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Abstract

the interplay between them.

biological experiments.

Background: Transcription Factors (TFs) and microRNAs (miRNAs) are key players for gene expression regulation in
higher eukaryotes. In the last years, a large amount of bioinformatic studies were devoted to the elucidation of
transcriptional and post-transcriptional (mostly miRNA-mediated) regulatory interactions, but little is known about

Description: Here we describe a dynamic web-accessible database, CircuitsDB, supporting a genome-wide
transcriptional and post-transcriptional regulatory network integration, for the human and mouse genomes, based
on a bioinformatic sequence-analysis approach. In particular, CircuitsDB is currently focused on the study of
mixed MIRNA/TF Feed-Forward regulatory Loops (FFLs), i.e. elementary circuits in which a master TF regulates an
miRNA and together with it a set of Joint Target protein-coding genes. The database was constructed using an
ab-initio oligo analysis procedure for the identification of the transcriptional and post-transcriptional interactions.
Several external sources of information were then pooled together to obtain the functional annotation of the
proposed interactions. Results for human and mouse genomes are presented in an integrated web tool, that
allows users to explore the circuits, investigate their sequence and functional properties and thus suggest possible

Conclusions: We present CircuitsDB, a web-server devoted to the study of human and mouse mixed miRNA/
TF Feed-Forward regulatory circuits, freely available at: http://biocluster.di.unito.it/circuits/

Background

Gene regulation is one of the most important molecular
mechanisms occurring in a eukaryotic cell or organism.
Control of gene expression is crucial for normal devel-
opment and maintenance of healthy cells, and altera-
tions from standard coordination programs can lead to
severe diseases including cancer. The numerous events
going from a DNA gene sequence to the corresponding
protein are carefully controlled: from the control of
transcription initiation to post-translational modifica-
tions that ultimately indicate the fate of the protein pro-
duct. The primary regulation of gene expression is
thought to be performed by Transcription Factors (TFs),
proteins that are able to positively or negatively
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coordinate gene transcription through the interaction
with specific recognition DNA motifs usually located in
the gene promoter regions (see [1,2] for recent reviews
and perspectives).

In the last years, however, an additional class of gene
regulators emerged: the microRNAs (miRNAs). miRNAs
are short (~22nt) endogenous non-coding RNAs able to
negatively regulate gene expression at the post-transcrip-
tional level, via mRNA cleavage or translational repres-
sion. To this purpose, antisense complementary base-pair
matching between a mature miRNA and its specific tar-
get sequences, located in the 3-UTR of the regulated
mRNAs, is usually required (reviewed e.g. in [3]).

As a consequence of the above mentioned discoveries,
the study of gene regulation has undergone a deep change
of perspective. While past studies usually dealt with indivi-
dual regulatory interactions, it has become clear that the
only way to understand the regulatory activity of a
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eukaryotic genome is to directly address the complex,
combinatorial nature of the whole ensemble of DNA cis
and trans elements involved in such a process. Despite
numerous efforts, mechanisms that control gene expres-
sion are not fully understood yet. In particular, a lot of
methods exist to elucidate TF or miRNA-related regula-
tory networks, but comparable information to explicitly
connect them is still lacking. Given a transcriptional and a
post-transcriptional regulatory network, different possible
ways to connect them are in principle possible: recently, a
strong focus regarding the study of local mixed interac-
tions has emerged in several works [4-10].

In this respect, it is important to notice that the tran-
scription of miRNAs is widely regulated by POLII type
promoters [11], and that co-expressed miRNAs are found
to be regulated by common TFs [12]. Stemming from
these considerations, we previously developed a compu-
tational framework for the study of connections between
transcriptional and post-transcriptional (miRNA-
mediated) regulatory interactions in the human genome
[13]. We concentrated our attention on a particular class
of local regulatory circuits (i.e. network motifs) in which a
TF regulates an miRNA and together with it a set of Joint
Target protein-coding genes. These circuits, called mixed
miRNA/TF Feed-Forward regulatory Loops (FFLs, Figure
la), were identified through a bioinformatic pipeline,
mainly based on an ab-initio sequence analysis of human
and mouse genomes. Once equipped with the catalogue
of FFLs, we studied different ways to characterize their
biological behaviors and implications. In particular, data
were used to investigate connections between the mixed
regulatory circuits involved in cancer.

Here, we present CircuitsDB, a user-friendly web-
server that includes and extends our previous work [13].

In addition to the human catalogue of mixed FFLs, the
database now contains full datasets relative to the mouse
genome as well. Data are stored in a relational database
that can be accessed through a dynamic web interface.
The interface is composed by series of interactive on-
line forms that allow the users to start with their favour-
ite TF or miRNA or gene, and to follow their mutual
connections in regulatory loops. Sequence information
as well as functional data are provided (Gene Ontology,
genomic annotations and positions of the putative regu-
latory sites, links to cancer or, more in general, disease
information, patterns of tissue expression). Finally, a
Wiki is also present, so that users can give their own
feedback regarding the proposed interactions.

CircuitsDB is freely available at: http://biocluster.di.
unito.it/circuits/.

Construction and content
CircuitsDB was constructed using a bioinformatic
pipeline mainly based on an ab-initio sequence analysis
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applied to regulatory regions of human and mouse gen-
omes. In this section, we first describe the dataset of
genomic regions used for the definition of our database.
Second, we summarize the methodology originally used
in [13] for the identification of the transcriptional and
post-transcriptional players of the regulatory networks,
in human and mouse and the approach used for their
integration in mixed Feed-Forward regulatory Loops
(FFLs). Finally, we describe the content and the struc-
ture of our web-accessible database.

Definition of the dataset of genes and regulatory regions
used to infer the transcriptional and post-transcriptional
networks

The promoter regions for protein-coding and microRNA
(miRNA) genes as well the 3-UTRs were defined
according to [13]. Gene definitions, sequences, and
functional annotations were extracted from the Ensembl
database [14], release 46 and from miRBase, version 9.2
[15]. The promoter region we selected for protein-cod-
ing genes corresponded to (-900/+100) nts around the
Transcription Start Site (TSS), being the TSS at position
+1. For each protein-coding gene, if more than one
transcript was present, we used only the longest one.
For miRNA genes, we first grouped pre-miRNAs in the
so called Transcriptional Units (TUs) [16] and asso-
ciated the promoter of the most 5-upstream member to
all the pre-miRNAs belonging to the TU itself. Then,
based on the fact that the pre-miRNAs were inter- or
intra-genic, we defined the following promoters. For
inter-genic pre-miRNAs the promoter corresponded to
(-900/+100) nts upstream of the TSS of the first pre-
miRNA in the TU. The same was true for intra-genic
pre-miRNAs which showed opposite orientation with
respect to the hosting protein-coding gene. Finally, if
the pre-miRNAs were intra-genic but sharing the same
orientation of the hosting protein-coding gene, the pro-
moter region was considered coincident with the one
defined for the protein-coding host gene.

This procedure was implemented here for both
human and mouse genomes. For subsequent analysis we
considered only protein-coding and pre-miRNA genes
showing at least a direct one-to-one orthology between
the two genomes (from [14] and [16]). The final dataset
of promoter regions is composed of a collection of
21446 (21316 protein-coding plus 130 pre-miRNA)
human and 21944 (21814 protein-coding plus 130 pre-
miRNA) mouse regulatory sequences. The 130 pre-miR-
NAs included in our work encode for 193 mature
miRNAs (see Supplementary File S1 of [13]). For pro-
tein-coding genes, we then downloaded the 3-UTR
regions, considering only the longest transcript in case
of multiple alternative isoforms. We ended up with only
17486 human and 15921 mouse sequences, since not all
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Figure 1 Mixed miRNA/TF Feed-Forward Loops and CircuitsDB construction pipeline. a) Representation of a typical mixed Feed-
Forward regulatory Loop (FFL) included in CircuitsDB. Circuits are composed by a master Transcription Factor (TF, square box) that regulates
a microRNA (miRNA, diamond-shaped box) and together with it a Joint Target protein-coding gene (round box). Inside each circuit, -+ indicates
transcriptional activation/repression, whilst ) post-transcriptional repression. b) Flow-chart of the strategy used for the construction of
CircuitsDB. We first built a genome-wide catalogue of putative core promoter regions for protein-coding and miRNA genes, plus a set of 3-
UTRs for protein-coding genes, in human and mouse. Then we used the analysis pipeline developed in our previous work [13] to infer a dataset
of mixed regulatory FFLs, in human and mouse. Finally we integrated different kinds of biological annotations to support the circuits’ properties;
the CircuitsDB web-site allows a dynamic exploration of such properties.

%) CircuitsDs

the genes have a well defined 3-UTR in the Ensembl
database. All the sequences were Repeat-Masked using
Ensembl default parameters.

Oligo analysis and definition of mixed microRNA/
Transcription Factor regulatory Feed-Forward Loops
Details about the oligo analysis are listed in [13]; here we
report our main choices and results (Figure 1b). Briefly,
we scanned all the promoter regions and the 3-UTRs for

conserved-overrepresented oligos (6 to 9 nts for promo-
ters; 7 nts for the 3-UTRs) with potential regulatory roles
(as Transcription Factor Binding Sites, TEBS, for promo-
ters or miRNA seeds for the 3-UTRs). By doing so, we
fixed 0.1 as False Discovery Rate (FDR) in the oligo analy-
sis pipeline. To assess the oligos surviving the motif-find-
ing analysis, we used a catalogue of known TFBS
consensus from the Transfac database [17] and from [18]
for the oligos located in promoter regions, manually



Friard et al. BMC Bioinformatics 2010, 11:435
http://www.biomedcentral.com/1471-2105/11/435

filtering out those TFs characterized by very long or too
degenerate consensus sequences. Similarly, we used a
catalogue of known miRNA seeds derived from the
mature miRNAs included in our study to identify signifi-
cant oligos located in the 3-UTRs (see [19] and [20] for
additional details concerning the used algorithms). The
above analysis was performed here in parallel for human
and mouse. In human, for the transcriptional network,
we obtained a catalogue of 2031 significant oligos that
could be associated to known TFBSs for a total of 115
different TFs. These 2031 oligos targeted 21399 genes
(21219 protein-coding and 180 mature miRNAs). For the
post-transcriptional network, we ended up with a library
of 182 significant oligos, each of them matching with at
least one seed present in 140 out of our 193 mature miR-
NAs and targeting a total of 17266 protein-coding genes.
We obtained rather similar results for the mouse: the
transcriptional network is composed of 22054 genes
(21875 protein-coding and 179 pre-miRNAs) and 115
different TFs targeting the 2031 significant oligos. On the
other hand, the post-transcriptional network includes
15755 genes, targeted by 178 significant oligos corre-
sponding to 143 mature miRNAs.

Once we obtained these two regulatory networks, we
focused on the integration of the two datasets in order
to construct a catalogue of mixed miRNA/TF FFLs
(Figure 1a). In human, that integration included 5030
different “single target circuits”, each of them defined by
a single TF as master regulator, a single mature miRNA
and a single protein-coding Joint Target. From these
single target circuits we constructed “merged circuits”
grouping together the FFLs sharing the same TF and
the same miRNA, thus obtaining 638 merged circuits.
These circuits involved a total of 101 TFs, 133 mature
miRNAs and 2625 Joint Target genes. In mouse, we
found 6684 different “single target circuits”, which could
be grouped in 850 “merged circuits”, involving a total of
94 TFs, 142 mature miRNAs and 2968 Joint Target
genes. 30 single target circuits were conserved between
human and mouse: they share the TF, the miRNA as
well as the Joint Target being one-to-one orthologs.

The prediction of reliable miRNA-mediated post-tran-
scriptional regulatory interactions is still an open issue in
computational biology and it is well known that different
approaches can lead to very different outcomes [21]. To
address this problem, we included in CircuitsDB con-
served miRNA-target predictions obtained from two
external resources, namely TargetScan [22] and Target-
Miner [23]. We dowloaded from the TargetScan website
http://www.targetscan.org/ inferred miRNA targets for
the human and mouse genomes and we mapped Entrez
Gene symbols and miRNA family names provided on the
Ensembl stable identifiers (ids) for protein-coding genes
and pre-miRNAs present in our database of FFLs.
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A similar procedure was implemented for the human
genome-wide predictions obtained from the TargetMiner
website http://www.isical.ac.in/~bioinfo_miu/, where
human RefSeq ids were again mapped on Ensembl gene
stable ids. By TargetScan or TargetMiner we could con-
firm 1434 out of the 5030 human FFLs included in our
study at the post-transcriptional level. Similar results
were obtained also for the murine case, resulting in 1107
FFLs having the post-transcriptional link confirmed by
TargetScan. These data are reported in Additional File 1
(for human) and Additional File 2 (for mouse).

Furthermore, we also investigated whether in our
database connections between TF and miRNAs were
present in mixed Feed-Back regulatory Loops (FBLs), i.e.
situations in which a master TF regulates an miRNA,
being itself the target of the regulated miRNA at the
post-transcriptional level. To this end, in order to recog-
nize the miRNA - TF post-transcriptional interactions,
we manually prepared a translation table in which
Transfac TF ids were associated to known Ensembl
gene stable ids, where possible. We ended up with a cat-
alogue of 113 mixed FBLs in human and 38 FBLs in
mouse, having the post-transcriptional link confirmed
by at least one of the supporting databases included.

Fuctional annotations, cancer and disease genes

Once equipped with the catalogue of mixed miRNA/TF
Feed-Forward loops, we investigated their functional
properties with several different criteria with a focus on
functional annotations according to the Gene Ontology
(GO) database [24] and to their relevance in cancer or
other diseases. In the present version of CircuitsDB,
these three types of biological annotations are included
in the on-line web-service.

Gene product GO annotations for the TF and Joint
Target protein-coding genes were downloaded from the
Ensembl database, version 46.

Regarding the identification of cancer related genes,
we obtained a list of oncomiRs from [25,26] and [27]
while for the protein-coding target genes we enumerated
a list of genes showing mutations in cancer based on the
Cancer Gene Census catalogue [28]. We then focused
on the annotation of CircuitsDB genes and miRNAs
in terms of genetic diseases: for protein-coding genes we
used the established OMIM[29] catalogue, whilst the
HMDD miRNA-disease database [30] was interrogated
to annotate the miRNAs present in our FFLs.

Comparison with experimentally supported regulatory
interactions for each of the circuit’s link

We then compared our predicted human miRNA-target
links (miRNA -Joint Target) with two databases of
experimentally supported information, Tarbase [31] and
the component of miRecords [32] reporting validated
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miRNA-target links. 140 miRNAs, used in our post-tran-
scriptional network, were also present in Tarbase or miRe-
cords. On average, 11.5% of our predicted miRNA targets
were already validated experimentally. It was of interest to
compare the other two computational algorithms for
miRNA target predictions, TargetScan and TargetMiner,
with our own algorithm, in the same benchmarking set-
ting, in order to compare the relative performances. To
this end, we applied a binomial test to assess the propor-
tions of experimentally supported predictions (implemen-
ted as the function prop.test () in the R [33] statistical
environment); for the sake of the comparison, this test was
applied separately to each miRNA in common between
our post-transcriptional network and TargetScan (33) or
TargetMiner (30). Setting the confidence threshold to
0.01, no significant dierence was found for 30 out of 33
miRNAs, when using TargetScan, and for 29 out of 30
miRNAs, when using TargetMiner. Therefore, we can
conclude that the proportions of true positives recognized
separately by each algorithm, evaluated on the miRNA
pool present in our database, are substantially comparable
(see Additional File 3).

Eventually, we also assessed the reliability of our pre-
dictions separately for the other two types of links in a
circuit: the TF -+ Joint Target and the TF -+ miRNA
regulatory interactions.

A proof of principle of the reliability of the TF -+ Joint
Target links was already established in our previous work
[13], where we compared our predictions with the experi-
mentally validated results reported in [34], a large-scale
study of direct MYC binding target genes in a model of
human B lymphoid tumors performed by chromatin
immunoprecipitation coupled with pair-end ditag
sequencing analysis (ChIP-PET). The intersection
between [34] and our predicted MYC interactions proved
to be statistically significant (p = 1.1 x 10°°, Fisher’s test).

We then proceeded to compare our predicted TF -+
miRNA regulatory interactions links with TransmiR
[11], a literature-based database of TF - miRNA links.
At present, we were able to safely identify only 16 TF
names in common between our dataset and the Trans-
miR database. 5 TF - miRNA links were found in com-
mon out of the 36 indentified by TransmiR, involving a
transcription factor and an miRNA present in our
dataset.

Tissue expression Heat Map

Due to the sequence analysis pipeline that we adopted
to identify the FFLs in CircuitsDB, we were not able
to recognize if the action of the master TF was activat-
ing or repressing its targets and thus if the FFL that we
obtained was of the so-called Type I or Type II [5,13].
Moreover, not only the two types of circuits may lead to
very different behaviours in terms of expression patterns
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of their components [5], but also the understanding of
the consequences of miRNA-target interaction is cur-
rently challenged [35-37].

Therefore, we decided to simply give the users the
possibility to explore the expression values across sev-
eral tissues for the TF, miRNA and Joint Target belong-
ing to a given FFL by means of a graphical heat map
representation. For this purpose, we collected the
expression profiling data for 175 miRNAs over 24
human organs from [38] and for more than 40000
human protein-coding transcripts as microarray probe
sets over 79 human tissues from [39]. We were able to
identify 14 tissue types in common between the two
datasets: AdrenalGland, BoneMarrow, Brain, Heart, Kid-
ney, Liver, Lung, Lymph, Pancreas, Placenta, Prostate,
Testis, Thymus, Uterus (see also [23]). For the protein-
coding genes, we then used the BioMart tool of the
Ensembl database to map the original probe sets on the
Ensembl gene stable ids used in our CircuitsDB. If
more than one probe matched on the same Ensembl id,
we retained as expression values for that gene the mean
values, for each tissue type. For both miRNAs and pro-
tein-coding genes the expression values were then log2-
transformed and the Z - score with respect to the mean
over all the tissues was evaluated. These values were
finally used to create, for each mixed FFL, a heat map,
composed by 14 rows (corresponding to the 14 different
tissues) and 3 columns, corresponding to the TF,
miRNA and Joint Target embedded in the FFL.

Utility

CircuitsDB was built in the PHP script language and
as a MySQL relational database system on a Linux ser-
ver. In the MySQL database pre-compiled transcrip-
tional and post-transcriptional networks, the dataset of
mixed FFLs and all fuctional and biological information,
for both human and mouse, are stored. The interactive
web interface allows the user to first select an organism
of interest, then select a TF, an miRNA id or a protein-
coding gene name (or a combination of these three
elements) and query the database in order to retrive a
catalogue of mixed miRNA/TF Feed-Forward regulatory
Loops in which the search keys are involved (Figure 2a
and 2b).

Query’s results are displayed in a synthetic tabular-like
view, with single target circuits on separate lines. Differ-
ent color codes for the different circuit elements are
used. The view relative to each single-target circuit can
be expanded into six related sub-panels showing addi-
tional detailed information, similarly to the graphical
strategy adopted e.g. in [31].

The additional information is divided into six cate-
gories: Transcription Factor (TF), miRNA, Joint Target
gene, Sequence, Tissue Expression Heat Map and
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Figure 2 Example of CircuitsDB usage. Graphical snapshots of a typical working session with CircuitsDB. a) In the first step the user
selects an organism of interest and at least one search key among the available ones: Transcription Factor (TF) or microRNA (miRNA) or Joint
Target gene name. b) In the second panel a list of mixed TF/miRNA regulatory circuits is retrieved. ¢) In the third panel an example of
CircuitsDB output is shown: a single mixed Feed-Forward Loop is identified and its components are reported in a tabular-like fashion. The
user can explore TF additional information, as well as miRNA and Joint Target annotations. A sequence analysis panel and a Wiki for community
feedback are available. d) Example of sequence analysis panel: TF binding sites are explicitly highlighted on the miRNA core promoter region.

Circuit’s Wiki (Figure 2c). The TF information category
gathers mostly biological properties of the master TF
regulating the circuits: its Ensembl annotations, chromo-
some location and Gene Ontology annotation, if avail-
able. The miRNA information category is composed of
the Ensembl annotations of the pre-miRNA composing

the circuit, its chromosome location and corresponding
mature miRNA ids. Tumor involvement fields provide
annotations of miRNAs known to be involved in cancer.
In parallel to that, a disease field reports whether the
miRNA is connected to a known disease, if any. The
Joint Target gene information panel contains again
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Ensembl annotation for the protein-coding Joint Target
gene, the gene official name as well as GO annotations.
Again, a tumor involvement field shows possible links
with cancer. The OMIM fields displays the correspond-
ing mendelian disease associated to the current gene.
With the Sequence information link the user is redir-
ected to an additional web-page in which the promoter
sequence of the miRNA or the promoter and 3-UTR of
the Joint Target present in the circuit are explicitly dis-
played. TFBS identified with our algorithm and miRNA
binding sites are highlighted on the sequences, thus pro-
viding direct information for experimental tests (Figure
2d). In the Tissue Expression Heat Map viewer we inter-
actively generated a heat map of tissue specificity for the
TF, miRNA and Joint Target belonging to the circuit.
Furthermore, we provide CircuitsDB with an
embedded Wiki system, that allows interested users to
share their knowledge and efforts in annotating circuits:
the last category, Circuit’s Wiki, redirects the user to
editable web pages, where a registered user can add per-
sonal information in addition to the biological annota-
tions already included in our database.

A Download section provides all the CircuitsDB
content as flat files. A Reference section reports a list of
the most important data sources used for the construc-
tion of our database.

Finally, two additional sections of the database are
directly accessible through links in the home page:
“Transcriptional” and “Post-Transcriptional Network”.
In the first one, the user can explore the transcriptional
network used for the development of the mixed FFLs
catalogue, in human and mouse. Entry points can be a
TF of interest, a gene or a DNA oligo. It is worth men-
tioning that this section allows direct inspection of the
subset of our transcriptional regulatory networks invol-
ving miRNAs as targets, i.e. the collection of putative
TEBS identified on promoter regions for miRNA genes.
In the second one, users can explore our post-transcrip-
tional networks, for human and mouse. Entry points can
be an miRNA of interest, a gene or again a DNA oligo.

Discussion

CircuitsDB is a database where transcriptional and
post-transcriptional (miRNA mediated) network infor-
mation is fused together in order to propose and recog-
nize non trivial regulatory combinations. Figure 2 shows
the main steps that a user should follow during the
investigation of the proposed circuits in CircuitsDB
web-site: identification of a FFL according to a TF,
miRNA or Joint Target gene id (Figure 2a and 2b);
exploration of the circuit components and related anno-
tations (Figure 2c); investigation of the regulatory sites
comprised in the circuit corresponding to the identified
sequences (Figure 2d).
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In [13] several examples in which mixed Feed-Forward
Loops could exert synergistic biological effects have
already been discussed (the MYC/hsa-miR-20a;miR-17-
5p circuit, the AREB6/hsa-miR-375 circuit, the MEF-2/
hsa-miR-133a circuit, the C-REL/hsa-mir-199a circuit
and the HSF2/hsa-let-7f circuit). Here, we will discuss
other examples of single-target circuits potentially linked
to cancer that we obtained from CircuitsDB.

One circuit involves the master transcription factor
Runxl or Acute Myeloid Leukemia 1 (AML1), miR-10a
and the p63 (TP73L), three genes found implicated in leu-
kemia. AMLI1 is the target of multiple chromosomal trans-
locations in human leukemia and the TEL-AMLI1
oncogene is the hallmark translocation in Childhood
Acute Lymphoblastic Leukemia [40]. miR-10a was proven
to be overexpressed and functionally relevant in various
tumors, including AML [41] while p63 is a critical tran-
scriptional regulator of cancer cells [42]. This FFL might
also coordinate the physiological hematopoiesis during
embryonic development since Runxl1 is essential for the
generation of definitive haematopoietic cells from haemo-
genic endothelium as shown using a conditional deletion
of Runx1 [43]. Nevertheless, p63 has been found to be
relevant for tissue development [44,45] and miR-10a is
one of the most upregulated miRNA during endodermal
differentiation from human embryonic stem cells [46].

Another potentially relevant circuit for tumorigenesis,
in particular for ovarian cancer, a leading cause of death
from gynecologic malignancies, is composed of HoxA4,
miR-125b and ERBB3. HOX genes are transcription fac-
tors that control morphogenesis, organogenesis as well
as differentiation and that play an important role in
ovarian cancer progression by controlling cell migration
[47]. miR-125b has been found to be differentially
expressed in serous ovarian carcinomas compared with
normal ovarian tissues [48]. At the same time, ERBB3 is
a tyrosine kinase receptor often activated in ovarian can-
cer and perturbation of ERBB3-dependent signal trans-
duction by RNA interference resulted in decrease
disease progression and prolonged survival in murine
models, identifying ERBB3 as a potential therapeutic tar-
get in ovarian cancer [49]. The identification of an
miRNA, i.e. miR-125b, that could downregulate ERBB3
would be very valuable for ovarian cancer treatments.

Another interesting association with cancer can
be observed in the SOX-5/miR-29a/SPARC circuit.
Decreased expression of SPARC, an important mediator
of cell-matrix interaction, was previously observed in
Nasopharyngeal carcinoma (NPC) and in the same system
SOX-5 turned out to be upregulated [50]. Considering
that SOX-5 overexpression in NPC tumors correlates
clinically with poor survival it is essential to understand
how SOX-5 regulates tumor progression. It is conceivable
that that SOX-5 down-regulates SPARC expression
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directly at the level of transcription, while regulating posi-
tivey miR-29a transcription: this would result in coordi-
nate downregulation of SPARC at the post-transcriptional
level. Considering that several evidences connect miR-29a
with epithelial tumor invasion and metastasis formation as
well as epithelial-mesenchymal transition (EMT) [51]
miR-29a could represent a main regulation of SPARC and
experimental validations should be carried out.

Some mixed circuits have already been studied from an
experimental point of view. For instance, in [52] the
authors investigated the interaction between the miR-17-
92 cluster, the Myc oncogene and the E2F1 transcription
factor, being E2F1 an additional target of Myc that pro-
motes cell-cycle progression (this circuit is predicted also
from our analysis and thus present in CircuitsDB). In
[53] Brosh and colleagues analyzed mixed FFLs in the fra-
mework of the mammalian cell proliferation control net-
work. They again concentrated on a network architecture
that includes the transcription factor E2F1 and a family of
15 miRNAs, which co-regulate mutual target genes tran-
scriptionally and post-transcriptionally and whose coop-
erative action reinforces cellular proliferation. Then, this
FFL appears to be repressed by p53, possibly by promoting
senescence and suppressing cancer progression.

Although in our work we focused on the circuits’ prop-
erties in relation to cancer biology, by means of the
already established biological features of their compo-
nents, other possible functions might exist for the pro-
posed catalogue of mixed FFLs. In particular, in the
original formulation of [4], the wording for mixed circuits
referred to an evolutionary perspective: looking at how
“canalizing genes”, essential for higher organism develop-
ment, could be influenced by miRNA regulatory net-
works that act as stabilizers for noise fluctuations in gene
expression (type I or incoherent FFLs) [35] and [36] seem
to shed new light in supporting this alternative hypotesis
for FFLs functioning and in [54] was recently proposed,
through stochastic modeling and simulations, a mathe-
matical model for that. It is worth noting that in parallel
to this, mixed regulatory circuits are also emerging as key
players in regulatory networks of Embryonic Stem Cells
(ESC) [55]. Moreover, the interplay between TFs, miR-
NAs and shared targets is able to influence ESC differen-
tiation and act as defining factors in Induced Pluripotent
(iPS) and Cancer Stem Cells (CSC) [56].

Conclusions

We present CircuitsDB, a public web application
devoted to the study of interactions between transcrip-
tional and post-transcriptional regulatory interactions.
CircuitsDB is currently mainly focused on the study
of mixed miRNA/TF Feed-Forward Loops, i.e. regulatory
circuits in which a master TF regulates an miRNA and,
together with it, a set of Joint Target protein-coding
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genes. These circuits were assembled in our previuos
experience [13] in the human case, based on a bioinfor-
matic ab-initio analysis. Here, we expanded to the mur-
ine case our dataset and provided an integrated
web-service to explore and directly investigate such rela-
tionships in terms of their sequence and several types of
functional annotations. A catalogue of mixed mixed
miRNA/TF Feed-Back Loops is also presented.

We consider CircuitsDB only the first step of more
advanced studies. In particular, we plan to further
extend our work to include additional types of mixed
miRNA/TF local interactions and other types of post-
transcriptional regulators. Prediction methods to infer
TF and miRNA regulatory networks also continue to
evolve and genome-wide experimental dataset of TF and
miRNA interactions will be available in the near future.
In subsequent releases, additional bioinformatic meth-
odologies and experimental data for the construction of
the database could be easily incorporated in our server.

Availability and requirements

The CircuitsDB web-service is freely available at
http://biocluster.di.unito.it/circuits/. Detailed documen-
tation can be accessed by a link on the left bar in the
home page and includes various explanatory applications.

Additional material

Additional file 1: Catalogue of human mixed Feed-Forward
regulatory Loops included in CircuitsDB. The complete list of
mixed Feed-Forward regulatory Loops (FFLs) included in the current
release of CircuitsDB is reported, for the human genome. Each line
corresponds to a single-target closed FFL. The first column includes the
FFL id, composed by the Transcription Factor (TF) name and miRNA
gene ids (Ensembil stable identifier, pre-miRNA and mature miRNA ids
according to the standard nomeclature of miRBase). The second column
shows the Joint Target protein-coding gene (Ensembl stable identifier
and HGNC standard id). The third and fourth column report the
validation of the miRNA — Joint Target post-transcriptional interaction
according to the TargetScan and TargetMiner databases, respectively.

Additional file 2: Catalogue of mouse mixed Feed-Forward
regulatory Loops included in CircuitsDB. The complete list of
mixed Feed-Forward regulatory Loops (FFLs) included in the current
release of CircuitsDB is reported, for the mouse genome. Each line
corresponds to a single-target closed FFL. The first column includes the
FFL id, composed by the Transcription Factor (TF) name and miRNA
gene ids (Ensembl stable identifier, pre-miRNA and mature miRNA ids
according to the standard nomeclature of miRBase). The second column
shows the Joint Target protein-coding gene (Ensembil stable identifier
and Mouse gene symbol). The third column reports the validation of the
miRNA - Joint Target post-transcriptional interaction according to the
TargetScan database.

Additional file 3: Results of the comparison with experimentally
validated miRNA-gene pairs. The table shows the results of the
binomial test used to compare the proportions of experimentally
supported miRNA-gene interactions between CircuitsDB and
TargetScan or TargetMiner. Only miRNAs present in at least one circuit,
included by TargetScan or TargetMiner and with a minimum of one
validated target were used (0.01 significance threshold).
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