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Abstract

Background: High-throughput shotgun proteomics data contain a significant number of spectra from non-peptide
ions or spectra of too poor quality to obtain highly confident peptide identifications. These spectra cannot be
identified with any positive peptide matches in some database search programs or are identified with false
positives in others. Removing these spectra can improve the database search results and lower computational
expense.

Results: A new algorithm has been developed to filter tandem mass spectra of poor quality from shotgun
proteomic experiments. The algorithm determines the noise level dynamically and independently for each
spectrum in a tandem mass spectrometric data set. Spectra are filtered based on a minimum number of required
signal peaks with a signal-to-noise ratio of 2. The algorithm was tested with 23 sample data sets containing 62,117
total spectra.

Conclusions: The spectral screening removed 89.0% of the tandem mass spectra that did not yield a peptide
match when searched with the MassMatrix database search software. Only 6.0% of tandem mass spectra that
yielded peptide matches considered to be true positive matches were lost after spectral screening. The algorithm
was found to be very effective at removal of unidentified spectra in other database search programs including
Mascot, OMSSA, and X!Tandem (75.93%-91.00%) with a small loss (3.59%-9.40%) of true positive matches.

Background
Shotgun proteomics has gained increasing interest and
become one of the most widely used tools in mass spec-
trometry (MS) based proteomics [1,2]. A large amount
of data can be generated in high-throughput shotgun
proteomics experiments. The analysis of these data pre-
sents many challenges. For example, high-throughput
shotgun proteomics data contain a significant number
of spectra from non-peptide ions or spectra of too poor
quality to obtain highly confident peptide identifications.
These spectra cannot be identified with any positive
peptide matches in some database search programs or
are identified with false positives in others [2]. Further-
more, these spectra consume data analysis time when
searching the data set. Therefore, removing these

spectra can improve the database search results and
lower computational expense.
There have been many reports of algorithms used to

filter poor quality tandem mass spectra. Moore et al
developed an empirical model to assess the quality of
tandem mass spectra prior to database search [3]. An
apparent disadvantage of this model was that different
selection criteria and different empirical parameters
were needed for different mass spectrometers. Bern et al
developed another algorithm to predict the quality of
tandem mass spectra before database search. Their algo-
rithm was able to filter 75% of the unidentified spectra
of poor quality while keeping 90% of the identified spec-
tra [4]. Wong et al reported an approach to assess spec-
tral quality based on logistic regression using various
spectral features [5]. This approach can be used to
assess spectral quality and to filter poor quality spectra
prior to database search. Purvine et al developed a spec-
tral quality assessment method to filter tandem MS data
prior to database search based on three features of a
spectrum: 1) charge state differentiation, 2) total signal
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intensity, and 3) signal-to-noise estimates [6]. The noise
in a spectrum was approximated to be the average
intensity of the lower half of the peaks in the spectrum.
The estimation can be heavily biased when too few or
too many signal peaks of high abundance existing in the
spectrum. Flikka et al used machine learning approach
to differentiate poor quality spectra from good ones
using various spectral feature of a tandem MS spectrum,
including number of peaks, peak abundances and their
standard deviation, precursor charge state, average m/z
value and etc [7]. This method filtered up to 62% of
unidentified spectra and was less efficient in filtering
poor quality spectra compared to other methods.
Here we report a new dynamic noise level (DNL)

algorithm, which is capable of filtering spectra of poor
quality. The algorithm determines a noise level for each
spectrum in a tandem MS data set by testing peaks
from the lowest to highest. Based on that noise level,
the algorithm then determines the number of signal
peaks for the spectrum and its resulting quality. Poor
quality spectra are excluded from further analysis. The
algorithm was tested on a large tandem MS data set
containing 62,117 spectra. Overall, the filtering achieved
a significant reduction in false positives and unidentified
spectra resulting in shorter database search times.

Algorithm and Implementation
Dynamic Noise Level (DNL) Algorithm
For an experimental tandem mass spectrum with N
peaks, the algorithm makes two assumptions about the
tandem mass spectrum being filtered: 1) abundances of
signal peaks are greater than those of noise peaks for
the spectrum of good quality; 2) there is at least one
noise peak in the spectrum due to electrical and/or che-
mical noise of the mass spectrometer. These two
assumptions are reasonable for the mass spectrometers
used for shotgun proteomics. All peaks in the spectrum
are sorted according to their abundances, Ii (i = 1, 2, ...,
N), in an increasing order. Given the assumptions
described above, the spectrum would consist of noise
peaks followed by signal peaks. The first peak, i.e. the
peak with the lowest abundance, is assumed to be noise.
The algorithm then scans all peaks from i = 2 to N
using the following algorithm until it finds the first sig-
nal peak:
1. For peak k being scanned, the previous k-1 peaks

have been determined as noise by the previous scans. If
k equals 2, the abundance of the second peak predicted
by the first noise peak is calculated by the following
equation,

I I
∧

= +( )2 11  ; (1)

where δ is a constant in the range [0,∞) that is depen-
dent on the variation of ion abundances of noise peaks.
δ equal to 0.5 is used in the current implementation of
the algorithm.
2. if k is greater than 2, A linear regression model is

fitted to the abundances of the previous k-1 sorted noise
peaks,

I i i k ki = + = − >  , , , ..., ,where  and 1 2 1 2 (2)

where Ii is the abundance of peak i, a and b are linear
regression parameters. Mathematically, the fitted para-
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Under the hypothesis that peak k is noise, the abun-
dance of peak k predicted by the previous k-1 noise
peaks is given by,

I kk

∧ ∧ ∧
= +  ; (4)

3. The signal-to-noise ratio (SNR) of peak k is esti-
mated by the ratio of the observed peak abundance Ik to
the predicted peak abundance by assuming it is noise,
i.e.

SNR =
∧

Ik

Ii

, (5)

where I k
∧ is calculated from equation 1 when k equals

2 and equation 4 when k is greater than 2. If the esti-
mated SNR is greater than the threshold SNRmin, peak k
is determined to be signal and I k

∧ is defined to be the
noise level of this spectrum. Otherwise, it is noise and
the scanning continues.
As a general rule of thumb, the minimum SNR for

signal peaks in a tandem mass spectrum, SNRmin, was
set to be 2. The SNR threshold can be adjusted in more
or less aggressive filtering as desired.
DNL algorithm can be used to screen tandem mass

spectra of poor quality prior to database search. Based
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on assumption 1, all peaks with abundances greater than
or equal to the first signal peak will be considered as
signal. If the number of signal peaks, n, of the spectrum
is below the threshold nmin, the spectrum will be fil-
tered. As a rule of thumb, the minimum number of sig-
nal peaks for a spectrum of good quality, nmin, was set
to be 8. The parameter nmin can also be adjusted to
allow for more or less aggressive filtering.

Implementation
The DNL spectral screening algorithm described herein
was implemented in a standalone program written in
C++. The windows version of the program is freely
available at http://www.massmatrix.net/download/. The
algorithm is also incorporated in the MassMatrix data-
base search engine for on-the-fly spectral screening dur-
ing database search.

Experimental
Sample Preparation and Mass Spectrometry
Bovine histones were isolated from bovine thymus tissue
as described by Sures et al [8,9]. The mixture of bovine
histones was digested by trypsin in 100 mM ammonium
bicarbonate buffer (pH = 8.0). Enzymes were used in
25:1 ratio (substrate:enzyme) and the mixture was incu-
bated at 37°C for two hours. The digested peptides were
identified using data-dependent nano-LC-MS/MS on a
LCQ Deca XP ion trap mass spectrometer (Thermo-
Fisher, San Jose, CA, USA). 2.0 μL of bovine histone
peptides with a total concentration of 0.1 μg/μL was
injected into the LC-MS/MS system and eluted off the
capillary HPLC column into the LCQ mass spectro-
meter using a linear gradient. Solvent A was water with
0.1% acetic acid and solvent B was acetenitrile with 0.1%
acetic acid. Ions were fragmented by use of collision
induced dissociation.
Database Search and Search Parameters
The RAW data files collected on the mass spectrometer
were converted to MGF files and merged into a single
large MGF file by use of MassMatrix data conversion
tools http://www.massmatrix.net/download. The merged
MGF file contained 62,117 tandem mass spectra. Tan-
dem mass spectra that were not derived from singly
charged precursor ions were searched as both doubly
and triply charged precursors. Therefore, some spectra
were searched with both +2 and +3 charges. This
resulted in 86,147 tandem mass spectra in the data set
to be processed and searched. The data set was filtered
by the dynamic noise level algorithm. Both the original
and filtered data sets were then searched by use of
MassMatrix [10-12] (version 1.0.0, http://www.massma-
trix.net against a protein database containing both the
bovine histone database (117 proteins) and a decoy
reversed human database (96,997 proteins) using the

following options: i) No variable or fixed modifications;
ii) Enzyme: trypsin; iii) Missed Cleavages: 3; iv) Peptide
Length: 6 to 30 amino acid residues; and v) Mass toler-
ances of 2.0 Da and 0.8 Da for the precursor and pro-
duct ions respectively. For each spectrum, the highest
scored peptide match was assumed to be the best
peptide hit.
The data sets were also evaluated by use of Mascot

[13], OMSSA [14], and X!Tandem [15]. The counterpart
search parameters in Mascot, OMSSA, and X!Tandem
were identical to those in MassMatrix. For X!Tandem
searches, refinement was enabled and performed for the
peptide matches with expectation values greater than or
equal to 1.0.

Results and Discussion
The algorithm was first applied to a simulated noise
spectrum containing 100 Gaussian noise peaks as shown
in Figure 1a. The estimated SNR for the peaks are
shown in Figure 1b. It can be seen that SNR for the
peaks in the simulated noise spectrum were all close to
the ideal value of 1 for noise peaks. Therefore, the algo-
rithm successfully determined that all peaks were noise.
The effectiveness of DNL spectral screening was tested
by 4 real tandem MS data sets containing a total of
2232 tandem mass spectra from blank runs without
injecting any peptide sample into the mass spectro-
meter. 99.15% of spectra in the data sets were success-
fully filtered by the DNL spectral screening algorithm.
An example spectrum from the blank runs before and
after DNL noise reduction is shown in Figures 2a &2b.
It can be seen that the majority of the peaks in the spec-
trum were determined as noise and the spectrum was
filtered by DNL algorithm as it only had three signal
peaks. Figures 2c &2d show an example spectrum for a
peptide before and after DNL noise reduction. The
majority of the noise peaks were successfully removed
from the spectrum and the number of total peaks was
significantly reduced from 279 to 46. Furthermore, the
spectrum was determined to be of high quality since it
had 46 signal peaks.
The performance of the DNL algorithm was tested

with a merged data set consisting of 23 shotgun proteo-
mic experiments on bovine histone tryptic digests con-
taining 62,117 total tandem mass spectra. The quality of
the tandem mass spectra in the data set was evaluated
by database searches in MassMatrix against a database
containing a bovine histone database and a decoy
reversed human database to eliminate the bias of man-
ual evaluation. The decoy reversed human database cre-
ated ~1000 times as many theoretical peptides as the
bovine histone database. Therefore, false positive peptide
matches from the bovine histone database were assumed
to be negligible. The peptide matches returned from the
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bovine histone database were considered to be true
positives (TPs), while those from the decoy database
were, therefore, considered as false positives (FPs) [16].
The tandem mass spectra in the data set were classified
into three categories: spectra identified with TPs, spectra
identified with FPs, and spectra with no significant
matches (unidentified spectra).

The effect of δ on spectral screening is ignorable due
to the fact that majority of tandem MS spectra for pep-
tides contain more than two noise peaks and the lowest
noise peaks are not extreme compared to the higher
noise peaks. For the merged data set containing 62,117
spectra from 23 experiments, the extreme setting of
δ equal to 0 resulted in < 1% loss in sensitivity, i.e. the

Figure 1 Simulated noise spectrum. (a) A simulated spectrum with 100 Gaussian noise peaks, and (b) the estimated signal-to-noise ratio (SNR)
for all the noise peaks in it.

Figure 2 Example noise and peptide tandem mass spectra before and after noise reduction. An example tandem mass spectrum from a
blank run (a) with 39 peaks before DNL noise reduction and (b) with 3 signal peaks after DNL noise reduction, and an example tandem mass
spectrum for a peptide (c) with 279 peaks in it before DNL noise reduction and (d) with 46 signal peaks in it after DNL noise reduction.
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success rate of filtering bad spectra. The extreme setting
of δ > 1.0 resulted in < 0.01% loss in specificity, i.e. the
success rate of keeping good spectra. Therefore, a fixed
intermediate setting of δ = 0.5 is used in the current
implementation of DNL algorithm.
The different values for SNR and nmin will affect the

spectral screening results. The DNL screening algorithm
at different SNR and nmin settings was evaluated by use
of receiver operating characteristic (ROC) analysis, i.e.
sensitivity vs (1 - specificity) plots. The sensitivity of the
DNL spectral screening is defined as

sensitivity
Number of correctly filtered spectra identifie= dd with no matches or FPs

All spectra identified with no mattches or FPs
. (6)

The specificity of the DNL spectral screening is
defined as

specificity 1= − Number of falsely filtered spectra identifiedd with TPs
All spectra identified with TPs

. (7)

Area under the curve (AUC) for the ROC curves indi-
cates the overall discrimination power of the DNL spec-
tral screening algorithm.
Figure 3 shows the ROC curves for the spectral

screening algorithm with different SNR settings. It can
be seen that the algorithm achieved high sensitivity and
specificity with SNR between 1.5 and 3, which indicates
its robustness over different SNR settings. A setting of
SNR equal to 2 achieved the best overall discrimination
powers with AUC values of 0.9149, 0.9474, 0.8792 for
spectra with all charges, +1 charges, +2/+3 charges
respectively. Therefore, it will be used for the discussion
herein.
The ROC curve of SNR equal to 2 in Figure 3 is the

sensitivity vs (1 - specificity) plot at various threshold
settings of nmin, i.e. the number of signal peaks. For sin-
gly charged spectra, a threshold nmin equal to 9 has a
specificity of 94.72% (i.e. false rate 5.28%) and a sensitiv-
ity of 85.67%. For doubly/triply charged spectra, a

threshold nmin equal to 7 has a specificity of 95.31% (i.e.
false rate 4.69%) and a sensitivity of 73.69%. For all
spectra, an overall threshold nmin euqal to 8 achieved a
specificity of 94.06% (i.e. false rate 5.94%) and a sensitiv-
ity of 80.07%. Applying different optimal nmin thresholds
for spectra with different charges provided very limited
improvements with regard to sensitivities and specifici-
ties. Therefore, the current implementation of DNL
algorithm does not support applying different settings
for spectra with different charges. A setting of nmin

equal to 8 will be used for all spectra in the discussion
herein.
The robustness of the DNL algorithm over different

experiments was evaluated by the ROC analysis of the
23 individual tandem MS data sets as provided in the
additional file [see Additional file 1]. It can be seen that
the DNL algorithm achieved overall good power of dis-
criminating good quality spectra from bad quality ones
for all the data sets used.

Figure 3 ROC curves of the DNL spectral screening algorithm. ROC curves of the DNL spectral screening algorithm with different SNR
settings for the spectra with all charges, singly charged spectra, and doubly/triply charged spectra.

Figure 4 Distributions of noise level determined by DNL
algorithm. Distributions of noise level determined by DNL
algorithm for the spectra with all charges, singly charged spectra,
and doubly/triply charged spectra.
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Noise level represents the ion abundance of noise
peaks in a spectrum. Noise level distributions obtained
on the merged data set by use DNL algorithm with
SNR setting equal to 2.0 are shown in Figure 4. It can
be seen that noise level varied significantly from one
spectrum to another over a range of 1000 to 1,000,000
in intensity. In addition, the data indicated that singly
charged spectra tended to have a higher noise levels
than doubly and triply charged spectra. The noise level
distributions also varied from experiment to
experiment.
The number of signal peaks for each spectrum in the

data set was also determined by the DNL algorithm.
The distribution of the number of signal peaks with
SNR setting equal to 2.0 for the spectra is shown in Fig-
ure 5. It can be seen that the distribution for the uni-
dentified spectra was very well separated from that for
the spectra with positive matches from the database

search program. The majority of the unidentified spectra
had fewer than 8 signal peaks, while most of the spectra
with positive peptide matches had greater than 8 signal
peaks. Figure 6 displays the histograms of the number
of the spectra for these three categories, i.e. spectra with
TPs, spectra with FPs and unidentified spectra, before
and after DNL spectral screening. Overall 86.23% of the
unidentified spectra and 27.33% of the spectra identified
with FPs were removed by DNL spectral screening due
to having fewer than 8 signal peaks. However, only
5.94% of the spectra with TPs were removed. In sum-
mary, the algorithm was able to screen out 86.23% of
the unidentified spectra while keeping 94.06% of the
spectra with TPs. After DNL spectral screening, the
total percentage of the unidentified spectra in the data
set was lowered from 80.87% to 41.06%, whereas that of
the spectra with TPs in the data increased from 9.70%
to 33.64%.

Figure 5 Distributions of number of signal peaks determined by DNL spectral screening algorithm. Distributions of number of signal
peaks determined by DNL spectral screening algorithm for the spectra with TPs, FPs and the unidentified spectra. Peptide identifications were
obtained from MassMatrix database search engine.

Figure 6 Effect of DNL spectral screening on MassMatrix search results. Histograms showing the effect of DNL spectral screening on
tandem mass spectra for the spectra with TPs, FPs and the unidentified spectra. Peptide identifications were obtained from MassMatrix database
search engine.
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The algorithm was also evaluated by the data based on
the database search results from Mascot, OMSSA, and
X!Tandem search engines with SNR and nmin settings
equal to 2.0 and 8, respectively. Figure 7 shows the
effects of DNL spectral screening on the Mascot,
OMSSA, and X!Tandem search results. For Mascot,
DNL spectral screening was able to filter 91.00% of the
unidentified spectra and 71.08% of the spectra identified
with FPs while keeping 90.60% of the spectra with TPs.
For OMSSA, the algorithm filtered 75.93% unidentified
spectra and 15.34% spectra identified with FPs and kept
96.41% spectra identified with TPs. For X!Tandem, the
algorithm filtered 83.12% unidentified spectra and
54.88% spectra identified with FPs, and kept 93.24%
spectra identified with TPs.
Due to the reduced number of spectra in the data set

after DNL spectral, the database search times were also
significantly reduced. As shown in Figure 8, the data

search times for the merged data set for the four search
engines were reduced by 33.92%-66.75%, or 25.08-
241.45 min. Compared to the significantly reduced data-
base search time, the spectral filtering time by use of
DNL is trivial. It took the algorithm 0.78 min to filter
the data set on a PC with Intel dual core CPU
(2.4 GHz) and Windows XP operating system.

Conclusion
A new dynamic noise level (DNL) algorithm has been
developed to remove tandem mass spectra of poor qual-
ity. The algorithm was evaluated with a large data set
that contained 62,117 spectra and was searched by
MassMatrix against a database containing true protein
sequences and a large decoy database. The algorithm
determined the noise level dynamically and indepen-
dently for each spectrum in tandem MS data. The dis-
tribution of noise in the spectra from the large test data
set showed that the noise levels for tandem mass spec-
tra varied significantly from one to another for ion trap
mass spectrometry data. The algorithm assessed the
quality of spectra based on the number of signal peaks
and filtered those with less than 8 signal peaks. It was
found that 89.0% of unidentified spectra in the Mass-
Matrix database search program were successfully fil-
tered while only 6.0% of spectra with true positive
matches were removed upon DNL spectral screening.
The algorithm was also found very effective at removal
of unidentified spectra (75.93%-91.00%) in other data-
base search programs including Mascot, OMSSA, and
X!Tandem at a small loss (3.59%-9.40%) true positive
matches.

Availability and Requirements
Project name: Dynamic Noise Level Algorithm.
Project home page: http://www.massmatrix.net/.
Operating systems: Windows.

Figure 7 Effect of DNL spectral screening on Mascot, OMSSA, and X!Tandem results. Histograms showing the effect of DNL spectral
screening on tandem mass spectra for the spectra with TPs, FPs and the unidentified spectra based on peptide identifications from Mascot,
OMSSA, and X!Tandem.

Figure 8 Database search times of the data set before and
after spectral screening. Database search times of the data set
against a protein database containing both the bovine histone
database (117 proteins) and a decoy reversed human database
(96,997 proteins) before and after spectral screening for MassMatrix,
Mascot, OMSSA, X!Tandem. All searches were performed on a PC
with Intel quad core CPU (2.4 GHz) and Linux operating system.
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Programming language: ANSI C++.
Other requirements: None.
License: None.
Any restrictions to use by non-academics: None.

Additional material

Additional file 1: ROC curves of the DNL spectral screening
algorithm. ROC curves of the DNL spectral screening algorithm with the
setting of SNR equal to 2 for the 23 individual tandem MS data sets.
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