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Abstract

Background: The rapid development of structural genomics has resulted in many “unknown function” proteins
being deposited in Protein Data Bank (PDB), thus, the functional prediction of these proteins has become a
challenge for structural bioinformatics. Several sequence-based and structure-based methods have been developed
to predict protein function, but these methods need to be improved further, such as, enhancing the accuracy,
sensitivity, and the computational speed. Here, an accurate algorithm, the CMASA (Contact MAtrix based local
Structural Alignment algorithm), has been developed to predict unknown functions of proteins based on the local
protein structural similarity. This algorithm has been evaluated by building a test set including 164 enzyme families,
and also been compared to other methods.

Results: The evaluation of CMASA shows that the CMASA is highly accurate (0.96), sensitive (0.86), and fast enough
to be used in the large-scale functional annotation. Comparing to both sequence-based and global structure-based
methods, not only the CMASA can find remote homologous proteins, but also can find the active site
convergence. Comparing to other local structure comparison-based methods, the CMASA can obtain the better
performance than both FFF (a method using geometry to predict protein function) and SPASM (a local structure
alignment method); and the CMASA is more sensitive than PINTS and is more accurate than JESS (both are local
structure alignment methods). The CMASA was applied to annotate the enzyme catalytic sites of the non-
redundant PDB, and at least 166 putative catalytic sites have been suggested, these sites can not be observed by
the Catalytic Site Atlas (CSA).

Conclusions: The CMASA is an accurate algorithm for detecting local protein structural similarity, and it holds
several advantages in predicting enzyme active sites. The CMASA can be used in large-scale enzyme active site
annotation. The CMASA can be available by the mail-based server (http://159.226.149.45/other1/CMASA/CMASA.
htm).

Background
With the development of both the genome project and
the structural genomics, large of unknown functional
protein structures were deposited in PDB, these protein
functions need to be annotated. In addition, because of
the fast development of bioinformatics, some known
structure and function proteins may also need to be re-
annotated. Thus, several methods of protein structural

and functional prediction were developed, which can be
classified as the sequence-based and the structure-based
methods.
Sequence-based methods, such as, BLAST/PSI-BLAST

[1,2] or PROSITE[3], are based on the concept of “simi-
lar protein sequences with similar function”. The perfor-
mance of these methods critically depends on the
sequence similarity between the query structure and
annotated structure. However, these methods may fail
to detect the remote homologous and convergent pro-
teins. In addition, the changes of some key residues may
also result in the change of protein function, even
though their sequence identities are very high. For
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example, VRK3, a member of kinase family, have lost its
function as kinase and become into regulating other
kinase activity, because the key ATP binding sites were
mutated [4]. Thus, sequence-based methods may also
fail to annotate the functional diversified proteins.
Structure-based methods contain the global and local

structure comparison methods. Though the global struc-
ture-based methods, such as DALI [5], VAST [6], SSM
[7] and CE [8], can detect the remote homologue pro-
teins, they fail to detect the functional convergence of
some proteins with different fold. For example, the
enzymes with different folds, the trypsins and subtilisins,
can hold same function of hydrolysis [9], but the global
structure comparisons can not detect them each other.
Some proteins with similar structures can perform dif-
ferent functions [10], but the global structure-based
methods can not detect the functional divergence of
some proteins with same fold.
The local structure-based methods can detect the func-

tional convergence and predict the functional sites for
those proteins with the less annotated structures, for
example, FFF[11], PINTS[12], SPASM[13], JESS[14],
Query3d [15], ASSAM [16], Cavbase[17], ef-Site [18] and
so on. The FFF can search local structural similarities by
the local structural geometry characters and the contact
matrix constraint by user predefined, which has been suc-
cessfully applied in predicting the active sites of glutare-
doxins/thioredoxins and T1 ribonucleases[11]. Other
methods search local structural similarities by the recur-
sive enumeration strategy[19]. The core of this strategy is
to extend initial candidate solutions[14,19]. Thus, the per-
formances of these methods depend critically on the con-
straints that can extend the partial candidate solution
quickly and accurately [14]. As the constraint, the Max
Inter-Distance Deviation (MIDD) is well applied in most
of the local structure comparison algorithms [12,13]. The
results of these algorithms are sorted by the RMSD or the
RMSD based P-value [12-14,20]. However, there is no
restricting relationship between the MIDD and the RMSD.
So the MIDD may be larger, but the RMSD may be very
small in values. To obtain the better sensitivity and accu-
racy, the users have to define a larger MIDD, but the CPU
time will increase dramatically. Thus, it is very difficult to
balance the time cost and the performance.
In order to improve the local structure-based meth-

ods, the CMASA (Contact MAtrix based local Structural
Alignment algorithm) has been used. The design
requirements of CMASA are, as follows, (i) it should be
not only fast but also sensitive and accurate enough for
the large-scale structural annotation; (ii). It should be
flexible enough for the different applications.
To fulfil the above requirements, the steps to detect

the local structure similarity in CMASA are shown in
Figure 1. (i) Each residue in the protein structure is

represented by both Ca (alpha-carbon atom) and Fa
(furthest atom from alpha-carbon atom). (ii). Emulate all
possible local structures that may match with the query
structure by the residue substitute matrix, such as, Blo-
sum62 [2]. (iii). Most of the possible local structures are
discarded by the Contact Matrix Average Deviation
(CMAD) rather than the MIDD. (iv). The RMSD is cal-
culated by the Nelder-Mead Simplex Method[21]. (v).
The RMSD-based p-value[20] and rank are computed.
Three CMASA’s databases have been generated for

different applications, 1) nrCSA from catalytic sites atlas
(CSA)[22] for predicting enzyme active sites, 2) nrPDB
and nrSCOP database for detecting remote homologues
and convergent cases.

Results
Overview of the CMASA
The CMASA for detecting the local structure similarity
can have different applications, when different databases
are used. 1) The putative functional prediction of struc-
tured proteins by active sites database (now only nrCSA
database is available). For example, the structure of 2qjw
has been deposited by Joint Center for Structural Geno-
mics (JCSG), but its function is unknown yet. When the
PSI-BlAST is used, the 2qjw can hit nothing in PDB data-
base and tens of hypothetical proteins in non-redundant
(NR) database (p < 0.0005). These results suggest that
2qjw is a protein with unknown function. When the
CMASA is used, the 2qjw can hit the 1a88, a haloperoxi-
dase with the p-value of 6.7 × 10-10. And the 2qjw active
sites predicted by the CMASA are S81, D129 and H155,
which are same as the 1a88. Thus, the 2qjw may have
haloperoxidase function. 2) The same catalytic sites in
non-homologous proteins caused by convergent evolu-
tion can be observed by the nrPDB or nrSCOP. For
example, the catalytic sites of 1djz (EC number:
EC3.1.4.11) are H311, E431 and H356, 1djz catalytic sites
can hit 2ddr (P-value = 0.02) with the EC number of
EC3.1.4.12 by the CMASA, and the H311, E431 and
H356 in 1djz are corresponding to the H296, D253 and
H151 in the 2ddr. Thus, the results suggest that the both
1djz and 2ddr should hold same transformational reac-
tion. Actually, both H296 and D253 are the catalytic resi-
dues in 2ddr[23], although 1djz and 2ddr hold different
folds, where 1djz is belonged to TIM beta/alpha-barrel
fold, but 2ddr is belonged to DNase I-like fold[24]. Thus,
the transformational mechanism between 1djz and 2ddr
may be resulted from convergent evolution.
There are two kinds of output files after searching fin-

ished. One is the plain text file or html file(link to
PDBsum[25]) similar as the BLAST output [2], in which
the results are ranked by P-value. Another is a structure
superposition file, where the hits below the superposi-
tion-cutoff value are superimposed. The superposition
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results of the protein (1mct) searching against the
nrCSA database are shown in the Figure 2A, and the
results of the active sites of 1mct (H57, D102, S195)
searching against the nrPDB are shown in the Figure 2B.
The running speed of CMASA is also fast. When

CMASA was running on the personal computer with
the Intel Core 2 Duo E8400 3.0 GHz CPU, a protein
with 400 residues is as the seed to search against the
nrCSA database (1320 templates) by the defeat settings,
the time cost is about 6 s (seconds). When the active
sites including 3 residues are used to search against the
nrSCOP (14541 structures) by the defeat settings, the
time cost is about 30~60 s. The CMASA mail-based ser-
ver (http://159.226.149.45/other1/CMASA/CMASA.htm)
will reply the mails and give the searching results within
3 minutes if the server is not too busy.

Constraint analysis of CMASA
A suitable constraint is very important for local struc-
tural alignment. For example, there are 135 candidates

for emulating all H-D-S possible active sites in 1mct, a
member of trypsin. The RMSD will have to be calcu-
lated to 135 times, if there is not any constraint. How-
ever, if we set the constraints of CMAD (Contact
Matrix Average Deviation) <1.2 Å, the RMSD will be
calculated just twice. As mentioned above, the CMAD
has been used as the constraint in the CMASA rather
the MIDD used in other methods. In theory, CMAD< =
2RMSD, but if the numbers of atoms is just two,
CMAD = 2RMSD. In fact, there are at least 6 atoms,
that is, 3 Ca and 3 Fa atoms. To access the exact rela-
tionship between the CMAD and the RMSD, we
searched all the nrPDB data against the CSA database
and plot each pair of CMAD and RMSD by the thresh-
old of CMAD < 1.2 Å. The result (596477 pairs) shows
that almost all the CMAD smaller than the RMSD with
the P-value(CMAD< = RMSD) = 0.997(Figure 3A).
However, as showed in Figure 3B, the relationship
between the RMSD and the MIDD is complex, and
there is no theoretical relationship between the RMSD

Figure 1 Flowchart of CMASA algorithm. The CMASA first decides that the query searches to the nrCSA database or the nrPDB/the nrSCOP
database. Next, for each structure in database, the CMASA emulated all possible local structures using amino acid substitute. Again, the CMASA
calculated the Contact Matrix Average Deviation (CMAD) between the active sites and possible local structures. Then, the CMASA calculated the
RMSD and the RMSD based P-value if the CMAD < cutoff. At last, the CMASA ranked all of the hits and add their information.
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Figure 2 The superposition output of the CMASA. A: a structure (pdbid:1mct) searched to a functional sites database (nrCSA); highest five
ranks were shown. The matched active sites were labelled as ball and stick. B: a functional site (1mct catalytic site: H57, D102 and S195)
searched to the nrPDB; the hits with P-value < 1.0 × 10-4 were shown (83 hits).

Figure 3 The relationship between CMAD, MIDD and RMSD. A: relationship between the CMAD and the RMSD. Each dot represents a pair
of the CMAD and the RMSD. The relationship was only showed when the CMAD< = 1.2Å, because the CMAD cutoff was set as 1.2Å. The green
line represents the line of Y = X. B: relationship between the MIDD and the RMSD, The green line also represents the line of Y = X.
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and the MIDD. So, the CMAD is a suitable constraint
for CMASA search. In practice, 1.2 Å as the threshold is
enough for the local structural searching.

Sensitivity and Accuracy of CMASA
To obtain a better performance, different amino acid
presentations were compared. The trypsin-like serine
proteases superfamily and subtilisin-like superfamily
have been as the example to evaluate the performance
of three different amino acid presentations: Ca atom
only, Fa atom only and combining both Ca and Fa
atoms. Trypsins and subtilisins are with different folds,
but they hold the same catalytic sites and similar func-
tion. There are 122 trypsins and subtilisins in nrSCOP
database, in which 101 are trypsins and 21 are subtili-
sins. However, the catalytic sites in 22 enzymes of 122
trypsins and subtilisins have been mutated, such as, the
active sites, H41 and S175, have been mutated to S41
and G175 in 1a7s. Thus, there are totally 100 positives
(85 trypsins and 15 subtlilisins). The catalytic sites (H57,
D102 and S195) of 1mct (a typsin) were used as the
query to search against nrSCOP database, and the
Receiver Operating Characteristics (ROC) curve[26]
(Figure 4) is obtained. The result shows that the presen-
tation of combining both Ca and Fa atoms is the best
performance in these three presentations. Thus, the pre-
sentation of combining both Ca and Fa atoms is used in
the CMASA.

164 CSA families were selected to test the overall sen-
sitivity and accuracy of the CMASA (Additional file 1).
For each family, two different templates were chosen to
search the training set, which contains both family
members’ structures and a constant negative dataset.
One is the master template, and another is the mean
conformational template (MCT). For each template, the
negative dataset is a subset of the nrPDB(10582 struc-
tures), where the nrCSA and nrEC have been excluded.
Several methods have been evaluated by ROC curve

[26], but the overall performance of CMASA is evalu-
ated by the Matthews Correlation Coefficient (MCC)
[27], because MCC can clearly give the optimal thresh-
old, which can suggest that the hit be true or false posi-
tive in large-scale active site annotation. The result
(Figure 5) shows that the P-value threshold is 1.0 × 10-4

for both master templates and mean conformational
templates. We also calculated the RMSD based MCC
(data not show), and got 0.85Å as the RMSD threshold
for master templates and 0.84Å for mean conforma-
tional templates.
The MCC, sensitivity and accuracy of each family

(Additional file 2) were calculated by using the optimal
threshold. Because different protein homologous families
have different MCC, sensitivity and accuracy, each data
set was averaged. Table 1 shows the mean MCC, mean
sensitivity and mean accuracy for all the 164 families in
different template types and in different threshold types.

Figure 4 ROC curves of Ca only, Fa only and combining both Ca and Fa. The ROC curves were generated by 1mct active site (H57, D102
and S195) querying to nrSCOP using CMASA. The CMASA hits were ranked by P-value. The totally positives was 100 (85 trypsins and 15
subtilisins), and the totally negatives was 14441 (14541 nrSCOP minus 100 positives).
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Figure 5 The overall sensitivity, accuracy and MCC of the CMASA. A. Using the master template. B. Using the mean template.
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The mean MCC is 0.90 with the mean sensitivity of 0.86
and with the mean accuracy of 0.96 by using mean con-
formational templates and P-value threshold. When the
RMSD threshold is used, the mean MCC and sensitivity
decreased about 0.03. When mean conformational tem-
plates instead of master templates are used, the mean
MCC and sensitivity can be increased about 0.09. All
the mean accuracy is above 0.94 (Table 1).

Comparison of CMASA with both sequence-based and
global structure-based methods
The CMASA, sequence-based and global structure-
based methods were compared by using the both tryp-
sin-like serine proteases and subtilisin-like superfamilies.
Figure 6 shows the relationships between the CMASA
RMSD, the global RMSD (calculated by CE[8]) and the
sequence identities. The results show that the CMASA

Table 1 The table of mean MCC, sensitivity and accuracy

Template type Threshold type Threshold level Mean MCC Mean Sensitivity Mean Accuracy

Mean conformational template p-value 1.00E-04 0.90(0.19) 0.86(0.18) 0.96(0.12)

RMSD 0.84Å 0.88(0.13) 0.83(0.20) 0.96(0.14)

Master template p-value 1.00E-04 0.82(0.17) 0.75(0.25) 0.94(0.14)

RMSD 0.85Å 0.79(0.18) 0.71(0.27) 0.95(0.14)

The mean MCC, mean sensitivity and mean accuracy of 164 families in different threshold type and in different template type. Values in brackets are standard
deviation.

Figure 6 CMASA compare with sequence-based, global structure-based methods. A: The relationship between the CMASA RMSD and the
global RMSD. B: The relationship between the CMASA RMSD and the sequence identity. C: The relationship between global RMSD and the
sequence identity. 85 trypsins, 15 subtilisins and 30 random structures from the nrSCOP were selected for comparison. The CMASA_RMSD was
calculated between 1mct active site (H57, D102 and S195) and the hits by the CMASA. The global_RMSD was calculated by CE package[8].
Sequence identity was calculated from structure-based sequence alignment.
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can hit both trypsins and subtilisins from noise, even
though their sequence and global structure similarities
(Figure 6A and 6B) are low. The global structure-based
method can hit all trypsins from noise, but it can not
distinguish subtilisins from noise (Figure 6A and 6C).
The results suggest that the global structure-based
method is powerful for detecting the global structural
similarity, but it is weak for detecting the local struc-
tural similarity; and the sequence-based method can
only hit most of trypsins (Figure 6B and 6C), which can
not distinguish some of remote homologous trypsins
and subtilisins from noise. Thus, the CMASA can effec-
tively find remote homologous proteins and the active
site convergence comparing to the sequence-based
method or to the global structure-based methods.

Comparison between CMASA and other local structure
comparing methods
Some local structural comparing methods have been
applied in the enzyme active site annotation, such as,
FFF[11], SPASM[13], PINTS[12], Query3d[15] and JESS
[14]. The different residue representations and different
searchable databases are used in these five methods
above. For example, FFF only used the Ca atom, JESS
used both Ca and Cb (beta carbon) atoms, SPASM used
both Ca and a pseudo atom that is the geometrical cen-
tre of the residue. However, different methods have dif-
ferent searchable databases. Thus, it is difficult to
compare them in overall. So we used some examples to
evaluate the advantages and disadvantages between
these five methods and the CMASA.
Two cases have been used to compare the perfor-

mance among the FFF, SPASM and CMASA. One is to
recognise glutaredoxins/thioredoxins by 1aaz (a glutare-
doxin) active residues (C14, C17 and P66). In nrSCOP
database (14541 structures), there are 49 glutaredoxins/
thioredoxins which have CxxC and P motif. Because the
FFF only used geometry to predict protein function and
did not calculate the RMSD or other scores for ranking,
we ranked the FFF matches by the RMSD based P-value
to compare to the CMASA. The SPASM matches are
ranked by the RMSD. Then, the ROC curve is obtained
(Figure 7A). The results show that the CMASA is better
than the SPASM, and the SPASM is better than the
FFF. Another case is to find trypsins and subtilisins by
1mct active sites (Figure 7B). The ROC curve shows
that all of these three methods can hold the good per-
formance, when they are used to detect the 1mct active
site similarities (Figure 7B), but some differences can be
also observed. The CMASA is remarkably better than
the both SPASM and FFF, but the performance between
the SPASM and the FFF is complex. When the false
positive rate is small than 0.01, the SPASM can hit
more true positives than the FFF. But when the false

positive rate is larger than 0.01, the FFF can hit more
true positives than the SPASM. These cases suggest that
the performance difference between the SPASM and the
FFF is complex, but the CMASA can get a better perfor-
mance than the both SPASM and FFF.
PINTS have its own website, so we used 2ity (a pro-

tein kinase) active sites to search PINTS SCOP_specials
database (a database of PINTS, same as nrSCOP data-
base in this work). Interestingly, only 1 kinase can be hit
and the best hit is not kinase. On the contrast, the
CMASA can hit 20 kinases with the false positive rate
<0.3. We also used the active sites of 1mct to search
PINTS SCOP_specials database (SCOP version 1.61), 4
of 54 trypsins and 4 of 10 subtilisins can be hit. But 85
of 101 trypsins and 15 of 21 subtilisins can be hit by the
CMASA. Thus, the sensitivity of CMASA is better than
that of PINTS.
The Query3d is powerful to find similar local struc-

tures within two proteins. But it may be weak to detect
the similarity between an active site and a protein. For
example, we used 1k2p (a protein kinase) active sites to
search PDB database in the Qurey3d website, not any
hit is shown. However, the CMASA can give more than
20 positives (P-value < 0.01) and the reasonable rank.
Thus, the Query3d may be not suitable for enzyme cata-
lytic site annotation.
The JESS had used CSA families to evaluated the algo-

rithm performance[28]. So the overall performance
between the CMASA and the JESS were compared. The
results had showed that the JESS had the maximum
mean MCC of 0.83 with the mean sensitivity of 0.86
and the mean accuracy of 0.84 [28]. However, the
CMASA can hold the mean MCC of 0.90 with the
mean sensitivity of 0.86 and the mean accuracy of 0.96.
Thus, the accuracy of the CMASA is higher than that of
the JESS (Figure 7C).

Large scale annotation of enzyme catalytic sites
The above results suggest that the sensitivity and accuracy
of the CMASA may be enough for doing the large scale
functional annotation. So the CMASA is also tried to
annotate the enzyme catalytic sites. All the proteins in
nrPDB were searched against the mean conformational
template (MCT) dataset (1320 templates) by the CMASA,
and 263 structures has been characterized, which are not
annotated by the CSA2.2.9 (P-value < 1.0 × 10-4). In fact,
166 of 263 have been deposited before 2008 (Additional
file 3). Thus, these results demonstrate that at least 166
putative novel catalytic sites can not be annotated by CSA
(Additional file 3).

Cases of enzyme catalytic site prediction
Two cases were used to evaluate the CMASA advan-
tages further. The structure of 3BDV is from the Joint
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Center for Structural Genomics (JCSG) that aims to
develop high-throughput methods for protein produc-
tion, crystallization, and structure determination. 3BDV
is belonged to UDF1234 family with unknown function
[29]. 3BDV can hit 1JKM of a serine hydrolase (P-value
= 3.40 × 10-5) by the CMASA, and the catalytic residues
of 3BDV are predicted as S81, D135 and H162. Further

sequence analysis shows that the whole UDF1234 family
members are conserved in the sites of S81, D135 and
H162 (Additional file 4), which suggest that the entire
UDF1234 family members probably have a function
similar as serine hydrolase with S-D-H active sites.
The catalytic sites of an arylsulfatase (PDBid: 1HDH)

have been annotated in the CSA[22]. However, the

Figure 7 CMASA compare with FFF, SPASM and JESS. A. The ROC curve of the CMASA, the FFF and the SPASM using the 1aaz active site
(C14, C17 and P66) searching to the nrSCOP. B. The ROC curve of the CMASA, the FFF and the SPASM using the 1mct active site (H57, D102
and S195) searching to the nrSCOP. C. The overall performance between the CMASA and the JESS.
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catalytic sites of its one homologue (PDBid: 1P49) can
not be found in the CSA. The PSI-BLAST result sug-
gested that the 1P49 catalytic sites mismatch result fails
to be annotated, because of the low sequence identity
(Additional file 5). However, 1P49 can hit 1HDH with
high confidence (P-value = 3.5 × 10-13) by the CMASA,
and the catalytic residues are predicted as R79, K134,
H136, H290, D342 and K368 (Additional file 5). The
structural information [30] convinces this prediction.

Discussion
An accurate algorithm, the CMASA, has been developed
to detect the local protein structural similarity, which
can not only search the similar functional proteins by
query the active sites, but also predict an unknown pro-
tein function, including distant homologous proteins or
convergent proteins, by searching to functional active
site database.
When the CMAD is used as the constraint and the

Ca/Fa atoms are used to represent the residues, the bal-
ance between sensitivity, accuracy and the time cost can
be reached. The CMASA is fast by testing on PC, and
maintains sensitive and highly accurate (>0.94) for
searching enzyme active sites. So, the CMASA may be
helpful for improving the large scale annotation.
The CMASA has been compared to other methods.

These methods contain the sequence-based, the global
structure-based and five local structure-based methods.
The results suggest that the CMASA can get better per-
formance than all of these methods in detecting enzyme
active site similarity. PSI-BLAST[2] has been used to
annotate the enzyme catalytic sites[22], but it is weak at
annotating distant homologous proteins and convergent
proteins. So the CMASA is an effective method to anno-
tate the distant homologous or convergent protein/
enzyme active sites.
Of course, some limitations can be found in the CMASA,

for example, i) the protein structures are required; ii) the
structural difference of the side chains between the query
and hit active residues will affect the sensitivity.

Conclusions
The CMASA is not only highly accurate but also sensi-
tive and fast for detecting the local protein structural
similarity. It can be applied in annotating the distant
homologous or convergent protein/enzyme active sites.
And at least putative 166 novel catalytic sites have been
suggested by the CMASA. A mail-based server has been
available.

Methods
Residue representation
To insure the accuracy and reduce the complexity,
CMASA used all amino acids of the structures and each

residue is represented by both Ca (alpha-carbon atom)
and Fa (furthest atom from Ca). In addition, the only Ca
and only Fa are also used to evaluate how well these
two terms in combination provides more predictive
performance.

Search algorithm
The flowchart of CMASA was showed in Figure 1. First,
the CMASA parsed the query and decided whether the
query search the nrPDB/the nrSCOP or the nrCSA
database. Second, the CMASA used substitute matrix to
emulate all candidate matches. Third, the CMASA used
Contact Matrix Average Deviation (CMAD) to filter the
candidates. Forth, the RMSD and the RMSD based
P-value are calculated to score the matches. Fifth, rank-
ing the matches

Constraint
The CMAD (Contact Matrix Average Deviation) is used
as the constraint. Given template T(t1, t2,...., tn) and the
possible match T’(t’1, t’2,....t’n), then:
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Where d(ti,tj) is the distance between the atom i and
atom j, and n is the number of atoms in the template.
In fact, to get more convenience, the CMAD is calcu-
lated, as follows,

CMAD CMAD Ca CMAD Fa= +( ( ) ( ))/2 (2)

Calculation of the RMSD
We presented an algorithm to calculate the RMSD.
Generally, calculating the RMSD is to find the R and R0
to minimize the RMSD.
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n

i i i i i i

i

n

=

− + − + −
=
∑( ) ( ) ( )’ ’ ’1 2 1 2 1 22 2 2

1
(3)

( ’, ’, ’) ( , , )*x y z x y z R R2 2 2 2 2 2 0= + (4)

Where R is the rotation matrix and R0 is the transla-
tion matrix. Here, we use Nelder-Mead Simplex Method
[21] to solve this problem. This method uses the con-
cept of a simplex, which is a special polytope of N + 1
vertex in N dimensions, and is commonly used non-
linear optimization. The rotation matrix R is equal to
Rx(a)* Ry(b)* Rz(g)* Ry(b)T* Rx(a)T. Because the
CMASA only superposes less than 10 amino acids, and
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because the geometric centre of two similar local struc-
tures should be superposited, the R0 can be pre-calcu-
lated through query geometric centre minus the match
geometric centre. Therefore, the dimension of the sim-
plex is N = 3. Then, using the Nelder-Mead Simplex
minimization function in the GSL(GNU Scientific
Library, which is a free numerical library for C and C++
programmers) or “fminsearch” function in Matlab/
Octave (a software for computation and engineering),
RMSD can be calculated.

Statistic significance
The statistical significance score was calculated using
the method of Stark et al[20], which was used in the
PINTS web server[12].

P RMSD R eM
EF RM( ) ( )≤ = − −1 (5)

EF R a b RM
N

M
N( ) . .= −Φ 4 93 5 88 (6)

Where EF is expected number of matches with the
RMSD or better, RM is the RMSD. N is the total num-
ber of query residues, F is the product of the percentage
abundances of all residues. a and b are empirically con-
stants: a = 473, b = 0.4.

CMASA database
The nrPDB(non-redundant PDB, 18757 structures) was
directly from PDB[31] (Version released on the 01-
AUG-2008). All protein chains of at least 20 amino
acids were clustered by blastclust (included in the
BLAST[2] package) at 90% sequence similarity. Each
cluster was ranked by structure resolution. The highest
rank in each cluster was regarded as the represent struc-
ture. The overlap between the nrPDB and the pdbEC
(http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/
data/pdb_EC) is the non-redundant pdbEC (5189
structures).
The nrSCOP (non-redundant structures from SCOP)

is from the SCOP[24](Version 1.75). The SCOP data-
base has 7 levels: root, class, fold, superfamily, family,
protein and species. In each species level, only the first
structure was selected. All of these selected structures
formed the nrSCOP (14541 structures).
The nrCSA (non-redundant catalytic sites atlas) is

from the catalytic sites atlas (CSA) with the version2.2.9
[22]. Some CSA templates that only contain one or two
residues are removed, because one amino acid means
nothing for catalytic mechanism, and because only two
amino acids will give too much noise in the CMASA
results. Rather more, some CSA templates, which have 3
residues but 2 of them are glycines, are also removed.

These “4 atoms” CSA templates (1 Fa and 3 Ca atoms)
are similar as only two amino acid templates (also 4
atoms: 2 Fa and 2 Ca atoms), so these templates will
also give too much noise in the CMASA results. The
overlap between the nrPDB and the CSA is the nrCSA.

Master templates and Mean conformational templates
(MCT)
All nrCSA templates with the same EC number and the
same active sites are grouped. For each group, the mas-
ter template is defined as the one which makes the
sumRMSD minimal, the sumRMSD is:

sumRMSD i RMSD i j
j i

n

( ) ( , )=
≠

∑ (7)

Where RMSD(i,j) is the RMSD between ith and jth
template in the group; n is the number of the templates
in the group.
The residue information of MCT is extracted from the

master template, but the three-dimensional coordinates
are changed, and they are:

( , , ) (( , , ) ( ’, ’, ’) )x y z
m

x y z x y zmct master j

j

m

=
+

+
=

∑1
1

1

(8)

Where (x’,y’,z’), means the three-dimensional coordi-
nates of jth template which have superposed to the mas-
ter template; m is the number of the templates with
RMSD(master,j)≤1.5 Å.

Sensitivity and specificity analysis
Two methods are used for evaluating the CMASA per-
formance. One is the ROC curve[26], another is the
Matthews correlation coefficient(MCC)[27]. The ROC
curve is used for comparing the CMASA and other
methods. The ROC curve is the plot of the true posi-
tives (Tp) rate and the false positives (Fp) rate.
The MCC method was used in overall sensitivity and

accuracy analysis and used in calculating the overall
optimal threshold. The MCC is calculated as:

MCC
TpTn FpFn

Tp Fp Tp Fn Tn Fp Tn Fn
= −

+ + + +( )( )( )( )
(9)

Sensitivity
Tp

Tp Fn
=

+
(10)

Accuracy
Tp

Tp Fp
=

+
(11)
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Where Tp, Tn, Fp and Fn are the true positives, true
negatives, false positives and false negatives, respectively.
164 CSA families are used for evaluating the CMASA

overall performance. These families are generated by the
following steps: 1) the nrCSA members with same EC
number are grouped together. 2) In each group, these
members with same active sites are grouped to a CSA
family. These families with less than 3 members are dis-
carded. As a result, we got 164 CSA families to analysis
the sensitivity and specificity (Supplement Table S1).
The negative data set (10582 structures) is a subset of
the nrPDB, which is deposited before 2008 and excludes
the nrCSA and enzymes.
For each 164 CSA families, both the master template

and the mean conformational template are generated to
query against a training set, which is the combination of
the family members(positives) and a constant negative
data set (10582 structures). All hits of 164 CSA families
are combined and ranked by the P-value or the RMSD.
So there are 1033 positives (sum of 164 families’ posi-
tives) and 10582 negatives. Then, the overall MCC, sen-
sitivity and accuracy are calculated (Figure 5A and 5B).
The overall optimal threshold is defined as RMSD or P-

value where the overall MCC is at a maximum. After the
overall optimal threshold is defined, the hits of each
family, where the RMSD or the P-value is small than the
overall optimal threshold, are used to calculate the MCC,
sensitivity and accuracy in each family (Additional file 2).

Additional material

Additional file 1: Table S1: The CSA families and its active sites and
family members.

Additional file 2: Table S2: The MCC, Sensitivity and specificity in
different family using the overall threshold.

Additional file 3: Table S3: Predicted active sites with P-value
< 1.0 × 10-4 and their best matching MCT CSA. Only showed the
predicted structures deposited before 2008.

Additional file 4: Figure S1: Predicting 3BDV catalytic sites using
CMASA. A: The CMASA superposition result. The best hit, a serine
hydrolase (PDBid:1JKM) with the catalytic sites of S202-D303-H338, is
shown. The predicted 3BDV catalytic sites (S81, D135 and H162) are
labelled. B: the sequence alignment of the DUF123 family, these
sequences are directly from Pfam[29] seed sequences. The predicted
catalytic sites are labelled by inverted triangles.

Additional file 5: Figure S2: Predicting the catalytic sites of human
placental estrone sulfatase (PDBid:1P49) using CMASA. A: the CMASA
superposition result. The best hit, an arylsulfatase (PDBid: 1HDH), which
hold the catalytic sites of R55-K113-H115-H211-D317-K375, is shown. The
predicted 1P49 catalytic sites (R79, K134, H136, H290, D342 and K368) are
labelled. B: PSI-BLAST result between 1P49 and 1HDH. The predicted
1P49 catalytic sites and the 1HDH catalytic sites are labelled as inverted
red and blue triangles.
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