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Abstract

Background: Protein identification using mass spectrometry is an important tool in many areas of the life sciences,
and in proteomics research in particular. Increasing the number of proteins correctly identified is dependent on the
ability to include new knowledge about the mass spectrometry fragmentation process, into computational
algorithms designed to separate true matches of peptides to unidentified mass spectra from spurious matches.
This discrimination is achieved by computing a function of the various features of the potential match between
the observed and theoretical spectra to give a numerical approximation of their similarity. It is these underlying
“metrics” that determine the ability of a protein identification package to maximise correct identifications while
limiting false discovery rates. There is currently no software available specifically for the simple implementation and
analysis of arbitrary novel metrics for peptide matching and for the exploration of fragmentation patterns for a
given dataset.

Results: We present Harvest: an open source software tool for analysing fragmentation patterns and assessing the
power of a new piece of information about the MS/MS fragmentation process to more clearly differentiate
between correct and random peptide assignments. We demonstrate this functionality using data metrics derived
from the properties of individual datasets in a peptide identification context. Using Harvest, we demonstrate how
the development of such metrics may improve correct peptide assignment confidence in the context of a high-
throughput proteomics experiment and characterise properties of peptide fragmentation.

Conclusions: Harvest provides a simple framework in C++ for analysing and prototyping metrics for peptide
matching, the core of the protein identification problem. It is not a protein identification package and answers a
different research question to packages such as Sequest, Mascot, X!Tandem, and other protein identification
packages. It does not aim to maximise the number of assigned peptides from a set of unknown spectra, but
instead provides a method by which researchers can explore fragmentation properties and assess the power of
novel metrics for peptide matching in the context of a given experiment. Metrics developed using Harvest may
then become candidates for later integration into protein identification packages.

Background
Protein identification using mass spectrometry is one of
the fundamental tools of proteomics. Liquid Chromato-
graphy coupled to Electro-Spray Injection Tandem Mass
Spectrometry (LC/MS/MS) [1] is the method of choice
for the fully automated, high throughput experiments
that increasingly typify proteomics research [2-4]. These
methods have pre-processing steps that may include

extracting the proteins, digesting the proteins with a
cleavage enzyme such as trypsin, and separating the
resultant peptides using reverse phase LC columns. The
samples are then introduced into the mass spectrometer
by means of elution through a nano-spray injector. The
output is a large number of complex mass spectra. The
challenge of protein identification is to unambiguously
match a single theoretical peptide to each of the uniden-
tified spectra resulting from a true peptide fragmenta-
tion inside the machine. A confounding factor is the
large number of spectra generated from noise,
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contaminants, and non-peptide products, as well as
spectra that do originate from peptides, but are of such
low quality that there is not enough reliable information
to declare a theoretical match.
These comparisons between the observed and theo-

retical spectra are implemented as “metrics”, which is
a mathematical term for a function defining a distance
between elements of a set. In the context of peptide
metrics, a metric gives a measure of similarity between
an observed spectrum and a theoretically generated
spectrum. A metric may be a single feature, such as
the number of matching peaks between the observed
and theoretical spectrum, or it may be a complex func-
tion derived from many attributes of the potential
match, such a dot product between a theoretically pre-
dicted and observed spectrum after mapping each into
vectors. A peptide identification metric takes, as input,
a candidate theoretical peptide sequence and an
observed spectrum, and outputs a score representing
the measure of confidence of a match between the
two. A perfect metric, when given an unidentified
spectrum and a set of candidate theoretical sequences
would in every case give the highest score to the cor-
rect assignment, and lower scores to all other (incor-
rect) peptide sequence assignments. In the case where
the correct peptide is not among the candidates, the
metric would output a score for all candidates below
some threshold. In practice, any good metric will pro-
duce a distribution of scores for the candidate
sequences, with the single correct assignment likely to
be amongst the top candidates. Metrics looking at dif-
ferent aspects of the confidence of a match between a
candidate sequence and an observed spectrum will
produce different distributions for the candidate
scores. Well-known examples of metrics in the protein
identification context are the Xcorr and S scores in
Sequest [5] or the P values in Mascot [6].
Each unidentified spectrum generated from a peptide

fragmented inside the mass spectrometer is unique. In
theory, every unidentified spectrum that has not been
drawn from pure noise should yield enough information
to identify it, except for a narrow set of exceptions [4],
although in practice the presence of noise and poor
quality spectra make many spectra unidentifiable. The
fact that a vast number of observed spectra remain uni-
dentified during the protein identification process [7-14]
is a consequence of one of two limitations:

1. Poor quality spectra: where the signal peaks are
few or difficult to distinguish from the noise.
2. The inability to recognise and exploit enough fea-
tures of the spectrum to declare a match i.e., the
existing metrics are insufficient to perform the task
of identification.

It is possible to develop a metric to assign a numerical
value representing the similarity between two spectra
for any feature against which it is possible to compare
those spectra[15]. If additional features of the spectrum
can be recognised, or existing features better under-
stood, they can be harnessed to create new or better
metrics [16-19].
In this work, we aim to provide a tool for the collec-

tion and analysis of data for a number of parameters
related to fragmentation spectra. Once this new knowl-
edge is determined for a specific dataset, it can be used
to create better metrics for identification algorithms.
This is the fundamental approach behind fragmentation
machine learning models shown to improve protein
identification rates [15-17,20]. Metrics giving a better
separation between correct and random peptide assign-
ments show that the new knowledge about the fragmen-
tation process is genuine, and that the metric
embodying that knowledge produces a measurable
improvement when implemented. Being assured of these
two properties of the metric gives the developer a high
degree of confidence that the use of the metric will
improve the power of a protein identification algorithm.
In order to develop and test these metrics, we

required a framework dedicated to the identification of
peptides and flexible enough to handle arbitrary new
information. We chose for the underlying method a
probability approach for two reasons: it is a well estab-
lished framework for noisy and complex data [16,17]
and because many protein identification algorithms rely
on probability methods [20-25], so new or better metrics
developed using a probability framework can be easily
implemented in this class of protein identification algo-
rithms to improve their performance.
In this paper, we demonstrate the collection of dataset

specific information about fragmentation spectra and
examples of how to embed this knowledge into a prob-
ability metric. Then we show how Harvest can be used
to validate an improvement in the number and confi-
dence of peptide identifications using this new metric
using a subset of the entire dataset. Once validated
using Harvest, such a new metric can be used to
improve the performance of any of the popular prob-
ability based protein identification algorithms, and to
validate hypotheses about the poorly understood frag-
mentation process.

Implementation
Harvest has been written in C++ using Microsoft Visual
Studio v6.0. The Parameter class in the code gives
access to all parameters required for testing. The section
in which new metrics should be included is clearly
marked in the Candidate class definition. Information
relating to matching peaks and LOD scores for each
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dataset is output by default in the working directory,
and can be piped to an appropriate file by the user. The
LOD score is the log of the odds score, defined as the
logarithm of the ratio of the probability the match is
correct and the probability the match is random.
Harvest is not a protein identification package. How-

ever, in order to compare peptide matching metrics
Harvest performs some of the same functions used in
protein identification algorithms. It does this to produce
a set of high confidence peptide assignments. The set of
high confidence assignments can be examined to
explore fragmentation properties or to trial the new
metric against the dataset so as to measure any
improvement in the confidence of peptide assignments
or in the number of peptides identified when using the
metric under development. The importance of Harvest
is the fragment-level reporting, comparison, manipula-
tion, and analysis of novel peptide matching scores
through a metric under development, thereby answering
hypotheses about fragmentation and applying this infor-
mation in the form of better peptide identification
metrics. This research question does not necessitate
globally maximising the number of identified peptides
and therefore distinguishes Harvest from existing algo-
rithms that aim to do this, such as protein identification
packages, or algorithms operating on the results of such
packages.

Datasets
We used the data from Cooksey et al. [26], downloaded
in July 2010 from the PRIDE repository http://www.ebi.
ac.uk/pride and the Aurum Dataset composed of known
proteins [27], as our reference MS/MS datasets. The
Aurum dataset is a MALDI produced dataset and con-
tains only +1 precursor ions. The Cooksey dataset was
selected because it is publicly available and is broadly
typical of a high throughput MS/MS experiment using
human tissue and is of a moderate size (77,779 spectra).
The Aurum dataset was chosen because it is derived
from a known set of 246 input proteins, and therefore
can be used to validate the Harvest algorithm. For the
Cooksey dataset, the original sample was human plasma,
depleted of the most abundant proteins, and cleaved
with trypsin. LC analysis was accomplished by strong-
cation exchange (SCX) followed by reverse-phase (RP)
LC coupled directly in line with ESI IT MS.
The files were unpacked from tar.gz format and con-

verted from mzXML into DTA format using the Peak
List Conversion Utility available at Proteome Commons
[28] to create folders of DTA format files. This dataset
we now refer to as the Cooksey dataset. For the Aurum
Dataset, the first 500 identified peptides were individu-
ally downloaded from the Aurum manuscript files and
used as a reference set.

Pre-processing and modifications
A program written in C++ and bundled with Harvest
provides the necessary pre-processing tools for Harvest.
This program needs to be run once only, prior to the
use of Harvest, for each new or updated target protein
database. It takes a FASTA format file containing the
entire proteome of the target organism and produces a
binary output file containing peptide objects with pre-
computed attributes such as parent mass, modifications,
theoretical ion series spectra, an identifier for the pro-
tein from which it comes, etc. The file of peptide objects
is ordered by mass. The processed human IPI database
takes a few seconds to load into memory on a dual core
2.0 MHz Intel machine, and is typically in the order of
500 MB for a tryptic digest of the human proteome
with up to 2 missed cleavages. This large size is due to
the additional pre-computed information such as theo-
retical spectra included in the binary object file. How-
ever, the use of these pre-processed objects greatly
improves the run-time speed of Harvest.
Modifications are dealt with in the Harvest code. A

number of common modifications are included by
default (oxidation and methylation).The user is able to
create new modifications and control the type (fixed/
variable) and maximum number of each modification
allowed per peptide.

Load-in
The dataset of unidentified spectra in DTA format is
loaded into the application from a directory specified by
the user. During this process, a noise level threshold of
0.5% of the total sum of peak intensities was applied to
each spectrum to filter out very low intensity peaks.
This is consistent with signal processing algorithms pre-
viously described [29,30]. In brief, thresholds based on
the sum of peak intensities, rather than the intensity of
the most intense peak in the spectrum, are used. This is
because the intensities of the peaks in the spectrum are
relative to the proportion of fragmentation at each site
along the length of the entire peptide. This means that
the properties of the noise are dependent on the pep-
tide, not the most intense fragment. After loading in the
input DTA files, the pre-processed peptide objects from
the protein database are loaded into memory in a mass
ordered array.

Candidate selection based on precursor mass and
number of y ion series matches
This first level of candidate selection in Harvest is simi-
lar to that of most common protein identification algo-
rithms [1-5]. Theoretical peptide candidates are selected
based on their parent mass falling within a given mass
range of the unidentified spectrum parent mass. For
each theoretical peptide in the candidate list, the y ion
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series (stored as part of the peptide object) is compared
to the unidentified spectrum. The number of peaks
aligned within the specified mass tolerance is recorded.
Candidates with the minimum specified number of y
hits show initial evidence of being potentially correct
assignments and are retained as the candidate set.

Preliminary scoring
Preliminary scoring is now applied to the candidate
set. The candidate set is assumed to contain the cor-
rect peptide assignment. Although the candidate set is
a tiny subset of the entire theoretical peptide database,
it is still large enough so that the application of arbi-
trarily complex metrics cannot be applied to the set to
distinguish the correct assignment due to computa-
tional constraints. For this reason, a preliminary scor-
ing stage is used to reduce the candidate set by
rejecting candidates showing significant evidence of
being a random match. This candidate set reduction
stage strikes a balance between speed and accuracy,
but is biased heavily towards retaining the correct
assignment. It does this by retaining in the candidate
set any peptides with even weak evidence of being the
correct match. The inclusive nature of this filter is
necessary to retain the correct peptide in the candidate
set given the expected inaccuracies of such a computa-
tionally “cheap” filter.
In Harvest, the preliminary scoring:

• orders the most intense peaks in the unidentified
spectrum
• selects the top 4N peaks, where N is the sequence
length determined by assuming an average amino
acid mass of 114 Da. This step ensures that approxi-
mately the same proportion of the most intense
peaks with respect to peptide length is used during
scoring. Limiting the number of peaks used for scor-
ing is common for candidate selection procedures in
protein identification algorithms [5,6,24,31] and
improves run-time speed. 4N is chosen as a number
that will likely include most of the basic y and b
ions, plus a number of other identifiable ions such
as iminium (immonium) ions or those generated
from the loss of water or ammonia from b or y ions.
This choice is arbitrary and a simple percentage of
the total intensity or a percentage of the highest
intensity peak may be used as a cut-off if desired. If
fewer than 4N peaks exist, then all peaks are used.
• For the first 4N peaks:

○ records the sum of intensities for peaks match-
ing iminium, y, or b ions from the theoretical
candidate sequence.
○ Records the total sum of intensities of peaks
not matched to iminium, y, or b ions.

For the preliminary score, theoretical y1+, b1+, and
iminium ions are generated. y2+ ions are also generated
if the parent charge is 2 or higher.
The preliminary score is defined as the proportion of

intensities matched to these theoretical ions over the
sum of all intensities for the first 4N peaks. For exam-
ple, a preliminary score of 0.5 would result if half of the
total intensity of the top 4N peaks is accounted for by
peaks matching iminium, y, and b ions. Candidates with
a preliminary score below a user-defined threshold are
rejected. A low minimum preliminary score accepts
more early stage candidates and therefore is more likely
to capture the correct peptide assignment, while a high
peptide score reduces the number of candidates and
therefore reduces run-times. The default for a minimum
preliminary candidate score is 0.05, as this score was
found sufficient to ensure the capture of high confi-
dence peptide assignments across a range of datasets. If
during the use of Harvest a user finds consistently that
high confidence assignments have preliminary scores
above a certain threshold, they may increase the mini-
mum preliminary score to this value to speed run times.
For example, a value of 0.30 was found to maintain sen-
sitivity without sacrificing specificity for some datasets
(especially MALDI).

Probability scoring
At this final stage there are few enough candidates to
allow significant computational effort to be put into
each candidate to either validate or confidently reject
this match. Candidates entering the final probability
scoring stage have a preliminary score greater than the
user defined minimum and it is assumed that the cor-
rect peptide assignment is in the set. A full set of theo-
retical ions is available for matching during probability
scoring including up to two ammonia and two water
losses per fragment. The default setting is to use y, b,
and a ions. For parent masses with charge states higher
than one, y2+ ions are also generated. The ion series are
generated by using the pre-computed y ion series con-
tained within the peptide object. Other theoretical ion
types can be generated if desired in the createFrags
function. New metrics can be inserted in this probability
scoring section of the algorithm.
Harvest uses log odds (LOD) scores as the basis of its

probability calculations. A LOD score as defined in Har-
vest is the Log of the odds, where the odds are the
probability of this match being correct, given the evi-
dence, over the probability of this match being random
(null model), given the same evidence, where random
peptides are drawn from a reverse database. Using this
definition of a LOD score, a score of zero means that
the candidate match is as likely to be correct as it is to
be random, with greater positive scores indicating a
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higher level of confidence that the candidate is a correct
assignment (i.e., non-random). One of the advantages of
using LOD scores during the probability scoring process
is that the LOD scores for separate pieces of knowledge
relating to the fragmentation process can be indepen-
dently integrated into the final score by simple addition.
It should be remembered that LOD scoring schemes
assume independence of the factors constituting the
score, which is unlikely to be strictly true. For this rea-
son, the combination of metrics during scoring may
confound interpretation, especially if these features are
non-independent. However, using minimally related fea-
tures of the spectrum during scoring will produce a
good approximation.
The use of LOD scores allows the developer to sys-

tematically test for the additional discriminating power
of new knowledge relating to the fragmentation process
by introducing the additional metric into the scoring
process. They can then consider the distribution of
scores for known incorrect peptides against a set of pep-
tides that have a high probability of being correctly
assigned, with an improvement in the separation of
these sets being indicative of a good metric. Each piece
of knowledge can be leveraged by looking at the features
of the unidentified spectrum.
The feature LOD equation can be expressed as:

featureLod Log
P correct E
P random E

= [
( | )
( | )

]

where P(correct|E) is the probability of the spectrum
under consideration having the specific feature relating
to this LOD score, if it was produced by the candidate
theoretical sequence, given the evidence E, and P(ran-
dom|E) is the probability that this feature will have been
observed if the spectrum was generated by a random
peptide sequence, given the evidence E. In many
instances, the differences between metrics will be mea-
sured at the fragment ion level, in which case the frag-
ment LOD scores of each of the matching ions is the
only relevant information. There are, however, metrics
operating at the peptide level, that is, using the aggregate
information from the whole peptide. For example, a spec-
trum dot product between observed and predicted ion
intensities, or if considering the effect of non-adjacent
amino acids on fragmentation (such as distant basic resi-
dues retaining charges). For this reason, Harvest provides
a peptide LOD, which, by default, is simply the sum of
the individual fragment LOD scores for the peptide:

peptideLOD featureLODi
i

n

=
=
∑

0

where i represents a feature (such as a peak match),
and n is the total number of these features (such as the
number of matched peaks).
Users may ignore the peptide LOD if working with

metrics only relevant to fragments. In the case where
users choose to apply their own metrics at the peptide
level, this default definition of the peptide LOD can be
replaced by any other metric operating at the peptide
level, using the same interface used to apply metrics
operating at the fragment level. The individual fragment
LOD scores, plus the peptide LOD score for each candi-
date, is printed out to a log file, showing information on
peak matches, individual peak scores, and whole peptide
LOD scores.

Implementing a novel metric
Harvest is designed for metric development. To demon-
strate this utility, we use four metrics, each progressively
derived from the previous metric by adding more infor-
mation. These metrics are simple and not intended to
be significant advances in the field. Their purpose is to
demonstrate the utility of Harvest for building a non-tri-
vial, experiment specific, data-driven metric in several
stages. A metric combining statistical machine learning
and neural networks is also described in this paper to
demonstrate the application of more complex metrics
using Harvest.
It is well established that for any given input sample,

different classes of MS/MS machine will produce signifi-
cantly different output spectra [4,5,7,9,11,14-17,20,22].
In this paper we use Harvest to demonstrate and vali-
date the development of four novel metrics using data-
set specific knowledge to improve peptide assignment
confidences. First, we demonstrate the implementation
of a basic metric for peptide scoring (metric 1). Then
we show how the use of experiment specific fragmenta-
tion information can be used to build upon this simple
metric to improve confidences for correct peptide
matches (metrics 2, 3, and 4). This is done in both the
gold standard dataset (Aurum) and in the context of a
high throughput experiment (Cooksey). Each of these
metrics integrates increasingly detailed fragmentation
information, to provide increased discriminating power.
These metrics are validated against the Aurum dataset
and improve upon the number of peptides identified at
the 5% false discovery level when compared to X!Tan-
dem. The improvement is seen in both the validated
Aurum dataset (MALDI) and the Cooksey dataset: a
typical, moderate size non-validated dataset (ESI). Lastly,
we demonstrate the use of Harvest to explore physio-
chemical properties of fragmentation not related to the
peptide identification problem.
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The four metrics used to demonstrate the progressive
development of a metric using Harvest are:
Metric 1: a basic metric
Using this metric, correctly identified fragment matches
are assumed to occur with a fixed probability and ran-
dom peak matches are assumed to occur with an even
distribution across the mass range for the peptide file.
This metric approximates the scoring metrics used in
most protein identification engines in which each frag-
ment “hit” contributes an equal amount to a peptide
score. The probability of a correct fragment match for
metric 1 is fixed at 0.5. This reflects the fact that
approximately half of the peaks under consideration can
be identified for correct peptides in this dataset. With-
out further information, any peak match for a correct
assignment has a probability of 0.5. The peaks included
in this set are described in the above preliminary and
probability scoring sections. The probability of a random
match is the probability that a peak would be found
within the range between the observed and theoretical
peak if the peaks from this spectrum were randomly
distributed.
For example, consider the case where the smallest

peak in the spectrum is 150 Da, the largest is 1150 Da,
and there are 100 peaks in the spectrum. Assuming a
random distribution, the density of peaks in the spec-
trum is 0.1 peaks per Dalton. Now consider a candidate
fragment match with a difference between the observed
and expected mass of 0.25 Daltons. The probability of a
random match with this error (plus or minus this differ-
ence) is 0.05. With a fixed correct probability of 0.5, and
a random probability of 0.05 for this fragment, the frag-
ment LOD score is therefore 2.3.
In the source code for Harvest, this is the default

metric.
Metric 2: uses empirically derived fragment mass specific
information to derive an estimate of correct assignment
The basic metric (metric 1) assumes a fixed probability
of a correct match for all fragments. Considering the
distribution of all theoretical fragments, which varies by
mass, it may be useful to include this information when
scoring. For example, there is only a single correct frag-
ment assignment for each peak irrespective of the frag-
ment mass, however for high fragment masses, there are
fewer theoretical fragments which may randomly match.
This in turn makes the odds of a correct fragment
assignment dependent on the fragment mass. The sim-
plest way to include this information is to empirically
determine the probability for correct peptide matches of
a peak being matched with respect to its mass. These
values can then be used to replace the fixed probability
of a correct hit used in the basic metric (metric 1) with
the probability for the specific fragment mass. The pro-
cedure for determining and using the probabilities of a

correct fragment match with respect to mass is
described below.
Using the output from Harvest using the basic metric

(metric 1) with the default settings, we generated a list
of high confidence peptide assignments (Z score > 6).
These are assumed to be correct. For 1+ and 2+ parent
charges, each peak fragment mass was recorded and
marked as either matched or not matched, and grouped
into fragment mass bins of 200 Da. The proportion of
matched over non matched peaks for each bin gives the
probability of a correct match for fragments for each
the mass range (bin). Rare 3+ parent ions were given a
fixed value (specifically, the average of all the 1+ and 2+
proportions) as their numbers were too low to allow
confident modelling. Using these proportions allowed a
direct look-up of probability for correct matches during
calculation (as per the numerator in the first equation).
For example, using the Aurum dataset, it was found that
40% of the fragments between 200 and 400 Da could be
identified in correct peptides for this dataset, whereas
80% of the fragments between 1400 and 1600 Da could
be identified. Therefore, using this metric, the probabil-
ity of matching a peak in a correct peptide assignment
for a fragment of 300 Da was 0.4. For a fragment of
1500 Da the probability of a correct match was 0.8. A
comparison of metric 1 and metric 2 was then carried
out for the Aurum dataset.
Metric 3: builds upon metric 2 by producing more accurate
estimates for random assignments
Having modelled the probability of correct matches for
this dataset with respect to fragment mass in the pre-
vious metric, we can now apply the same technique for
the other half of the equation - the probability of a ran-
dom match. Instead of assuming an even distribution of
random fragments as in the basic metric (metric 1) and
the previous metric (metric 2), we add in this metric
(metric 3) an empirical estimate of the probability of a
random match with respect to the fragment mass. To
estimate random fragment matches with respect to
mass, the same process of recording each fragment in
the spectrum as matched or not matched along with the
mass is used (as in metric 2), although this time remov-
ing the minimum Z-score requirement and using a
reversed peptide database. With the probabilities of frag-
ment matches grouped into bins of 200 Da for both cor-
rect (from metric 2) and randomly assigned peptides
(included in this metric), we can now use these tables to
generate a LOD score. To achieve this, first the values
for correct and random probability distributions are
normalised so that the probabilities for each bin sum to
one for the correct and random distributions. The odds
of a peak match for any given fragment mass is the nor-
malised probability value for a correct assignment, over
the normalised probability of a peak match for a

McHugh and Arthur BMC Bioinformatics 2010, 11:448
http://www.biomedcentral.com/1471-2105/11/448

Page 6 of 14



random fragment for the appropriate mass bin (as
shown in the first equation). In this way the LOD score
for any matched peptide is now simply a function of its
mass. This metric was tested on the Aurum dataset to
validate that the additional information using the distri-
bution of random fragment matches by mass improves
confidences in correctly matched peptides.
Metric 4: including additional information about mass
spectrometer specific fragment mass errors to increase
discrimination
The fragment mass tolerances set in protein identifica-
tion algorithms are designed to include as matches frag-
ments which are correctly assigned but not found at the
exact theoretical mass expected. These differences
between observed and expected masses are introduced
by largely stochastic processes in the instrument and are
generally considered using a binary function: either a
fragment is matched within this range or otherwise,
Instead of a “hit” or “no hit” approach, using a fragment
mass tolerance parameter, metric 4 explicitly models
information about the observed mass error distribution
by fitting a probability density function (PDF) to pro-
duce a probability that an assigned fragment is correct
based on the mass error. It is identical to metric 3,
except that when calculating the probability of a correct
match, the mass error is input into the PDF to produce
a probability that it is correctly assigned. The probability
of correct assignment is then multiplied by this value.
The mass error distributions for both the validation
(Aurum) and experimental (Cooksey) dataset show an
approximately normal distribution in mass errors for
correctly assigned fragments.
The PDF used the mean and standard deviation of

correctly assigned fragment mass errors in bins of 100
Da to produce a single function for each bin, so that
each matched fragment used the PDF associated with its
mass bin.
This metric was tested on the Aurum dataset for vali-

dation and applied to the Cooksey dataset to measure
the improvement gained by combining the features pre-
sent in metric 4 over the basic metric.
Implementation of a complex metric
The modelling of peak intensities is another approach
to increase discriminatory power in a novel metric
[15-17,19]. Many of the factors known to influence
peak intensity are high dimensional and non-linear,
and are therefore complex metrics. To demonstrate
the use of a complex metric in Harvest, we implemen-
ted a neural network to predict peak intensities. The
neural network consisted of sigmoidal perceptrons
with 8 input nodes, 8 hidden nodes, and a single out-
put node. The inputs to the model for predicting frag-
ment intensity were:

1. Ion type: either no fragmentation, iminium, y, a,
or b (0,1,2,3,4)
2. Parent charge
3. Fragment charge
4. Length of the parent peptide
5. Length of the fragment divided by the length of
the parent peptide
6. Number of H, K, and R residues in the fragment
divided by the number of H, K, and R residues in
the parent peptide
7. Identity of the amino acid on the N-terminal side
of the fragmentation
8. Identity of the amino acid on the C-terminal side
of the fragmentation

The identity of amino acid residues were coded as
values between 0 and 1, evenly spaced, and in order of
increasing hydrophobicity. The output node for training
was taken as the log of the peak intensity after normalis-
ing the spectrum so that the maximum peak was 100.
The testing and training dataset were derived from a
10% subset of the whole dataset to prevent over-fitting
(7,800 peptides), with 1,084 high confidence assignments
(Z score > 6) from this set used for training. The Flood
neural network package was used to model the neural
network. Training was for 20 epochs, using a quasi-new-
ton method. During run-time, a vector of attributes was
generated for each identified fragment for the neural
network input nodes 1 to 8. For each peak, the neural
network predicted peak intensity, producing a predicted
peak intensity spectrum. Both the predicted and
observed intensity spectra were normalised to sum to
100 and an inner dot product generated from the inten-
sities of matching fragments. To generate a Z score for
the peak intensity prediction, a series of random pre-
dicted peak heights needed to be generated. To create
this random set of predicted intensity spectra the inten-
sities of each of the predicted peaks was iteratively
assigned to the previous fragment (wrap-around) until
the predicted intensity spectrum cycled back to its origi-
nal position. This technique has the advantage of preser-
ving the distribution of predicted peak heights for
random assignments. The Z score for the peak intensity
prediction was the number of standard deviations the
dot product for the predicted intensity spectrum was,
above the mean of the “random” dot products. The pep-
tide-level Z score for peak intensity prediction was
added to the Z score for metric 4 to produce a final Z
score for each peptide. This complex metric involving a
combination of statistically learned attributes, probability
density function modelling, and neural network intensity
prediction was applied to the Cooksey dataset and com-
pared to metrics 1 and 4 and X!Tandem.
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The use of Harvest to explore data not related to the
peptide identification problem
The fragmentation specific reporting capabilities of Har-
vest allow the exploration of fragmentation properties.
To demonstrate this functionality we used the output of
Harvest for the sample set of 500 identified peptides
drawn from the Aurum dataset to examine the influence
of theoretical fragment isoelectric point (pI) on the pre-
sence or absence of y or b ions. In cases where only the
y or the b ion was detected, the pIs of the found and
missing fragments were calculated. The relative pI of
the y ion with respect to the b ion was plotted against
the proportion of the length from N to C terminal at
which the fragmentation event took place. The use of
Harvest in this way provides both a statistical and visual
representation of the instrument and experiment depen-
dent fragmentation process.

Results
Metric 1
The first 500 identified peptides from the Aurum data-
set were used for the comparison of metrics. Metric 1
was used in Harvest to identify peptides at a 95% confi-
dence level (Z score: 3.29). X!Tandem was run with
equivalent parameters (modifications, fragment toler-
ances, etc) and with an expectation value of 0.05. The
Harvest and X!Tandem sets were ordered by confidence.
Using a 5% false discovery cut-off against the validated
peptides in the Aurum dataset, Harvest, using metric 1,
correctly identified 461 peptides and X!Tandem cor-
rectly identified 464. In this case, there was no signifi-
cant different in sensitivity between the Harvest basic
metric and X!Tandem using the Aurum dataset (p =
0.81). Metric 1 was then used as a benchmark for
further development of metrics. For the Cooksey data-
set, X!Tandem identified 40,798 peptides using an
expectation value of 0.05, while the Harvest basic metric
identified 41,929 peptides using a Z score cut off of 3.29.

Metric 2
Figure 1 shows the proportions of fragments identified
for correctly assigned peptides with respect to mass
from the Aurum dataset used in metric 2.
For the Aurum dataset, the proportional change in the

Z scores (confidences) for each correct peptide assign-
ment when comparing metric 2 to metric 1 is shown in
Figure 2. In Figure 2, values greater than 1 show an
increase in confidence (Z score) for the assignments
using metric 2 over metric 1. Values less than 1 show a
decrease in confidence. Metric 2 showed an average
improvement in the confidence of correct peptide
assignments by 11% when compared to metric 1. There
was, however, a large variance in “improvement”. In this
case, it decreases the confidence for many correct

peptide assignments, resulting in only a few (2) addi-
tional spectra being identified despite the overall
increase in confidence for correct assignments. This
suggests that this metric should be further developed
before use in a protein identification context.

Metric 3
Metric 3 improves upon metric 2 by including informa-
tion about fragment matching probabilities for not just
correct, but also random fragment matches. The prob-
abilities of a fragment match for high confidence pep-
tides (Z score > 6) and random assignments with
respect to mass for the Aurum dataset is shown in Fig-
ure 3.
The higher relative values for the correctly assigned

fragments (blue bars) above 300 Da in Figure 3 charac-
terise the increased likelihood of a correct match relative
to a random match with increasing fragment mass. The
use of this additional information in metric 3 gives an
average improvement in Z scores for correctly assigned

Figure 1 The proportion of fragments matched (i.e., number of
matching fragments divided by total number of fragments)
from high confidence peptide assignments as a function of
fragment mass for the Aurum dataset. Error bars show one
standard deviation above and below. Fragment mass values are
binned into spans of 200 Da, with the first bin containing all
fragments <= 200 Da.

Figure 2 Histogram of the proportional change in the Z scores
of correct peptide assignments when comparing metric 2 to
metric 1 using the validated Aurum dataset. Values greater than
1 represent an increase in the confidence of these peptide
assignments.
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peptides of 2.7% over metric 1, with 86.2% of correct
peptide assignments showing increased confidence.
Metric 3 improved the number of correct identifications
at the 5% level over metric 1 by 7 peptides to 468. Fig-
ure 4 shows the change in Z score for correct peptides
in the Aurum dataset when comparing metric 3 to
metric 1.

Metric 4
Metric 4 adds additional information to metric 3 by fit-
ting a fragment mass error probability distribution for
correctly matched peptides. This information can be
derived from the analysis of any Harvest output. Figure
5 shows the mean fragment mass error and standard
deviation for correct peptides across the fragment mass
range of the Aurum dataset.

A clear trend is apparent in Figure 5 showing a “drift”
with increasing fragment mass between expected and
observed fragment masses. Metric 4 uses this informa-
tion to correct for this drift and to fit a probability den-
sity function for each fragment mass bin for correct
peptide assignments. The distribution of the change in
Z scores for correct peptide assignments using metric 4
compared to metric 1 are shown in Figure 6.
When compared to metric 1, metric 4 increased Z

scores for correct peptides for 93% of correct peptide
assignments, with an average improvement in confi-
dence (Z score) of 30%. The use of metric 4 increased
peptide identifications at the 5% false discovery level by
18 when compared to metric 1. This represents a 3.2%

Figure 4 Proportional change in Z score when using metric 3
compared to metric 1 for the validated Aurum dataset. Values
greater than 1 represent an increase in the confidence of these
peptide assignments.

Figure 5 Mean and standard deviation (error bars) of fragment
mass error (observed mass minus expected mass) for correct
fragment assignments at various fragment masses for the
Aurum dataset. These values are used to fit probability density
functions over correct fragment assignments, with fragment masses
grouped into bins of 100 Da.

Figure 3 Proportion of fragments identified (i.e., number of
matching fragments divided by total number of fragments) for
correctly assigned (blue) and randomly assigned (red)
peptides, grouped by fragment mass, for the Aurum dataset.

Figure 6 Proportional change in Z scores using metric 4 when
compared to metric 1 for the validated Aurum dataset. Values
over 1 represent an improvement in peptide assignment
confidence.
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increase in peptide identifications over X!Tandem using
this sample set.
After validation, metric 4 was applied to the Cooksey

ESI MS dataset of 77,779 spectra. Metric 4 identified
44,412 spectra, an improvement over the basic metric
(metric 1) of 2,723 peptides (6.5%), and an improvement
over X!Tandem of 3,614 peptides (8.8%).

Use of a complex novel metric
The use of a neural network to predict peak intensities
is an example of a metric operating at the peptide level.
The Z scores generated by the neural network based
metric were therefore added to (or subtracted from) the
peptide LOD score. When the neural network for peak
intensity prediction was added to metric 4 and applied
to the Cooksey dataset, and additional 78 peptides were
identified. The mean increase in Z score for identified
peptides was 1.2%.

Analysis of peptide fragmentation spectra not related to
protein identification
Harvest output provides the identities and properties of
matched fragments. Using this data, statistical or visual
representations of the fragmentation process can be pro-
duced. Using the method described above, we show in
Figure 7 a comparison of y and b ions (restricted to
those without their corresponding ion) plotted against
theoretical fragment pI.

Discussion
Unlike algorithms such as Sequest, Mascot, or X!Tan-
dem [23], Harvest is not designed to extract the maxi-
mum number of identified peptides from a dataset, nor
is it limited to developing metrics intended for insertion

into existing protein identification packages. Rather it is
designed to examine hypotheses relating to knowledge
of the fragmentation process. The underlying candidate
generation processes in common with protein identifica-
tion algorithms merely serves to provide sets of high
confidence assignments to unknown spectra. Insights
gained from Harvest may later be used to develop better
metrics for protein identification or to use this informa-
tion without application to the protein identification
problem. One example of the use of Harvest without
the end goal of developing metrics for protein identifica-
tion algorithms has been shown in Figure 7. In this
experiment, Harvest was used to collect information on
identified fragments where their complementary frag-
ments could not be found (y and b ions only). A plot of
relative y ion pI with respect to b ion pI over the pro-
portion of the parent peptide along which the fragmen-
tation occurred characterises the inhibitory effects of
basic residues for these fragments. The bias towards
high pI for shorter y ions (red) is expected as the pep-
tides in the Aurum dataset were all tryptic, however the
cluster of long, high pI identified y ions (red), and the
cluster of long medium pI y ions (blue), has, to our
knowledge, not been previously reported in the litera-
ture. It may reflect previously undescribed fragmentation
phenomena specific to MALDI datasets.
Other possible hypotheses to be explored include the

elucidation of the properties of fragmentation spectra
for different machines or experiments, or questions
related to steric hindrance, peptide oscillations, or the
location of mechanical moments during fragmentation.
As Harvest is specifically geared towards analysis of

peptide fragmentation, the outputs of the program
include complete lists of the identities and properties of
each of the ions matched. This level of reporting is criti-
cal for the development of new metrics and for the
exploration of the fragmentation processes.
The metrics 1 through 4 demonstrated in this paper

are deliberately simplistic and are intended only to
demonstrate the way in which any given metric may be
assessed and developed using Harvest. Using the Har-
vest framework, investigators can build a wide range of
novel metrics specific to peptide identification in their
specific research domain, such as including more infor-
mation about fragmentation processes, testing physio-
chemical hypotheses, or for fine tuning machine learn-
ing models.
An exhaustive set of peptide identifications is not

always necessary to assess the effect of a new metric for
a given dataset. Although, when seeking to test proper-
ties of peptides that are not homogenous for all frag-
ments, such as metrics based on the amino acid
composition of fragments, many more peptides will be
required to validate an improvement.

Figure 7 Relative isoelectric point (pI) of y ions over
complementary b ions plotted by location of the
fragmentation location between the N and C terminal
(proportional). Red points show the relative pI of y ions for which
the complementary b ion was not detected in the spectrum and
the blue points show the relative pI for b ions for which no
complementary y ion was found.
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As the development of metrics is based on the collec-
tion of information from the highest confidence peptide
assignments, this training set provides the highest confi-
dence information about the experiment specific para-
meters. An assumption is made that the parameters of
this training set apply to the dataset in general. This
assumption is reasonable if the training set is represen-
tative of the general dataset for the parameters used in
the metric. In the case of metrics 1 through 4 presented
above, this assumption is reasonable because the prob-
abilities derive from a large number of fragments, from
across the full range of the fragment mass spectrum,
derived from peptides spanning the full mass range of
the general dataset, thus presenting a low risk of over-
fitting. Any additional peptides identified using a new
metric show an unambiguous improvement in the
metric. This is because the information used to used to
produce the metric was not drawn from these peptides
(since they were not previously identified), and therefore
these peptides cannot be an artefact of over fitting. For
metrics deriving from data for which the distribution or
complexity of the data is larger, such as in the presented
complex metric using 8 input attributes, a much larger
set of data is required for both feature extraction and to
validate the effectiveness of the metric.
Low quality spectra will always remain more difficult

to identify and to address with improved metrics. How-
ever, Harvest does provide a framework within which
metrics may be developed specifically for low quality
spectra that have been identified, or for producing
metrics better able to identify unknown low quality
spectra. This can be achieved because the parameters
used in the metrics have been developed specifically for
the experimental conditions being investigated.
Harvest provides a simple and flexible platform to

enable the user to quickly develop and test new metrics
using a set of high confidence peptide identifications
drawn from the dataset. The run times required to pro-
cess a set of peptides is similar to the run times required
for protein identification algorithms. However, Harvest
allows for a quick turn-around time between hypothesis
and test due to the simple interface. By modifying the
candidate selection section of the code, users can pro-
vide their own parameters for choosing high confidence
peptides, or use the default candidate generation process
that follows the same basic methods as used in protein
identification algorithms. The methods Harvest uses for
candidate selection are similar to those used in protein
identification packages. This is done so new metrics are
developed in an environment closely modelling that into
which they may eventually operate.
As metrics for peptide assignment are the fundamen-

tal core of protein identification algorithms, any such
metrics validated using Harvest are good candidates for

insertion into any one of the popular probability based
protein identification algorithms to improve their per-
formance or to extract more information from old data-
sets. The few open source protein identification
packages currently available, X!Tandem and OMSSA
[23,24], are not readily adaptable to the direct assess-
ment of arbitrary new information to improve peptide
matching metrics. For example, the popular protein
identification package X!Tandem, provides pluggable
scoring to give a greater degree of control during scor-
ing. The X!Tandem pluggable scoring API provides a
number of functions which can be overridden or com-
mented out to provide developers access to various
parts of the program in order to modify the way in
which scoring proceeds. However, there are three signif-
icant limitations in the X!Tandem pluggable scoring.
Firstly, the user is required to work within the limita-
tions of the scoring pipeline and data structures pro-
vided. For example, each peptide must pass through a
number of pre-processing steps affecting scoring (pre-
score, mconvert, hfactor, sfactor, and hconvert) and
then through a set of peptide scoring systems (dot,
score, and sfactor). Each of these steps require the use
of the data structures defined by the X!Tandem spec-
trum object. The second limitation is that arbitrary use
of information cannot be made available during scoring.
For example, while the X!Tandem pluggable scoring API
provides for extra information to be stored through the
‘add_details’ function, the standard release is not
designed to accommodate complex objects into the
spectrum object, such as a machine learning module,
support vector machine or neural network. The third
limitation is that while it may be possible to implement
modifications to the scoring metrics of X!Tandem out-
side the scope of the pluggable scoring, this would
involve an in-depth understanding of the full details of
the package. While overcoming these limitations may be
possible for an highly experienced programmer, it
remains a barrier to other researchers interested in
exploring fragmentation properties. Harvest overcomes
each of these three limitations by:

1. Not limiting the types of scoring calculations that
a user may perform during either fragment or pep-
tide scoring
2. Providing an insertion point at which arbitrary
methods, models, or structures may be used during
scoring
3. Providing the user with unlimited scope for
generation, use, or manipulation of any informa-
tion relating to either the observed or theoretical
spectrum at a single, clearly marked point, along
with instructions on how to access this
information.
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Figure 8 Sample output for a single identification from Harvest. Key features such as matching fragments, properties of the parent peptide,
source file, and modifications are shown. Fragments are ranked by intensity, with observed (obsMZ) and expected (expMZ) m/z values shown.
Expected m/z values and identified parent mass (pmass) are theoretical m/z values. The overall LOD score is the sum of the fragment LODs. Dots
in the ‘seq’ description represent residues not present.
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A key advantage of Harvest is that it is able to directly
assess peptide-matching metrics for arbitrary scoring
functions in a simple stand-alone package, making the
process of assessing new metrics simple and efficient.
Generally, algorithms incorporating elements in which
peptide or protein identification would benefit from
optimising metrics based on features of the spectra, may
use Harvest as a stand alone tool for the easy implemen-
tation and prototyping of metrics based on such features
[31,32]. The output of Harvest is a text file with the key
features for each peptide identification in a simple,
human-readable output as shown in Figure 8. This out-
put is geared towards the intended audience, which
include biologists without high-level object-oriented
programming skills. For these users, a simple text out-
put with key information for each match makes inter-
pretation of the identifications as easy as possible, and
makes the use of popular scripting languages for manip-
ulating results simpler than for XML outputs such as
those generated with X!Tandem.
Users of this software may take advantage of its flex-

ibility to develop any number of metrics to improve pro-
tein identification algorithms or to explore
fragmentation hypotheses independent of the protein
identification problem. An obvious example would be to
develop a data-driven machine-learning model as a
metric used to compare observed and expected fragment
peak intensities. Machine learning has previously been
introduced in the protein identification domain
[15,16,19,33], but interpretation of the effects of various
parameter choices is difficult for results reported at the
whole protein level. Machine learning algorithms
designed specifically to improve peptide identifications
such as the Riptide model described by Klammer et al.
[34], or algorithms such as Percolator [35], could be
combined under Harvest with non-machine learning
methods to assess the use of a combined approach. Har-
vest may equally be used to test physio-chemical models
[18,30] using a similar process of deriving probabilities
given differences in observed and expected fragment
peak intensities resulting from the model. The authors
plan to use Harvest to assess the utility of new models
for MS/MS fragmentation, including machine learning
models, analysis of machine specific m/z recording
error and models combining vibrational and steric
information.

Conclusions
Harvest bridges the gap between hypothesizing how new
knowledge about the fragmentation process may be
exploited and using this knowledge to identify more
peptides. Furthermore, through the subsequent use of
these metrics in external protein identification packages,
metrics developed using Harvest may help to identify

more proteins. Existing open source software such as X!
Tandem [23] and OMSSA [24] are large and compli-
cated programs focused on whole protein identifications
rather than on metric validation. As a result, they do
not provide a simple way for arbitrary new metrics to
be tested on identifications at the peptide level, and as
such are limited in their ability to assess new metrics.
Harvest provides this functionality by providing a frame-
work for the easy implementation, prototyping, and vali-
dation of new metrics as a stand-alone process. The
introduction of Harvest will allow researchers to explore
specific datasets for exploitable information and assess
the utility in general of new metrics for peptide identifi-
cation, which can then be used to improve protein iden-
tification packages. Harvest will be freely available from
the Proteome Commons http://proteomecommons.org/.

Availability and requirements
Project name: HARVEST
Project home page: https://proteomecommons.org/

tool.jsp?i=1039
Operating system(s): Tested on PC
Programming language: C++
Other requirements: None
License: FreeBSD
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