so no model averaging is necessary.

1. Data Management. Split training data into k
folds.
2. Classification. Using the ith fold (i = 1, ..., k) for
testing, train M classifiers on the remaining k - 1
folds and compute K performance measures for each
individual classification algorithm.
3. Averaging. Average the performance scores
across the k folds.
4. Rank Aggregation. Using the weighted rank
aggregation procedure, determine the “best” per-
forming classification algorithm.

We implement the greedy ensemble to compare its
performance to the proposed adaptive ensemble

classifier. We expect the greedy ensemble to possibly
overfit the training data and, therefore, have an inferior
performance with the test data.

Some common classification algorithms used in our
ensembles
Classification algorithms in both statistical and machine
learning literatures provide researchers with a very
broad set of tools for discriminatory analysis [26]. They
range from fairly simple ones, such as the K-nearest
neighbor classifier to the advanced and sophisticated
Support Vector Machines. Which classification algo-
rithm should be used in any specific case highly depends
on the nature of data under consideration and its per-
formance is usually sensitive to the selection of its tun-
ing parameter. In the next several sections we will
briefly describe several most common classification algo-
rithms which are particularly popular in bioinformatics.
These algorithms in combination with dimension reduc-
tion techniques will be used as component classifiers for
our ensemble classifier. Of course, in principle, the user

Figure 1 Workflow of our ensemble classifier.
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could use any set of classifiers in constructing the
ensemble.
Logistic regression and penalized logistic regression
Logistic regression (LR) is perhaps the most widely used
model when dealing with binary outcomes [27]. In the
context of classification it applies to a two-class situa-
tion. It models the probability of a success (here
denoted as C = 1) using the following relationship

P C X x
exp x
exp x

( | )
( )
( )

,= = = + ′
+ + ′

1 0
1 0

 
 

where b0 and b are the parameters maximizing the
log-likelihood function. The model is usually equiva-
lently expressed as a relationship between a linear func-
tion of data and the logit transformation of the
probability of a success

log
( | )
( | )

.
P C X x
P C X x

x
= =

− = =
⎛

⎝
⎜

⎞

⎠
⎟ = + ′1

1 1 0 

Parameters in this model are estimated via the New-
ton-Raphson algorithm, an iterative numerical techni-
que used for solving nonlinear systems of equations.
As with most classical statistical techniques, the maxi-
mum number of parameters that can be reliably esti-
mated should be small when compared to the number
of samples in the data. When the number of features
is larger than the number of samples as is usually the
case for genomic and proteomic data, feature selection
has to be performed to reduce the dimensionality of
the data. An alternative approach is to use a penalized
logistic regression (PLR) where a penalty is imposed
on the log-likelihood function corresponding to the
logistic regression

 ∗ = −( ) ( ) ( ).   J

Here, l is the tuning parameter controlling how much
penalty should be applied, and J(b) is the penalty term
which usually takes the two common forms: ridge pen-

alty defined as 
i

p

i=∑ 1

2
and the lasso penalty defined

as | |
i

p
i=∑ 1

 . Due to the penalty term, many of the esti-

mated parameters will be close to 0.
Linear and Quadratic Discriminant Analysis
Linear Discriminant Analysis (LDA) is one of the classi-
cal statistical classification techniques originally pro-
posed by [28]. The LDA can be derived via a probability
model by assuming that each class c has a multivariate
normal distribution with mean μc and a common covar-
iance matrix ∑. Let πc be the prior probability of class c,
then the posterior probability of belonging to class c is

given by the Bayes formula

p c x cp x c
p x

( | )
( | )
( )

.= 

For classification purposes, we seek to assign samples
to classes with the largest posterior probability. By maxi-
mizing the logarithm of the posterior distribution with
the above assumption of p(x|c) distributed as N(μc, Σ),
we get

L p x c x c c
c c c c= + = ′ −

− ′
+−log( ( | )) log( ) log( ), 

 
Σ Σ1

1

2

which is a linear function in x directly corresponding
to the LDA. In the case when covariance matrices are
different for each class, i.e. ∑i ≠ ∑j, we obtain a Quadra-
tic Discriminant Analysis (QDA) which would be a
quadratic function in x. Both LDA and QDA have been
extensively used in practice with a fair share of success.
Support Vector Machines
The Support Vector Machines (SVM) is among the
most recent significant developments in the field of dis-
criminatory analysis [29]. In its very essence it is a linear
classifier (just like logistic regression and LDA) as it
directly seeks a separating hyperplane between classes
which would have the largest possible margin. The mar-
gin is defined here as the distance between the hyper-
plane and the closest sample point. It is usually the case
that there are several points called support vectors
which are exactly one margin away from the hyperplane
and on which the hyperplane is constructed. It is clear
that as stated, SVM is of little practical use because
most classification problems have no distinct separation
between classes and, therefore, no such hyperplane
exists. To overcome this problem, two extensions have
been proposed in the literature: penalty-based and ker-
nel methods.
The first approach relaxes the requirement of a

“separating” hyperplane by allowing some sample
points to be on the wrong side. It becomes a con-
strained optimization problem where the constraint is
that the total distance of all misclassified points to the
hyperplane is smaller than a chosen threshold c. The
second approach is more elegant and frequently used.
Since no linear separation between classes is possible
in the original space, the main idea is to project into a
higher dimensional space where such separation
usually exists. It turns out that there is no need to
specify such transformation h(x) explicitly and the
knowledge of the kernel function is sufficient for
optimization since kernel functions involve only the
original non-transformed data which makes them
easily computable
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K x x h x h xi j( , ) ( )’ ( ).=

The most popular choices for the kernel function are
the k degree polynomial

K x x x xi j i j
k( , ) ( ) ,= + ′1

the Radial basis

K x x e

xi x j
c

i j( , )

|| ||

=

− − 2

and the Neural Network kernel

K x x k x x ki j i j( , ) tanh( ),= ′ +1 2

where k, c, k1, and k2 are parameters that need to be
specified. SVMs enjoy the advantage in flexibility over
most other linear classifiers. The boundaries are linear
in a transformed high-dimensional space, but on the ori-
ginal scale they are usually non-linear which gives the
SVM its flexibility whenever required.
Random Forests
Classification trees are particularly popular among medi-
cal researchers due to their interpretability. Given a new
sample, it is very easy to classify it by going down the
tree until one reaches the terminal node which carries
the class assignment. Random Forests [3] take classifica-
tion trees one step further by building not a single but
multiple classification trees using different bootstrap
samples (sampled with replacement). A new sample is
classified by running it through each tree in the forest.
One obtains as many classifications as there are trees.
They are then aggregated through a majority voting
scheme and a single classification is returned. The idea
of bagging, or averaging multiple classification results, as
applied in this context greatly improves the accuracy of
unstable individual classification trees.
One of the interesting elements of Random Forests is

the ability to compute unbiased estimates of misclassifi-
cation rates on the fly without explicitly resorting to
testing data after building the classifier. By using the
samples which were left out of the bootstrap sample
when building a new tree, also known as out-of-bag
(OOB) data, RF runs the OOB data through the newly
constructed tree and calculates the error estimate. These
are later averaged out over all trees to obtain a single
misclassification error estimate. This combination of
bagging and bootstrap is sometimes called .632 cross-
validation because roughly 2/3 of samples used for
building each tree is really 1 - 1/e which is approxi-
mately .632. This form of cross-validation is arguably
very efficient in the way it uses available data.

Some commonly used dimension reduction techniques
For high-dimensional data, such as microarrays, where
the number of samples is much smaller than the num-
ber of predictors (features), most of the classical statisti-
cal methodologies require a preprocessing step in which
the dimensionality of data is reduced. The Principle
Component Analysis (PCA) [30] and the Partial Least
Squares (PLS) [31] are among two most popular meth-
ods for data dimension reduction. Of course, other
more sophisticated dimension reduction techniques can
be used as well. We use the PCA and PLS in a combina-
tion with logistic regression, LDA, QDA and Random
Forests as illustrative examples.
Both PCA and PLS effectively reduce the number of

dimensions while preserving the structure of the data.
They differ in the way they construct their latent vari-
ables. The PCA selects the directions of its principal
components along the axis of the largest variability in
the data. It is based on the eigenvalue decomposition of
an observed covariance matrix.
The PLS maximizes the covariance between dependent

and independent variables trying to explain as much
variability as possible in both dependent and independent
variables. The very reason that it considers the dependent
variable when constructing its latent components usually
makes it a better dimension reduction technique than the
PCA when it comes to classification problems.

Availability
R code and additional examples are available through
the supplementary website at http://www.somnathdatta.
org/Supp/ensemble.
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