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Abstract

Background: New technologies are enabling the measurement of many types of genomic and epigenomic
information at scales ranging from the atomic to nuclear. Much of this new data is increasingly structural in nature,
and is often difficult to coordinate with other data sets. There is a legitimate need for integrating and visualizing
these disparate data sets to reveal structural relationships not apparent when looking at these data in isolation.

Results: We have applied object-oriented technology to develop a downloadable visualization tool, Genome3D, for
integrating and displaying epigenomic data within a prescribed three-dimensional physical model of the human
genome. In order to integrate and visualize large volume of data, novel statistical and mathematical approaches
have been developed to reduce the size of the data. To our knowledge, this is the first such tool developed that
can visualize human genome in three-dimension. We describe here the major features of Genome3D and discuss
our multi-scale data framework using a representative basic physical model. We then demonstrate many of the
issues and benefits of multi-resolution data integration.

Conclusions: Genome3D is a software visualization tool that explores a wide range of structural genomic and
epigenetic data. Data from various sources of differing scales can be integrated within a hierarchical framework
that is easily adapted to new developments concerning the structure of the physical genome. In addition, our tool
has a simple annotation mechanism to incorporate non-structural information. Genome3D is unique is its ability to
manipulate large amounts of multi-resolution data from diverse sources to uncover complex and new structural
relationships within the genome.

Background
A significant portion of genomic data that is currently
being generated extends beyond traditional primary
sequence information. Genome-wide epigenetic charac-
teristics such as DNA and histone modifications,
nucleosome distributions, along with transcriptional and
replication center structural insights are rapidly chan-
ging the way the genome is understood. Indeed, these
new data from high-throughput sources are often
demonstrating that much of the genome’s functional
landscape resides in extra-sequential properties.

With this influx of new detail about the higher-level
structure and dynamics of the genome, new techniques
will be required to visualize and model the full extent of
genomic interactions and function. Genome browsers,
such as the USCS Genome Database Browser [1], are
specifically aimed at viewing primary sequence informa-
tion. Although supplemental information can easily be
annotated via new tracks, representing structural hierar-
chies and interactions is quite difficult, particularly
across non-contiguous genomic segments [2]. In addi-
tion, in spite of the many recent efforts to measure and
model the genome structure at various resolutions and
detail [3-10], little work has focused on combining these
models into a plausible aggregate, or has taken
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advantage of the large amount of genomic and epige-
nomic data available from new high-throughput
approaches.
To address these issues, we have created an interactive

3D viewer, Genome3D, to enable integration and visuali-
zation of genomic and epigenomic data. The viewer is
designed to display data from multiple scales and uses a
hierarchical model of the relative positions of all nucleo-
tide atoms in the cell nucleus, i.e., the complete physical
genome. Our model framework is flexible and adaptable
to handle new more precise structural information as
details emerge about the genome’s physical arrange-
ment. The large amounts of data generated by high-
throughput or whole-genome experiments raise issues
of scale, storage, interactivity and abstraction. Novel
methods will be required to extract useful knowledge.
Genome3D is an early step toward such new approaches.

Implementation
Genome3D is a GUI-based C++ program which runs on
Windows (XP or later) platforms. Its software architec-
ture is based on the Model-Viewer-Controller pattern
[11]. Genome3D is a viewer application to explore an
underlying physical model displaying selections and
annotations based on its current user settings. To sup-
port multiple resolutions and maintain a high level of
interactivity, the model is designed using an object-
oriented, hierarchical data architecture [12]. Genome3D
loads the model incrementally as needed to support
user requests. Once a model is loaded, Genome3D sup-
ports UCSC Genome Browser track annotations of the
BED and WIG formats [1].
At highest detail, a model of the physical genome

requires a 3D position (x, y, z) for each bp atom of the
genome. The large amount of such data (3 × 109 bp ×
20 atoms/bp × 3 positions × 4 bytes ~ 600 gigabytes for
humans) is reduced by exploiting the data’s hierarchical
organization. We store three scales of data for each
chromosome in compressed XML format. Atomic posi-
tions are computed on demand and not saved. This
technique reduces the storage size for a human genome
to ~1.5 gigabytes, resulting in more than 400× savings.
There are several sample models available for download
from the Genome3D project homepage. More informa-
tion of our representative model and its data format can
be found in Additional file 1.

Results and Discussion
Genome3D Program Features
The range of scales and spatial organizations of DNA
within the human cell presents many visualization
challenges. To meet these challenges, Genome3D
manipulates and displays genomic data at multiple
resolutions. Figure 1 shows several screen captures of

the Genome3D application at various levels of detail.
Genome3D allows the user to specify the degree of
detail to view, and the corresponding data is loaded
dynamically. Because of the large amount of data and
the limited memory that is available, only portions of
the data can typically be viewed at high resolution.
The interactivity of Genome3D facilitates exploring the
model to find areas of interest. Additionally, the user
can configure various display parameters (such as color
and shape) to highlight significant structural
relationships.
Genome3D features include:

• Display of genomic data from nuclear to atomic
scale.

Genome3D has multiple windows to visualize the phy-
sical genome model from simultaneous different view-
points and scales. The model resolution of the current
viewing window is set by the user, and its viewing cam-
era is controlled by the mouse. Resolutions and view-
points depend of the type of data that is being
visualized.

• A fully interactive point-and-select 3D
environment

The user can navigate to an arbitrary region of inter-
est by selecting a low resolution region and then loading
corresponding higher resolution data which appears in
another viewing window.

• Loading of multiple resolution user-created models
with an open XML format

The Genome3D application adheres to the Model-
View-Controller software design pattern [13]. The view-
ing software is completely separated from the multi-
scale model that is being viewed. We have chosen a
simple open format for each resolution of the model,
and users can easily add their own models.

• Image capture and PovRay/PDB model export
support

Genome3D supports screen capture of the current dis-
play image to a JPG format. For highly quality renders,
it can export the current model and view as a PovRay
model [14] format for off-line print quality rendering. In
addition, atomic positions of selected DNA can be saved
to a PDB format file for downstream analysis.

• Incorporation and user-defined visualization of
UCSC annotation tracks onto the physical model
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The UCSC Genome Database Browser has a variety of
epigenetic information that can be exported directly from
its web-site [1]. This data can be loaded into Genome3D
and displayed on the currently loaded genome model.

Visualizing Integrated Epigenetic and Genomic Data
We now give a few examples of applying biological
information to a model and suggest possible methods of
inferring unique structural relationships at various reso-
lutions. One of the advantages of a multi-scale model is

the ability to integrate data from various sources, and
perhaps gain insight in higher level relationships or
organizations. We choose to concentrate on high-
throughput data sets that are becoming commonplace
in current research: genome wide nucleosome positions,
SNPs, histone methylations and gene expression profiles.
The sample images, which can be visualized in Gen-
ome3D, were export and rendered in PovRay [14].
The impact of nucleosome position on gene regula-

tion is well-known [15]. In addition to nucleosome

Figure 1 The Genome3D application. Four screen captures of Genome3D main windows showing progressive “drill-down” views of the same
model of multi-resolution genomic data. All images were generated using a single instance of Genome3D and are differentiated solely by user-
controlled display settings. A The lowest resolution is the nuclear scale and displays the steps of each giant loop random walk (see MM). B The
30 nm fiber scale of chromosomes corresponding to the giant loops shown in A. C At nucleosome resolution, a limited amount of DNA can be
loaded and displayed. This image shows a segment of 100 K bp with approximate cylindrical NCPs and DNA strands represented as lines. D The
highest resolution is the DNA scale which can resolve individual atoms. A single NCP is displayed here with bp-level annotations used to color
each bp. Additionally, the image shows the atomic protein backbone structure of the NCP histones.
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restructuring/modification [16], the rotation and phas-
ing information of DNA sequence may also play a sig-
nificant role in gene regulation [17], particularly within
non-coding regions. Figures 2A, B show a non-coding
nucleosome with multiple SNPs using genome-wide
histone positioning data [18] combined with a SNP
dataset [19]. It highlights one of the advantages of

three dimensional genomic data by clearly showing the
phasing of the SNPs relative to the histone. Observa-
tions of this type and of more complicated structural
relationships may provide insights for further analysis,
and such hidden three-dimensional structure is per-
haps best explored with the human eye using a physi-
cal model.

Figure 2 Two examples of nucleosome epigenomic variation. A Top view of 4 SNP variants rs6055249, rs7508868, rs6140378, and rs2064267
(numbered 1-4 respectively) within a non-coding histone of chromosome 20:7602872-7603018. The histone position was obtained from [18], the
SNPs were taken from a recent study examining variants associated with HDL cholesterol [19]. Such images may reveal structural relationships
between non-coding region SNPs and histone phasing. B Side view of A. C A series of histone trimethylations within ENCODE region ENr111 on
chromosome 13:29668500-29671000 [27]. The histone bp positions are from [18]. Each histone protein is shown as an approximate cylinder
wedge: H2A (yellow), H2B (red), H3 (blue), H4 (green). The CA backbones of the H3 and H4 N-terminal tails are modeled using the crystal
structure of the NCP (PDB 1A0I) [28]. The bright yellow spheres indicate H3K4me3 and H3K9me3, and the orange spheres are H3K27me3,
H3K36me3 and H3K79me3.
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Another important source of epigenomic information
is histone modification. Genome-wide histone modifica-
tions are being studied through a combination of DNA
microarray and chromatin immunoprecipitation (ChIP-
chip assays) [20]. Histone methylations have important
gene regulation implications, and methylations have
been shown to serve as binding platforms for transcrip-
tion machinery. The ENCODE initiative [21] is creating
high-resolution epigenetic information for ~1% of the
human genome. Despite the fact that such modification
occurs in histone proteins, current approaches to map
and visualize such information are limited to sequence
coordinates in the genome. Our physical genome model
visualizes methylation of histone proteins at atomic
detail as determined by crystal structure. Figure 2C
shows histone methylations for several histones within
an ENCODE region. An integrated physical genome
model can show the interplay between histone modifica-
tions and other genomic data, such as SNPs, DNA
methylation, the structure of gene, promoter and tran-
scription machinery, etc.
In addition to epigenomic data, the physical genome

model also provides a platform to visualize high-
throughput gene expression data and its interplay with
global binding information of transcription factors. We
consider a sample analysis of transcription factor P53.
Genome-wide binding sites of P53 proteins [22] can be
combined with the gene expression results from a study
investigating the dosing effect of P53 [23]. This may
identify genes that have P53 binding sites in their pro-
moter regions and are responsive to the dosing effect of
P53 protein. Such large-scale microarray expression data
is often displayed with a two-dimensional array format,
emphasizing shared expression between genes, while
P53 binding data are stored in tabular form. With a
physical model, expression levels of genes in response to
P53 level can be mapped to genome positions together
with global P53 binding information, revealing any
structural bias of the expression. Figure 3 shows this
type of physical genome annotation. Drawing inferences
from coupling averaged or “snap-shot” expression data
with the dynamic architecture of the genome may be
helpful in determining structural dependences in expres-
sion patterns.

Discussion
To illustrate the capability of Genome3D to integrate and
examine data of appropriate scales, we constructed an ele-
mentary model of the physical genome (see Additional file
1 for details). This basic model is approximate since pre-
cise knowledge of the physical genome is largely unknown
at present. However, the model’s inaccuracies are second-
ary to its multi-scale approach that provides a framework

to improve and refine the model. Current technologies are
making significant progress toward capturing chromo-
some conformation within the nucleus at various scales
[24,25]. Because our multi-scale model is purely descrip-
tive beyond the NCP scale, it can easily incorporate more
accurate structural folding information, such as the ‘fractal
globule’ behaviour [26]. The Genome3D viewer, decoupled
from the genome model, can be used to view any model
that uses our model framework.
Building a 3D model of a complete physical genome is a

non-trivial task. The structure and organization at a physi-
cal level is dynamic and heavily influenced by local and
global constraints. A typical experiment may provide new
data at a specific resolution or portion of the genome, and
the integration of these data with other information to
flesh out a multi-resolution model is challenging. For
example, an experiment may measure local chromatin
structure around a transcription site. This structure can be
expressed as a collection of DNA strands, NCPs, and per-
haps lower resolution 30 nm chromatin fibers. Our data
formats are flexible enough to allow partial integration of
this information, when the larger global structure is unde-
termined, or inferred by more global stochastic measure-
ments from other experiments. Combining such data
across resolutions is often difficult, but establishing data
formats and visualization tools provide a framework that
may simplify the integration process.

Conclusions
Recent advances in determining chromosome folding
principles [24] highlight the need for new visualization
methods. More detailed three-dimensional genomic mod-
els will help in discovering and characterizing epigenetic
processes. We have created a multi-scale genomic viewer,
Genome3D, to display and investigate genomic and epige-
nomic information in a three-dimensional representation
of the physical genome. The viewer software and its
underlying data architecture are designed to handle the
visualization and integration issues that are present when
dealing with large amount of data at multiple resolutions.
Our data structures can easily accommodate new advances
in chromosome folding and organization.
A common framework of established scales and for-

mats could vastly improve multi-scale data integration
and the ability to infer previously unknown relationships
within the composite data. Our model architecture
defines clear demarcations between four scales (nuclear,
fiber, nucleosome and DNA), which facilitates data inte-
gration in a consistent and well-behaved manner. As
more data become available, the ability to model, char-
acterize, visualize, and perhaps most crucially, integrate
information at many scales is necessary to achieve fuller
understanding of the human genome.
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Availability and Requirements
Project name: Genome3D
Project homepage: http://genomebioinfo.musc.edu/

Genome3D/Index.html
Operating System: Windows-based operation systems

(XP or later)
Programming Language: C++ and Python
Other requirements: OpenGLv2.0 and GLSL v2.0 (may

not be present on some older graphics adapters - see
Additional file 2)
Any restrictions to use by non-academics: None

Additional material

Additional file 1: Supplemental information. Additional details about
human physical genome model construction and the Genome3D
software.

Additional file 2: Genome3D v1.0 README. The README file for
Genome3D software.
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