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Abstract

determination based on statistical inference.

statistical inference of protein structures from SAXS data.

Background: Genome sequencing projects have expanded the gap between the amount of known protein
sequences and structures. The limitations of current high resolution structure determination methods make it
unlikely that this gap will disappear in the near future. Small angle X-ray scattering (SAXS) is an established low
resolution method for routinely determining the structure of proteins in solution. The purpose of this study is to
develop a method for the efficient calculation of accurate SAXS curves from coarse-grained protein models. Such a
method can for example be used to construct a likelihood function, which is paramount for structure

Results: We present a method for the efficient calculation of accurate SAXS curves based on the Debye formula
and a set of scattering form factors for dummy atom representations of amino acids. Such a method avoids the
computationally costly iteration over all atoms. We estimated the form factors using generated data from a set of
high quality protein structures. No ad hoc scaling or correction factors are applied in the calculation of the curves.
Two coarse-grained representations of protein structure were investigated; two scattering bodies per amino acid
led to significantly better results than a single scattering body.

Conclusion: We show that the obtained point estimates allow the calculation of accurate SAXS curves from
coarse-grained protein models. The resulting curves are on par with the current state-of-the-art program CRYSOL,
which requires full atomic detail. Our method was also comparable to CRYSOL in recognizing native structures
among native-like decoys. As a proof-of-concept, we combined the coarse-grained Debye calculation with a
previously described probabilistic model of protein structure, TorusDBN. This resulted in a significant improvement
in the decoy recognition performance. In conclusion, the presented method shows great promise for use in

Background

The fast progress of large scale gene sequencing projects
has lead to a rapid increase in the amount of known
protein sequences, extending the gap between known
sequences and known structures [1]. High-resolution
methods have successfully been applied to resolve the
structure of many proteins at the atomic level but the
class of experimental conditions to which they can be
applied is limited by the crystallization process for X-ray
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crystallography and protein size for Nuclear Magnetic
Resonance spectroscopy (NMR).

These limitations can be overcome by turning to dif-
ferent low resolution structure determination methods.
Small Angle X-ray Scattering (SAXS) [2-4] is a well
established low resolution method that relies on an iso-
tropical 1-D description of the excess electron density of
the sample versus the surrounding environment.
Recently, automated methods for high-throughput SAXS
analysis of bio-molecules have been developed [5,6],
opening the prospect of structure determination on a
genomic scale from SAXS experiments. SAXS data pro-
vide information on the structure of a protein in solu-
tion, but the information content is small compared to
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X-ray crystallography or NMR data due to the inherent
ambiguity arising from spherical averaging. This means
that SAXS data only provides structural information at
low resolution; additional model constraints are there-
fore typically needed to assist the structural
interpretation.

Early SAXS structure determination methods were
based on ab initio shape determination using spherical
harmonics expansions [7]. These methods provide good
computational efficiency, at the cost of limitations in
accuracy for complex shapes; for instance for proteins
with internal cavities [8]. Another modeling approach
has been to fit the scattering curve using a gas of
“dummy beads”. This is done using conformational
searches by a genetic algorithm in DALAI_GA [9] or
simulated annealing in DAMMIN [10] and its optimized
implementation DAMMIF [11]. A higher resolution
approach is found in the GASBOR program [12], where
a SAXS curve is fitted using a packed assembly of
spheres in a pseudo-Ca chain. This program does not
use amino acid sequence information, but does enforce
a realistic packing density for the Ca atoms. In GAS-
BOR, the scattering intensity is calculated using the
Debye formula while simulated annealing is used for
searching the conformational space. Other recent struc-
ture prediction methods, such as the ORNL [13] and
IMP [14] programs, utilize the SAXS curve in the form
of an extra energy term. Since these methods are non-
probabilistic, the weight that scales the SAXS energy
with respect to the other energy terms must be chosen
heuristically [15,16].

According to the Bayesian probability calculus, the
conditional probability of an event given some data
depends on the likelihood (which brings in the data),
multiplied by the prior distribution (which brings in the
knowledge regarding the event prior to observing
the data) [17]. If experimental data D is used to infer
the structure X of a protein with a known primary
sequence A, this results in the following expression:

P(X |D,A) < P(D| X,A)P(X | A) 1)

Such an approach was used by Rieping et al. [15] for
inferential structure determination using NMR data.
The likelihood function P(D|X, A) accounts for the
experimental data and quantifies the probability of
observing data D given a protein structure X with
sequence A. The prior, P(X|A), on the other hand
accounts for general knowledge about protein structures
with a given amino acid sequence [15,18-21]. In our
case, the data D is the experimentally measured scatter-
ing curve I resulting from a SAXS experiment.

For the evaluation of the likelihood, it is necessary to
compute the probability of the scattering profile, /, given
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a proposal structure, X. This work therefore focuses spe-
cifically on the calculation of the theoretical SAXS scat-
tering curve I '(X, A). The likelihood can then be
calculated by evaluating the discrepancy - in a probabil-
istic way - between the experimental curve I and the
calculated curve I '(X, A). Both the curve calculation
and evaluation of discrepancy must be reasonably fast in
order to be useful for macromolecular structure deter-
mination. We used the well-known Debye formula [22]
for calculating the scattering curve, combined with a
coarse-grained representation of protein structure in
order to comply with the speed requirement. In such a
coarse-grained representation, certain groups of atoms
are represented by one scattering body or dummy atom
[9,12,23]. The coarse-graining thus avoids a costly itera-
tion over all atoms (see Equation 2 below for details).
The main goal of this study is therefore to obtain good
point estimates of the form factors for these dummy
atoms.

To illustrate and evaluate the potential of this
approach in statistical inference of protein structure
from SAXS data, we also perform two decoy recognition
experiments (see Methods). In both cases, we use SAXS
curves calculated from the native structure by the pro-
gram CRYSOL as “experimental” data; the goal is to
identify the native structure among a set of decoys by
using the experimental data. In the first experiment, we
use a simple likelihood function based on the SAXS
curves calculated by our coarse-grained Debye method
combined with a uniform prior. In a second experiment,
we instead incorporate a probabilistic model of local
protein structure as the prior distribution.

Results and Discussion

Coarse-grained protein models

We used two coarse-grained models of protein struc-
ture, in which the amino acids were represented by one
and two scattering bodies (here called dummy atoms),
respectively. In the two-body model, the amino acids -
with the exception of glycine and alanine - were repre-
sented by two dummy atoms; one representing the
backbone, and the other representing the side chain.
The dummy atoms were placed at the respective centers
of mass (see Figure 1). Exceptions were made for the
representation of glycine and alanine due to their small
size; in both cases, one dummy atom represents the
whole amino acid. For the other 18 amino acids, a side
chain specific dummy atom was combined with the gen-
eric, backbone dummy atom. As a result, a total of 21
form factors needed to be estimated for the two-body
model: one for alanine, one for glycine, one for the
backbone and 18 for the remaining side chains. For the
one-body model, we used a straightforward approach
with one dummy atom that is placed at the center of
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Figure 1 Coarse-grained model of protein structure. Example of a protein backbone stretch (dark gray) with side chain atoms (light gray),
and a corresponding coarse-grained model. The positions of the corresponding dummy atoms for the backbone (red spheres) and side chains
(blue spheres) are shown. This representation is used in the two-body model in the article. The figure was made using PyMOL [40].

mass. Hence, 20 form factors need to be estimated; one
for each amino acid type. The one-body model results
in roughly half the number of scattering bodies as com-
pared to the two-body model for a given protein.

Calculation of the SAXS curves

The observed data in a SAXS experiment is a one-
dimensional intensity curve, I(g), where g = 41 sin(6)/\
is the scattering momentum, A is the wavelength and 26
is the scattering angle. The calculation of a theoretical
SAXS scattering curve from structure is based on the
well-established Debye formula [22]:

= SN f g SR )
@)=Y F() D

i=1 j=1

where F; and F; are the scattering form factors of the
individual particles i and j, and r;; is the Euclidean dis-
tance between them. The summations run over all M
scattering particles.

Since an average amino acid has around eight heavy
atoms, and considering the pairwise character of the
summation in Equation 2, it can be expected that a
coarse-grained protein model with one or two scattering
bodies per amino acid can lead to a computational
speed-up of more than an order of magnitude (see
Methods).

Estimation of scattering form factors
The estimation of the form factors was carried out using
artificial SAXS curves generated by the state-of-the-art

program CRYSOL [24]. We used a set of 297 high reso-
lution crystal structures from the Protein Data Bank
(PDB) [25].

Atomic scattering form factors are continuous func-
tions of the scattering momentum ¢; the same can be
expected for the coarse-grained form factors. In order to
render the estimation of the 20 (for the one body
model) or 21 (for the two body model) form factors
tractable, we discretized the problem by considering
resolution bins. We divided the relevant scattering
momentum interval - ranging from 0 to 0.75 A™ - into
51 discrete bins, with a width equal to 0.015 A™. Our
strategy was to obtain a point estimate for each of the
20 or 21 form factors in each of the g-bins, resulting in
a total of 1010 and 1071 parameters for the one and
two body models, respectively. We will denote the vec-
tor of form factor values for a specific g-bin as F;. Our
scheme is to sample form factor values from a suitable
posterior distribution for each bin, then calculate a
point estimate from the obtained samples. We start with
the classic Bayesian approach, and consider the follow-
ing posterior distribution:

P(F, |1,,X) e P(I, | F,, X)P(X | F,)P(F,)

where Fq is the 20- or 21-dimensional form factor
vector for bin g and I, is the intensity calculated by
CRYSOL at a given g-bin for a certain structure X. The
approach will be generalized to multiple structures
below. We assume conditional independence between
the structure X and the form factor vector Fq , that is,
P(X | F;) = P(X), and a uniform density for the prior
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P( Fq ). To evaluate the likelihood P(/,| IEq , X) - the
probability of the data I, given the form factor vector
F, - we use the following strategy. Applying F,, we
calculate the scattering intensity I;(F,, X) for the given
structure X using the Debye formula (Equation 2) and
evaluate the difference between the two intensities. The
likelihood is thus expressed as:

P(1, | F, X) =P(1, | I;(F, X))

In the following, I; will be used as a short notation
for Iy(F,, X). In order to calculate the likelihood, I,
was interpreted as a sample from a Gaussian distribu-
tion where the mean is given by I;, :

P(I, 1 I)=N(,|I}0,)
with o, being the standard deviation. The standard

deviation 6, was set to a value that is typically observed
in real experiments (see Methods). For multiple
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structures, the likelihood function simply becomes a
product of Gaussian distributions:

N
P(y1re g | By Xpeoe X ) = H/\/(Iq,,. 1150,
i=1

where N is the number of structures in the training
set, 12,,1 is the calculated scattering intensity curve for
structure X; using F, and I, is the intensity as calcu-
lated by CRYSOL from structure X;. Using this probabil-
istic model, it becomes possible to sample form factor
vectors from the posterior distribution for a given bin.

The form factor vectors are sampled from the poster-
ior distribution for each g-bin using a generalized Mar-
kov chain Monte Carlo (MCMC) method as
implemented in the Muninn program [26].

Form factor estimates
The resulting distributions for two g-bins are shown in
Figures 2 and 3 (two-body model). From these
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distributions, it is clear that some side chains are less
determining for the scattering curve than others; the
hydrophobic side chains of leucine, isoleucine and valine
only contribute marginally at low resolution. These
amino acids are most often buried in the hydrophobic
core; as a result, their contributions to the scattering
intensity for low g values - which is mostly determined
by the protein’s external shape - are rather small. The
final step in the estimation is to obtain the point esti-
mates for the form factor vectors from the samples; this
is done by computing the centroid of these samples (see
Methods), which is an attractive point estimator for
high-dimensional problems [27]. The resulting form fac-
tor curves as a function of g for the different amino
acids and the generic backbone are shown in Figure 4.
In all cases, the resulting curves are smooth in g. Since

the estimation of the form factors has been carried out
independently for each g-bin, the observed continuity
testifies to the efficiency and consistency of the MCMC
procedure. The 20 form factors for the one-body model
are shown in Figure 5. Although using only one dummy
atom per amino acid is computationally attractive, it
comes at the cost of a significantly lower accuracy,
except for very low resolutions (see Figure 6). The dif-
ference is particularly significant in the central part of
the g-range, which is of the highest interest for structure
prediction [28]. Therefore, we focus on the two body
model in the rest of this article.

Evaluation using a test set
The estimated form factors were assessed by calculating
scattering curves for fifty proteins that have low
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sequence similarity with the proteins in the training set
(sequence similarity below 25%). The calculated curves
were compared to curves generated by CRYSOL, which
uses full atomic detail. The results are shown in Table
1. The dissimilarities between the curves are quantified
by a x> measure, S in the table, which is scaled by the
standard deviations that were used in the training of the
form factors (see Methods for details). Since the errors
are within the usual magnitude of the experimental
errors [9,10,14,29], our results are in excellent agree-
ment with the CRYSOL predictions. Scattering curves
for six proteins of various sizes are shown in Figure 7.

Protein decoy recognition

In order to investigate the utility of the coarse-grained
model in inferential structure determination [15,16], we
carried out a decoy recognition experiment (see

Methods). As previously discussed, the Bayesian
approach to this problem employs the posterior prob-
ability distribution. The posterior probability distribution
P(X|I) is proportional to the product of the likelihood
P(I|X) and the prior probability P(X). Below, we first
test the model by combining the likelihood function
with a uniform prior and subsequently with a suitable
prior probability distribution, P(X|A). The performance
of decoy recognition experiments is commonly evaluated
using the Z-score. The Z-score is defined as the differ-
ence between the score of the native conformation and
the average score of all conformations belonging to that
decoy set, divided by the standard deviation [30]. Ideally,
the native structures have the lowest energy. For this
experiment we used a decoy set from TASSER [31].

In the first test, the likelihood was used to assign an
energy to the decoys, and a corresponding Z-score was
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Figure 5 Form factors for the one-body model. Mean (dark blue curve) and standard deviation (blue area) of the 20 single dummy atom

calculated. The results were compared to Z-scores
obtained using CRYSOL (see Table 2). Strikingly, the
coarse-grained Debye method is generally as good as
CRYSOL in identifying the native structure among the
decoys. In some cases our method even performs better
than CRYSOL; the coarse grained approach is quite
likely less sensitive to differences on the atomic scale.

In the second part of this experiment, we also incor-
porated a probabilistic model of the structure of pro-
teins as a prior. This model, called TorusDBN, was
previously developed in our group [21] and evaluates
the probability of observing a certain sequence of ¢ and
y angles for a given amino acid sequence. TorusDBN is
a model of the local structure of proteins; non-local
interactions such as hydrogen bonds or the formation of
a hydrophobic core are not part of this model.

Including the TorusDBN prior in the definition of the
posterior probabilities leads to a clear improvement in
decoy recognition; the average Z-score was enhanced by
16%. As illustrated in Figure 8, there is no correlation

between protein size and Z-scores; the performance
stays constant over a wide range of protein sizes.

Conclusions

We have demonstrated that it is possible to obtain
accurate SAXS curves from coarse-grained protein
structures and matching estimated form factors with-
out the use of ad hoc correction factors. We obtained
point estimates of the form factors and assessed their
performance for a diverse set of proteins; the resulting
SAXS curves are on par with the current state-of-the-
art program CRYSOL, at least up to scattering vector
lengths of 0.75 Al (see Methods). As a further valida-
tion of this model, we used a comparison of the Z-
scores for a set of protein decoys based on the SAXS
curves generated by CRYSOL and by our coarse-
grained Debye method, respectively. Again, the perfor-
mance was excellent. Including prior information from
a probabilistic model of local protein structure [21]
further improved the decoy recognition.
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Before a rigorous incorporation of SAXS information
in a fully probabilistic model for data driven structure
prediction is possible, two additional developments are
needed: a proper description of the hydration layer that
surrounds the protein [29] and a probabilistic descrip-
tion of the experimental errors associated with a SAXS
data acquisition experiment [15,16]. We are currently
implementing such an approach in the PHAISTOS soft-
ware package [32,33].

Methods
Protein data sets
Three protein data sets were used throughout this work:
one for training of the form factors, another for validat-
ing the model, and finally a set of native structures and
corresponding artificial decoys for the Z-score calcula-
tions. The training data set consists of 297 structures
with lengths between 50 and 400 from the Top500 data
set of high quality protein structures [34]. To ensure
that CRYSOL and our program processed these struc-
tures in the same manner, structures with conflicting
atoms or non-standard amino acids were excluded
(selected structures can be found in additional file 1).
The estimated form factors were validated by calculat-
ing scattering curves for 50 proteins (see Table 1)

extracted using the PISCES server [35]. These were ran-
domly selected among an initial group of 81 proteins
with low sequence similarity (below 25%) with those in
the training set, a resolution better than 3 A and an R-
factor below 30%.

The decoy set used in the Z-score evaluation was gen-
erated by the structure prediction program TASSER
[31]. This decoy set consists of 47 proteins, each with
1040 protein-like decoy structures with varying similar-
ity to the native structure. The decoys are constructed
from energy-minimized snapshots from molecular
dynamics simulations using the AMBER force field [36].
A single protein from the set, [ICBP], was excluded
from our Z-score evaluation, as this structure resulted
in an input error when evaluated by the CRYSOL pro-
gram. Six proteins were left out of the evaluation as
they were also present in our training data set.

In all cases, the backbone and side chain centroids
were calculated using all non-hydrogen atoms. The Cj
atoms were only included in the calculation of the back-
bone centroid.

SAXS training data
Due to the lack of publicly available high-quality experi-
mental data needed for the estimation of the form
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Table 1 Accuracy of the SAXS curve calculation for the

individual structures

PDBcode Chain Length Rg S
THCR A 52 6.92 0.504
1TGS \ 56 6.25 0.137
1TGX A 60 6.84 0.158
11SU A 62 6.02 0.203
1BF4 A 63 644 0.223
1PCF A 66 833 0.160
1B3A A 67 727 0122
1ATZ A 75 7.24 0214
1DP7 p 76 7.35 0.237
3HTS B 82 7.02 0.286
3EIP A 84 7.35 0.233
2BOP A 85 7.90 0122
1LMB 4 92 7.88 0.235
1FLT Y 94 7.55 0132
1DIF A 99 7.82 0.260

111B A 103 738 0.228
1CMB A 104 8.35 0.116
2568 A 106 837 0.245
1EVH A m 7.78 0.180
1DPT A 17 8.56 0.194
TFLM B 122 8.26 0118
2BBK L 124 8.05 0317
TNWP A 128 7.88 0.179
1BBH A 131 9.18 0.161
1AQZ A 142 848 0.208
1A3A D 144 8.15 0.230
TM6P A 146 8.70 0141
2TNF A 148 9.71 0.252
1ELK A 153 8.62 0.369
1NBC A 155 853 0.262
1DPS D 156 9.82 0272
1PHN A 162 10.48 0.204
1C02 A 166 9.60 0.230
1YTB A 180 11.73 0.190
1BEH B 183 878 0.204
TATL A 200 9.30 0.267
1BSM A 201 10.05 0.191
1YAC B 204 9.80 0.248
6GSV B 217 10.11 0.203
1AUO A 218 9.34 0137
1QLO A 241 9.59 0.165
1CYD A 242 10.13 0.287
1TPH 1 245 9.87 0.169
1A28 B 249 1039 0.300
1C90 A 265 10.30 0.142
1AQU A 281 10.73 0177
1BF6 B 291 10.21 0.294
1FTR A 296 12.14 0.295
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Table 1 Accuracy of the SAXS curve calculation for the
individual structures (Continued)

4PGA A 330 11.67 0.217
1CZF A 335 1143 0.241

S is the difference between the curves resulting from the two-body model
and CRYSOL in units of “experimental” standard deviations. Rg is the radius of
gyration computed from the pdb file coordinates.

factors, artificial data curves were generated for high-
resolution protein structures using the state-of-the-art
program CRYSOL [24]. This program calculates the the-
oretical scattering curve from a given full-atom resolu-
tion structure using spherical harmonics expansions.
CRYSOL was used to compute a simulated scattering
curve including the vacuum and excluded volume scat-
tering components, but without hydration layer contri-
bution; the electron density of the solvent layer was set
equal to that of the bulk solvent (i.e. CRYSOL was run
with the command line “crysol/dro 0.0 inputfile.pdb”).
For the scattering curve evaluations, an upper g-limit of
0.75 A"! was chosen in order to be well within the
expected valid resolution range for CRYSOL.

Error model and g-binning

The range of the scattering momentum ranges from 0
to 0.75 A!, divided in 51 discretized bins. For each bin
we sampled form factors from the posterior distribution
to obtain the 21-dimensional form factor distributions.
The intensity at a given bin was evaluated using the left-
hand side g-value, starting at ¢ = 0 in the first bin.

To account for the “experimental” error for the SAXS
curves, a standard deviation 6, = I, (with 8 = 0.3) has
previously been used in the literature as a realistic esti-
mate [14]. Aiming to be more precise in the portion of
the curve of primary interest in a structure prediction
application - approximately between ¢ = 0.1 and g =
0.5 A™' [37] - we introduced a scaling factor (g + o):

o,=1,(g+a)p

with o = 0.15 and § = 0.3. This is significantly stricter
at mid g-range than the reference parameters.

Posterior sampling

In order to explore the large parameter space efficiently,
we used an optimized, maximum-likelihood based
MCMC method implemented in the Muninn program
[26]. In the MCMC method, we used the negative of the
logarithm of the posterior probability as an energy. We
employed a sampling scheme where the density of states
is weighted according to the inverse cumulative density
of states (1/k ensemble) [38]. Compared to standard
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Table 2 Decoy recognition Z-scores for CRYSOL and the
two-body model

PDB code Chain CRYSOL Debye Debye+TorusDBN
1A19 A -1.55 -1.55 -1.83
1A7X A -1.83 -1.88 -2.19
1AAC A -1.24 -1.16 -1.75
1AAZ A -145 -1.50 -1.90
1AB1 A -1.26 -1.36 -1.75
1AFC A -1.26 -1.26 -1.39
1AG6 A -1.50 -1.77 -2.65
1BOwW A -246 -2.50 -2.90
1BB9 A -1.02 -143 -1.54
1BDY A -2.05 -2.23 -2.71
1BE9 A -1.90 -2.16 -2.82
1BEF A -1.81 -244 -2.26
1BHO 1 -1.34 -1.83 -2.25
1BHP A -1.58 -1.63 -1.94
1BIK A -1.82 -1.81 -2.10
1BJA A -2.52 -2.57 -3.07
1BNL A -1.07 -1.59 -1.75
1BTN A -1.14 -2.51 -2.78
1BUN B -1.23 -344 -3.51
1BVN T -1.57 -2.36 -2.75
1BX7 A -2.38 -2.63 -2.74
1BXY A -1.07 -1.39 -1.75
1BYW A -1.38 -1.65 -2.31
1BZ4 A -1.74 -1.78 -2.25
1COF S -1.72 -242 -3.27
Q1Y B -1.40 -2.01 -2.16
1C25 A -2.19 -4.13 -4.30
1C4P A -243 -3.10 -3.37
1C4R A -1.28 -1.87 -2.82
1C42 D -1.16 -1.57 -1.05
1Cev X -1.59 -1.68 -1.59
1C90 A -1.04 -1.20 -1.32
1CC7 A -1.09 -1.26 -1.65
1CDZ A -1.14 -149 -1.52
1CSK A -0.99 -0.90 -1.05
1D0Q A -2.30 -2.66 -2.89
1DTD B -1.03 -1.50 -2.03
1EAY C -1.51 -1.23 -1.30
1F94 A -1.77 -1.85 -2.13
1FCC C -149 -148 -1.56
mean -1.56 -1.93 -2.23

The Z-scores in the “Debye” column were calculated solely using the
likelihood derived from the two-body model. The Z-scores in the “Debye
+TorusDBN” column also include the prior distribution derived from
Torus-DBN

MCMC methods, this ensures a more frequent genera-
tion of samples in the lower energy regions. Avoiding
slow relaxation in the Markov chain also minimizes the
risk of the chain getting trapped at a local minimum
[26]; a problem often encountered in rough energy
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landscapes when using Metropolis techniques, as for
example in simulated annealing. 3

An initial proposal value for the F; vector was
obtained by uniformly sampling its components from
the interval [0, fi,ax]. The value of f,., was set to 40;
well beyond the limit of the form factor components
described in the literature [12]. The MCMC proposed
new form factor vectors, F,, with a transition F; — F,
in which a randomly chosen component f of the vector
was re-sampled uniformly from the interval:

[ max {0, f —m}, min{fya, f+m}]

where the width m was equal to 1.5. Border effects
were taken into account in order to respect the detailed
balance condition, which is

P(F,)P(F, — F;) = P(F,)P(F; — F,)

The transition probabilities, P(IEq —>13;), can be
expressed as:

P(F, - F;) = Q(F, > Fq)A(F, - F;)

where Q(Fq - 13,;)_ represents the probability of
selecting F, given F;, and A(F, —>Fc,]) is the accep-
tance probability of this transition. The selection prob-
ability implied by the local uniform proposal scheme is:

Q(F, = F}) = (min{f,, f +m} —max{0, f —m})™!
and according to the Metropolis-Hastings criterion

[39], the following acceptance probability satisfies the
detailed balance condition:

P(IE;)Q(EZ, - lfq)
" P(F,)Q(F, - F})

A(F; - F;) =min{1

where P(IEq) is given below by Equations 7 and 8 for
the TorusDBN independent and dependent cases,
respectively.

Point estimation of form factors

The MCMC procedure results in a set of samples from
the posterior distribution. In order to obtain a point
estimate, we calculated the centroid vector obtained
from the set of sampled form factor vectors
{Fqll,...,Fq,T}. The centroid vector F,. was defined as
the one with the lowest Euclidean distance to all the
other vectors in the set:

FM = argminz gl IEW

Fqr =1

_ﬁq,t ||
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Figure 8 Decoy recognition Z-scores for CRYSOL and the two-body model versus protein length. For each of the proteins in the set, the
Z-scores (Y-axis) are plotted against the length of the protein (X-axis). Red spheres: using CRYSOL. Blue squares: using the likelihood according
to the two-body model. Green triangles: using the likelihood according to the two-body model and the TorusDBN prior. More detailed
information is presented in Table 2.

where T is the number of samples.

SAXS curve distance measures

A x?* measure was used to quantify the difference
between two scattering curves. S was scaled by the
“experimental” error that was used in the estimation of
the form factors, thus evaluating the statistical quality of
our reconstruction:

Zq[(lq_l;)/gq ]2
Q-1

where Q is the number of g-bins and o, is the experi-
mental error as described previously.

Decoy recognition

The first decoy recognition experiment - which only
uses the likelihood - is performed as follows. First, a
SAXS curve [ is calculated from the native structure
using CRYSOL. For each decoy structure, a corre-
sponding SAXS curve I’ is calculated with the Debye
formula using the two-body model. In this case, the

posterior - which is simply equal to the likelihood
P(I | X) - of the decoy X is calculated as:

P(X|D)e P(I|X)=P(I|T)
Q
:HN(Iq |1;.0,)
q=1

where the product runs over all g-bins. For the com-
parison with CRYSOL, scattering curves were calculated
from the decoys using CRYSOL instead of the two-body
model.

In the second decoy recognition experiment, Tor-
usDBN is included as a prior distribution, and amino
acid information is explicitly included. In this case, the
posterior becomes:

P(X |I,A) e P(I| X)P(X | A)

Q
=TIV, 110, PG 7 14)

q=1
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where ¢ and y are the backbone angles of the decoy
and A is the amino acid sequence.

The Z-score for a given decoy set was calculated as
the difference between the energy (defined as the nega-
tive of the logarithm of the posterior) of the native
structure E(Xy) and the average energy E of all struc-
tures in the decoy set, divided by the standard deviation
o of the energies:

_E(Xy)-E

(o2

Z

TorusDBN prior

TorusDBN is a probabilistic model of the local structure
of proteins, formulated as a dynamic Bayesian network.
It can be considered as a probabilistic alternative to the
well known fragment libraries, It allows sampling of
plausible protein conformations in continuous space,
and it can assign a probability density value to a given
sequence of @ and vy angles. For the prior, we used:

P(X|A)=P($,7 | A) < P(¢,7,A)

where ¢ and y are the ¢ and y angle sequences,
respectively. The calculation of P(¢,y, A) from Tor-
usDBN is straightforward using the forward algorithm
[21]. We used the model that is described in [21] with
default parameters.

Computational efficiency
The naive implementation of the Debye formula (Equa-
tion 2) leads to a computational complexity of O(M?),
where M is the number of scatterers in the structure
under evaluation. Our coarse-grained approach reduces
M by representing several atoms by one scattering body
(a dummy atom). Each of the dummy atoms contains an
average of k atoms, thus lowering the execution time by
a constant factor of k% replacing O(M?) with
M\2
ol (%)
The exact value of k is obviously dependent on the
primary sequence of the protein. For both training and
validation sets, employing a dummy atom for the back-
bone and one for the side chain leads to an average k of
4.24. This means that each dummy atom contains on
average 4.24 non-hydrogen atoms, leading to an increase
in speed of k*=18. Using only one dummy atom to
describe a complete amino acid results in k=7.8 atoms,
allowing for a k*=60 times faster execution. The abso-
lute running time for a single scattering evaluation is
approximately 30 ms for a 129 residues protein
([6LYZ]), using the two-body model and a standard
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desktop computer (AMD Athlon X2 5200+). Absolute
running time comparisons with other programs are
obviously unfair, since for a single evaluation the over-
head introduced by the file system and the operative
system is considerable. This said, our approach is signifi-
cantly faster than CRYSOL [24](~786 ms).

Availability

The point estimates of the form factor vectors for all
bins are available as supplementary information (for the
one-body model in additional file 2 and the two-body
model in additional file 3).

Additional material

Additional file 1: Data set of selected protein structures from the
Top500 data set [34] used in the form factor estimation. Fach
column contains PDB identifier, primary sequence length and radius of
gyration calculated from the atomic structure.

Additional file 2: Scattering form factor centroids for the one-body
model. Form factor centroids for each amino acid in the g-range [0,
0750] A,

Additional file 3: Scattering form factors for the two-body model.
Form factor centroids for the generic backbone component and each
amino acid in the g-range [0, 0.750] A", An asterisk is used to mark the
residues where the form factor includes both the backbone and side
chain scatterers.
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