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Abstract

Background: We study the statistical properties of fragment coverage in genome sequencing experiments. In an
extension of the classic Lander-Waterman model, we consider the effect of the length distribution of fragments.
We also introduce a coding of the shape of the coverage depth function as a tree and explain how this can be
used to detect regions with anomalous coverage. This modeling perspective is especially germane to current high-
throughput sequencing experiments, where both sample preparation protocols and sequencing technology
particulars can affect fragment length distributions.

Results: Under the mild assumptions that fragment start sites are Poisson distributed and successive fragment
lengths are independent and identically distributed, we observe that, regardless of fragment length distribution,
the fragments produced in a sequencing experiment can be viewed as resulting from a two-dimensional spatial
Poisson process. We then study the successive jumps of the coverage function, and show that they can be
encoded as a random tree that is approximately a Galton-Watson tree with generation-dependent geometric
offspring distributions whose parameters can be computed.

Conclusions: We extend standard analyses of shotgun sequencing that focus on coverage statistics at individual
sites, and provide a null model for detecting deviations from random coverage in high-throughput sequence
census based experiments. Our approach leads to explicit determinations of the null distributions of certain test
statistics, while for others it greatly simplifies the approximation of their null distributions by simulation. Our focus
on fragments also leads to a new approach to visualizing sequencing data that is of independent interest.

Background
The classic “Lander-Waterman model” [1] provides
statistical estimates for the read depth in a whole gen-
ome shotgun (WGS) sequencing experiment via the
Poisson approximation to the Binomial distribution.
Although originally intended for estimating the redun-
dancy when mapping by fingerprinting random clones,
the Lander-Waterman model has served as an essential
tool for estimating sequencing requirements for modern
WGS experiments [2]. Further-more, although it makes
a number of simplifying assumptions (e.g. fixed frag-
ment length and uniform fragment selection) that are
violated in actual experiments, extensions and generali-
zations [3-9] have continued to be developed and
applied in a variety of settings.
The advent of “high-throughput sequencing”, which

refers to massively parallel sequencing technologies has

greatly increased the scope and applicability of sequen-
cing experiments. With the increasing scope of experi-
ments, new statistical questions about coverage statistics
have emerged. In particular, in the context of sequence
census methods, it has become important to understand
the shape of coverage functions.
Sequence census methods [10] are experiments

designed to assess the content of a mixture of molecules
via the creation of DNA fragments whose abundances
can be used to infer those of the original molecules. The
DNA fragments are identified by sequencing, and the
desired abundances inferred by solution of an inverse
problem. An example of a sequence census method is
ChIP-Seq. In this experiment, the goal is to determine
the locations in the genome where a specific protein
binds. An anti-body to the protein is used to “pull
down” fragments of DNA that are bound via a process
called chromatin immunoprecipitation (abbreviated by
ChIP). These fragments form the “mixture of molecules”
and after purifying the DNA, the fragments are deter-
mined by sequencing. The resulting sequences are
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compared to the genome, leading to a coverage function
that records, at each site, the number of sequenced frag-
ments that contained it. As with many sequence census
methods, “noise” in the experiment leads to random
sequenced fragments that may not correspond to bound
DNA, and therefore it is necessary to identify regions of
the coverage function that deviate from what is expected
in the “null” situation when only noise is present. Find-
ing peaks that are extreme requires a definition of
“extreme” in the sense of some test statistic taking a
large value as well as a probability model for the cover-
age process that leads to the null distribution of the test
statistic and hence to means for calibrating what values
of the test statistic are improbably large in the null
regime. The height of a peak is one obvious statistics,
but we hope to get more discriminating procedures by
also considering a suitably defined numerical summary
of the shape of a peak. Indeed, the shape-based methods
presented here have been used to develop a peak-caller–
T-PIC–for the ChIP-Seq assay [11].
The purpose of this paper, however, is not to develop

methods for data analysis, but rather to present a null
model for the shape of a coverage function that is of
general utility. That is, we propose a definition for the
shape of a coverage function in terms of the topology of
a tree. We describe a random instance assuming that
fragments are selected at random from a genome, with
lengths of fragments given by a known distribution. We
indicate how our description can be used to either com-
pute analytically or approximate via simple Monte Carlo
simulation the distributions of quantities of interest in a
data analysis.

Methods
In this section, we use some specialized mathematical
terminology and notation that the reader may be unfa-
miliar with. We feel it is important to include this in
order to make our statements rigorous and mathemati-
cally correct. We will give the definitions of some of the
concepts and a general idea of others, but first we set
some notation. The symbols R,ℤ, and ℤ≥0 stand for the
real numbers, integers, and non-negative integers
(respectively), and the elements of a set can be listed
inside curly braces, for instance A = {1,2,3}.

The shape of a fragment coverage function
We begin by explaining what we mean by a coverage
function. Given a genome of length N, a coverage func-
tion is a function f : {1, ..., N} ® ℤ≥0. The interpretation
of this function is that f(i) is the number of sequenced
fragments obtained from a sequencing experiment that
cover position i in the genome. Because N is very large,
we work with the set R and redefine a coverage function
as f : R ® ℤ≥0, which simplifies our analysis. We next

introduce an object that describes a sequence coverage
function’s shape. Our approach is motivated by recent
applications of topology including persistent homology
[12,13] and the use of critical points in shape analysis
[14-16]. For a given coverage function f : R ® ℤ≥0, we
will define a rooted tree, which is a particular type of
directed graph with all the directed edges pointing away
from the root. This tree Tf is based on the upper-excur-
sion sets off : Uh: = {(x,f(x))|f(x) ≥ h},h Î ℤ≥0 and keeps
track of how the sets Uh evolve as h decreases. Long
paths in Tf represent features of the coverage function
that persist through many values of h.
Specifically, for each h Î ℤ≥0, let Ch denote the set of

connected components of the upper-excursion set Uh.
That is, each element of Ch is an interval I such that f(x)
≥ h for all x Î I and if J is another interval for which
I ⊂ J and J ≠ I (so that J strictly contains I), then f(y) <h
for some y Î J. We define the rooted tree Tf = (V,E) as
follows

• Vertices in V correspond to the connected compo-
nents in the sets Ch, with h ranging over all non-
negative integers.
• (i, j) Î E provided their corresponding connected
components c Ci hi

∈ and c Cj h j
∈ with hi <hj

satisfy hi = hj-1 and cj ⊂ ci.

Note that the root of Tf corresponds to the single con-
nected component in C0. The tree Tf is very similar to a
contour tree [[14],§4.1], which is built using level sets of
a function, and a join tree [17]. Indeed, suppose we
ignore every vertex that is adjacent to only one vertex
with greater height. Then, the remaining vertices of Tf

correspond to (equivalence classes of) local extrema of f.
Each local maximum of f yields the birth of a new con-
nected component as we sweep down through h Î ℤ≥0

while a local minimum of f merges connected compo-
nents. Since we do not require f to have distinct critical
values (as is frequently assumed), the vertices in Tf can
have arbitrary (but assumed to be finite) degrees, as is
depicted in Figure 1C.
In the sequel, we will use the following equivalent

characterization that can be found in [[18], §2.3]. Given
a coverage function f : R ® ℤ≥0 with f(a) = f(b) = 0 and
f(x) > 0 for x Î (a, b), we form an integer-valued
sequence x0, ..., x2n that records the changes in height of
f on the interval [a,b]. First, we note that while the cov-
erage from one nucleotide to the next may jump by
more than one, we can always extend the known func-
tion values to define a coverage function f on R whose
jumps are all one unit. In any case, for the probability
model of the coverage function that we propose below,
jumps of size greater than one occur with zero probabil-
ity. Then, the sequence x0, ..., x2n consists of the y values
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that f travels through from x0 := f(a) = 0 to x2n := f(b) =
0 and satisfies

x x

x for i n

x x for i n
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Such a sequence is called a lattice path excursion
away from 0. Next, we define an equivalence relation on
the set {0, 1, ..., 2n} by setting

i j x x xi j i k j k≡ ⇔ = =
≤ ≤
min .

The equivalence classes under this relation are in 1:1
correspondence with the connected components in the
upper-excursion sets of f|[a,b]. One equivalence class is
{0, 2n}, and if {i1, ..., ip} is an equivalence class with 0
<i1 <i2 < ... <ip then x xi i1 11 1− = − , , whereas
x xi iq q− = +1 1 for 2 ≤ q ≤ p Conversely, any index i
with xi-1 = xi-1 is the minimal element of an equivalence
class. We use the minimal element of each equivalence
class as its representative. Thus, we can view the vertices
of Tf a b|[ , ] as the set {0} ∪ {i|xi-1 = xi-1} Two indices i1
<i2 are adjacent in Tf a b|[ , ] provided x xi i2 1

1= + and
x xk i≥

1
for i1 ≤ k ≤ i2. Figure 1 gives an example of a

coverage function together with its lattice path excur-
sion (0, 1, 2, 3, 4, 3, 2, 3, 4, 5, 4, 3, 2, 3, 2, 1, 0) and
rooted tree. The minimal elements of each equivalence
class in Figure 1B are depicted with red squares.

Planar Poisson processes from sequencing experiments
In order to model random coverage along the genome
thought of as a continuum, we adopt the perspective of

the Lander-Waterman model and use a Poisson process
to give random starting locations for the fragments. Spe-
cifically, we suppose that the left end-points of the frag-
ments form stationary Poisson point process on R with
intensity r.
At each point of the Poisson point process we lay

down an interval that has that point as its left end-
point. The lengths of the successive intervals are inde-
pendent and identically distributed with common distri-
bution μ. We will use the notation X for a coverage
function built from this process and Xt for the height at
a point t.
Let t1,t2, ... be the left-end points and l1,l2, ... be the

corresponding lengths of intervals. The interval given by
(ti, li) will cover a nucleotide t0 provided ti ≤ t0 and ti +
li ≥ t0. We can view this pictorially by plotting points
{(tj,lj)} in the plane. Then Xt0

– the number of intervals
covering t0– is the number of points in the wedge-
shaped region in Figure 2.
Before defining a two-dimensional Poisson process, we

note that the reader can think of Borel sets as being the
“nice” subsets of R2 that measures are defined on, where
a measure is a generalization of the area of a set. Any
set the reader can imagine is almost certainly a Borel set
and we include this terminology to maintain mathemati-
cal rigor - there are difficulties that arise in defining
measures in a self-consistent manner on all subsets of
R2 that don’t arise if we restrict to Borel sets. We now
recall the definition of a two-dimensional Poisson pro-
cess and refer the reader to [[19],§6.13] or [[20], §2.4]
for the details. Suppose is a locally finite measure on the
Borel sets ℬ (R2) (that is, Γ assigns finite mass to any
bounded set). A random countable subset ∏ of R2 is
called a non-homogeneous Poisson process with mean

Figure 1 A coverage function, lattice path excursion, and rooted tree. A coverage function is depicted in (A) with its associated lattice path
excursion (0,1,2,3,4,3,2,3,4,5,4,3,2,3,2,1,0) in (B). The lattice path excursion in (B) differs from the function (A) in that it records only the jumps of
(A). It does not give any information regarding how long the function remains at each y-value. The rooted tree for the coverage function is in
(C). The rooted tree is equivalent to the lattice path excursion (B). The red squares in (B) are the equivalence class representatives.
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measure Γ if, for all Borel subsets A, the random vari-
ables N(A) := #(A ⋂ ∏) satisfy:

1. N(A) has the Poisson distribution with parameter
Γ(A), and
2. If A1, ..., Ak are disjoint Borel subset of R2, then N
(A1), ..., N(Ak) are independent random variables.

The following theorem is a theoretical statement
about our null model for random fragment placement
and is a consequence of [[21], Proposition 12.3]. The
theorem and the work that follows from it will allow us
to access the shape of random fragment placement by
giving a description we can simulate.
Theorem 1. The collection {(tj,lj)} of points obtained as

described above is a non-homogeneous Poisson process
with mean measure rm ⊗ μ. Here m is Lebesgue mea-
sure (that is, length measure) on R.
The expected value of the coverage function Xt0

at
an arbitrary point t0 is the expected number of points
that the Poisson process puts into the wedge-shaped
region in Figure 2. By definition, this is the mass
assigned to the wedge by the mean measure rm ⊗
μThat is, [ ]Xt0

= rm ⊗ μNote that

   
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where the last line follows from an integration-by-
parts. Thus, [ ]Xt0

] is the product of the intensity
r and the mean length of a fragment.
Remark: The average height E [ Xt0

] can be com-
puted without the use of Theorem 1. We include the
derivation above as a first illustration that properties of
the coverage function can be understood in terms of the
two-dimensional Poisson process.

Fragment lengths have a general distribution
To use the shape of fragment coverage in a data analy-
sis, one needs to understand the distribution of the
shape when fragments are laid down according to the
null model described above. In particular, one is inter-
ested in the probability of seeing shapes associated with
trees that have a height exceeding some high level. One
way of doing this would be to first simulate a very long
stretch of the two-dimensional Poisson process, deter-
mine the coverage function, construct the trees for
peaks that exceed a high level, compute our shape sta-
tistic for each tree, and then record the empirical distri-
bution of the resulting values. However, peaks that
exceed high levels occur very infrequently and so we
would need to simulate infeasibly long stretches of the
Poisson process in order to determine the probabilities
we are interested in with reasonable accuracy. Thus, in
this section we propose a Markov approximation that
lets us start at high levels (rather than wait for them to
appear in simulations of the Poisson process). The cor-
responding trees are distributed as Galton-Watson trees
with generation-dependent geometric offspring distribu-
tions and these are easy to simulate. In the Results and
Discussion section, we compare this approximation to
that obtained by simulating the Poisson process for
fixed length fragments.
Suppose that we have a general distribution μfor the

fragment lengths. The discrete-time stochastic process
that records the values of X at its successive jumps is
typically not a Markov chain (although, as we illustrate
in the Results and Discussion section, it is if the distri-
bution μis exponential), but we will compute the condi-
tional probability that X takes the values k ± 1 at its
next jump given that it currently has the value k and
use the discrete-time Markov chain with transition
probabilities given by these conditional probabilities as
an approximation for the actual process of successive
values of X. More precisely, we observe X at some fixed
“time” -which might as well be 0 because of stationarity,
and ask for the conditional probabilities given X0 that
the next jump of X will be upwards to X0 + 1 or down-
wards to X0-1. Let T denote the time until the next frag-
ment comes along. This random variable has an expo-
nential distribution with rate r and is independent of
X0 [[20], §2.1]. If we condition on X0 = k, the

Figure 2 A two dimensional view of a sequencing experiment.
A typical wedge in the (t,l) plane is shown. Each interval gives a
point (ti,li) in this plane where ti gives the start position of an
interval and li gives the length. The number of points in the green
wedge gives the height Xt0

of the coverage function at t0.
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two-dimensional Poisson point process must have k
points in the region

A t l t t l: {( , ) : , },= −∞ < ≤ − < < ∞0

depicted in Figure 3. Conditionally, these k points in A
have the same distribution as k points chosen at random
in A according to the probability measure

 
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m B
m A

B A
⊗
⊗

⊂( )
( )

.for

However, in order that the next jump after 0 is up-
wards, the two-dimensional Poisson point process must
have no points in the orange region

{( , ) : , }t l t t l T t−∞ < ≤ − < < −0

in Figure 3 as these fragments end before time T. This
leaves the k points lying in the blue region

{( , ) : , },t l t T t l−∞ < ≤ − ≤ < ∞0
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Write p(k) for this quantity. To build trees, we are
interested in the jumps of the coverage function, and
hence we define a discrete-time Markov chain on the
nonnegative integers with transition probabilities

P i j

j

p i i j i

p i i
( , )

, ,

( ), ,

( ),
=

= =
≥ = +

− ≥

1 0 1

1 1

1 1

if i  and 

if  and 

if  annd 

otherwise

j i= −

⎧

⎨
⎪
⎪

⎩
⎪
⎪

1

0

,

, .

Suppose now we have a lattice path excursion starting
at 0. Given a vertex v of the associated tree at height k,
we are interested in the number of offspring (at height k
+ 1) of this vertex. Suppose i0 is the minimal equiva-
lence class representative for vertex v, and suppose i0
the equivalence class of i0 is {i0, i1,..., in} with i0 <i1 < ...
<in. Then, we have x kir

= for 0 ≤ r ≤ n, x kir + = +1 1
for 0 ≤ r ≤ n - 1, x kin + = −1 1 , and xt >k for i0 <t <in
with t ≠ some ir. From the Markov property, for 0 ≤ j ≤
n we have the equations




{ | } ( )

{ | } ( ).

x k x k p k

x k x k p k

i i

i i

j j

j j

+

+

= + = =

= − = = −
1

1

1

1 1

  and

The resulting tree is a Galton-Watson tree with gen-
eration-dependent offspring distributions (see [22-25]
for more on Galton-Watson trees). Indeed, the probabil-
ity a vertex at height k has n offspring is given by

p k p kn( ) ( ( )),1 − (1)

which is the probability of n failures before the first
success in a sequence of independent Bernoulli trials
where the probability of success equals 1-p(k). The uti-
lity of Equation 1 is that it allows one to (approximately)
simulate trees for peaks that exceed a high level under
the null model, making it possible to compare trees
built from actual data to those formed by random frag-
ment placement.
We close this section by processing another feature of

the trees (under the null model) that we can compute
using our Markov approximation. Let r(i, j) be probabil-
ity that our Markov chain started in height i reaches
height j before it hits height 0. We have the relations

r i j p i r i j p i r i j( , ) ( ) ( , ) ( - ( )) ( - , )   = + +1 1 1 (2)

with the boundary conditions r(i, j) = 1 and r(0, j) = 0:

Next, given a height H, let Yn
r n H
r H

: ( , )
( , )

=
1

, for 1 ≤ n ≤ H.

Using equation (2), we have

Y
Yn p n Yn

p nn+ = + − −
1

1 1( ( ) )
( )

for 2 ≤ n ≤ H - 1 with Y1 = 1, Y
p2
1
1

=
( ) . We may

solve inductively for YH and obtain r H
YH

( , )1
1= . The

Figure 3 A wedge from the planar Poisson process . The
intervals that correspond to points in both the blue and orange
regions contribute to the height X0. Any point in the orange region
would “die” before T while points in the blue region contribute to
the height XT.
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quantity r(1,H) gives the probability that a tree corre-
sponding to a single lattice path excursion away from
0 and coming from the null model is at least as tall as
height H. Note that this type of tree comes from a
block where the coverage function rises from 0 and
then back again-often referred to as an island or con-
tig. This probability can be used to do an initial “filter-
ing” of peaks in a data analysis: one first concentrates
on peaks that exceed some height that is calibrated
using a knowledge of r(1,H) and then computes the
shape statistic and associated p-values for just those
peaks. As an example, Figure 5 in the Results and Dis-
cussion section shows r(1,H) plotted for the fixed frag-
ment length.

Results and Discussion
Fragment lengths have the exponential distribution
When the distribution μof fragment lengths is exponen-
tial with rate l, our Markov approximation is exact, as

shown below. In this case, we have μ((s,∞)) = ℙ{l >s} =
e-l sand

( ) .X e dst
s= =−

∞

∫ 




0

Claim 1. The process X is a stationary, time-homoge-
neous Markov process.
Proof. It is clear that X is stationary because of the

manner in which it is constructed from a Poisson pro-
cess on R2 that has a distribution which is in-variant
under translations in the t direction; that is, the random
set {(ti,li)} has the same distribution as {(ti + t,li)} for any
fixed t Î R. Since μis exponential, it is memoryless,
meaning for any interval length l with an exponential
distribution

 { | } { }.l a b l a l b> + > = >

Figure 4 Comparison of the Poisson process and Markov approximation in terms of tree height. Histograms of the densities for tree
height are shown for trees built from a simulated Poisson process (solid yellow) and Galton-Watson trees from the Markov approximation (blue
striped) for the case of fixed fragment lengths. Each tree corresponds to one lattice path excursion away from 0 (also referred to as sequence
islands or contigs). The simulations include average height θ = 6 with 14,466 trees simulated for each type (A), θ = 9 with 3,551 trees simulated
for each type (B), θ = 12 with 1,429 trees simulated for each type (C), and θ = 15 with 217 trees simulated for each type (D).
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This means that probability that an interval covers t2
knowing that it covers t1 is the same as the probability
that an interval starting at t1 covers t2. Thus, the prob-
ability that X kt 2

= given Xt for at t ≤ t1 only depends
on the value of Xt1 .Indeed, in terms of time,
{ | }X k X kt t2 1

= = ′ depends only on t2 -t1.
More specifically, X is a birth-and-death process with

birth rate b(k) = r in all states k and death rate δ(k) =
kl in state k ≥ 1. The jumps of X are given by a dis-
crete-time Markov chain with transition matrix

P i j
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Note that as the exponential distribution is the only
distribution with the memoryless property, we lose the
Markov property when μis not exponential.

Fragments have a fixed length
Suppose μ is the point mass at L (that is, all fragment
lengths are L). Then

(( , ))
,

,
,u

u L

u L
∞ =

<
≥

⎧
⎨
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1

0

Figure 5 Comparison of trees built from the Poisson process with the probability r(1, H). The function r(1,H) = Π{Galton-Watson tree has
height ≥ H} is plotted in red. Using trees from a simulated Poisson process, the function Π{tree from simulated Poisson process has height ≥ H}
is plotted in blue. The plots include average height θ = 6 (A), θ = 9 (B), θ = 12 (C) and θ = 15 (D) for the case of fixed fragment lengths.
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. solving explicitly,
we obtain
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for k ≥ 1. Below we verify that Equation (4) satisfies
the recursion in Equation (3):
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Next, we compare the trees built from the Markov
approximation to the trees arising from the Poisson

process when fragments have a fixed length. We simu-
late trees with average height θ = 6,9,12, and 15 using
both the Poisson process and the Markov approxima-
tion. The histograms in Figure 4 show the densities of
simulated trees for the Markov approximation (blue
striped bars) and for the Poisson process (yellow solid
bars) for θ = 6,9,12, and 15. Additionally, the plots in
Figure 5 depict the probabilities r(1,H) (in red) and
Π{tree from simulated Poisson process has height ≥ H}
(in blue). These figures illustrate that, for large θ, the
Markov approach seems like a reasonable
approximation.
Our observation that randomly sequenced fragments

from a genome form a planar Poisson process in (posi-
tion, length) coordinates has implications beyond the
coverage function analysis performed in this paper. For
example we have found that the visualization of sequen-
cing data in this novel form is useful for quickly identi-
fying instances of sequencing bias by eye, as it is easy to
“see” deviations from the Poisson process. An example
is shown in Figure 6 where fragments from an Illumina
sequencing experiment are compared with an idealized
simulation (where the fragments are placed uniformly at
random). Specifically, paired-end reads from an RNA-
Seq experiment conducted on a GAII sequencer were
mapped back to the genome and fragments inferred
from the read end locations. Bias in the sequencing is
immediately visible, likely due to non-uniform PCR
amplification [26] and other effects.
The “shape” we have proposed for coverage functions

was motivated by persistence ideas from topological data
analysis (TDA). In the context of TDA, our setting is
very simple (1-dimensional), however unlike what is typi-
cally done in TDA, we have provided a detailed probabil-
istic analysis that can be used to construct a null
hypothesis for coverage-based test statistics. For example,
computing test statistics [27] based on the trees con-
structed from coverage functions and comparing those to
the statistics expected from the Galton-Watson trees has
been used to determine protein binding sites in ChIP-Seq
assay [11]. It should be interesting to perform similar
analyses with high-dimensional generalizations for which
we believe many of our ideas can be translated. There are
also biological applications, for example in the analysis of
Chip-Seq experiments [11], as previously mentioned.

Conclusions
We believe that the study of sequence coverage func-
tions that we have initiated may be of use in the analysis
of many sequence census methods. The number of pro-
posed protocols used in such methods has exploded in
the past two years, as a result of dramatic drops in the
price of sequencing. For example, in January 2010, the
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company Illumina announced a new sequencer, the
HiSeq 2000, that they claim “changes the trajectory of
sequencing” and can be used to sequence 25 Gb per
day. Al-though technologies such as the HiSeq 2000
were motivated by human genome sequencing a surpris-
ing development has been the fact that the majority of
sequencing is in fact being used for sequence census
experiments [10]. The vast amounts of sequence being
produced in the context of complex sequencing proto-
cols, means that a detailed probabilistic under-standing
of random sequencing is likely to become increasingly
important in the coming years.
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