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Abstract

Background: It is necessary to analyze microarray experiments together with biological information to make better
biological inferences. We investigate the adequacy of current biological databases to address this need.

Description: Our results show a low level of consistency, comprehensiveness and compatibility among three
popular pathway databases (KEGG, Ingenuity and Wikipathways). The level of consistency for genes in similar
pathways across databases ranges from 0% to 88%. The corresponding level of consistency for interacting genes
pairs is 0%-61%. These three original sources can be assumed to be reliable in the sense that the interacting gene
pairs reported in them are correct because they are curated. However, the lack of concordance between these
databases suggests each source has missed out many genes and interacting gene pairs.

Conclusions: Researchers will hence find it challenging to obtain consistent pathway information out of these
diverse data sources. It is therefore critical to enable them to access these sources via a consistent, comprehensive
and unified pathway API. We accumulated sufficient data to create such an aggregated resource with the
convenience of an API to access its information. This unified resource can be accessed at http://www.pathwayapi.
com.

Background
It is challenging to draw biological conclusions from
today’s microarray experiments. The main source of the
difficulty is that the number of samples available for
analysis is usually very small relative to the number of
genes to be considered. It is often the case that many
genes are statistically significant according to the wide
variety of computational and statistical analysis algo-
rithms. Yet there is little concurrence between the genes
selected by different algorithms. Furthermore, the genes
selected by these algorithms do not always provide an
insight that is biologically consistent or biologically
interpretable.
In order to obtain results that are more biologically

meaningful, it is important to incorporate information
from biological repositories into the analysis of microar-
ray data [1]. Indeed, most of the new generation of algo-
rithms incorporate information from biological pathways
into microarray data analysis [2-4].

Examples of the new generation of microarray data
analysis algorithms that incorporate biological pathway
information into the analysis process include ORA
(Over Representation Analysis) [4,5], FCS (Functional
Class Scoring) [4,5], GSEA (Gene Set Enrichment Ana-
lysis) [3], ErmineJ [6] and Pathway Express [7].
Examples of databases which these algorithms refer-

ence are: NCBI [8], KEGG [9-11], Ingenuity [12], GO
(Gene Ontology) [13] and Wikipathway [14]. In terms
of source authority, both KEGG and Ingenuity derive
their data from published work while Wikipathways first
derive their’s from several established databases (eg
KEGG, Netpath) and are subsequently curated by the
research community.
However these biological databases are very diverse,

making it extremely laborious to carry out even simple
queries across databases. To make matters worse, incon-
sistencies and incompatibilities between different reposi-
tories render the individual databases less effective for
collaborative purposes.
This inconsistency is worsened because the boundaries

of signaling pathways are not that clearly defined scien-
tifically. For example, the pathway “MAPK Cascade”
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probably has no clear consistent definitions in the litera-
ture hence making the question of exactly which genes
to include quite subjective [15].
ORA, FCS and GSEA are all examples of algorithms

that incorporate information from biological databases.
Both ORA and FCS use the GO database to select rele-
vant genes according to their GO classes. GSEA uses
their proprietary database (curated from various sources)
for gene selection.
The importance of the accuracy and comprehensive-

ness of the biological pathway information used should
be clear from the short review above of modern micro-
array data analysis algorithms. For instance, clinicians
may potentially end up with different results and con-
clusions depending on the database they group their
genes by!
Therefore we study the following issues in this paper:

+ Are various selected biological pathway data
sources consistent with each other?
+ Are they sufficiently comprehensive individually?
+ Are the databases easily accessible to researchers
who wish to use their data for their analysis?

Although there are many commonly used pathway
databases (eg NCBI, GO, Reactome, HumanCyc, BIGG,
Panther Pathways, Science STK, etc) we have selected
three data sources (KEGG, Ingenuity and Wikipathways)
for our analysis. These sources are chosen because they
are representative of three very different kinds of cura-
tion effort. For instance, Wikipathways is maintained by
a community of professional users via the free and open
wiki platform. KEGG database is curated independently
by a single lab from published literature. Ingenuity is a
commercial product.
Our results show a low level of consistency, compre-

hensiveness and compatability among these three
selected pathway databases. We addressed these issues
with a unified easy-to-use API which allows access to
biological pathway information from KEGG, Ingenuity,
and Wikipathways. This common API allows research-
ers to gain instant and updated access to data from the
different repositories.

Results
Database Consistency
Pathway databases (eg KEGG, Ingenuity, Wikipathways)
have always been assumed to be consistent because they
share a common data source: published literature (Wiki-
pathways is based on established databases like KEGG or
Netpath, hence sharing the same roots of published lit-
erature). We show here that this assumption is not true.
We define the following metrics to illustrate the diver-

sity across databases. The first metric, the “Gene

Agreement Count” of a pathway, counts the number of
genes that are common to that pathway in all the data-
bases. The second metric, the “Gene Pair Agreement
Count” of a pathway counts the number of “interacting
gene pairs” that are common to that pathway in all the
databases. An interacting gene pair is a pair of genes (or
their products) that are directly interacting in a pathway.
In the case of metabolic pathways, however, we define
an interacting gene pair as proteins that catalyze adja-
cent steps in the pathway.
When calculating the “Gene Agreement Percentage”

of a pathway, we first find the total number of genes
within that pathway for each individual database. We
next select the gene count from the database that has
the least number of genes for that pathway. Finally we
divide the Gene Agreement Count by this mininum
gene count to obtain the Gene Agreement Percentage.
The same technique is employed to calculate the Gene
Pair Agreement Percentage.
The three databases represent some of their pathway

entries not as genes but as proteins or symbols depicting
protein families or classes. In such instances we replace
all such proteins and symbols with the genes they repre-
sent. For example, suppose that A activates B within a
pathway, where A and B are symbols representing pro-
tein classes that are products of 3 genes and 2 genes
respectively. We replace A activates B by 6 new activat-
ing relationships. We claim the validity of this replace-
ment method because it exactly captures all the genes
and relationships the original curator had intended. All
statistics calculated here are based on the expanded
relationships.
Our investigation into database consistency began

with a manual comparison on the agreement of the
apoptosis pathway across databases. Results indicate a
range of 11%-16% (Gene Pair Agreement Percentage)
and 32%-46% (Gene Agreement Percentage). This is an
extremely low level of agreement given a pathway as
pervasive as the apoptosis pathway. Full results are seen
in Table 1.
The next step involved an automated extraction for

the apoptosis pathway between the databases. The
results are shown in Table 2. The results indicate a
range of 12%-14% (Gene Pair Agreement Percentage)
and 30%-46% (Gene Agreement Percentage). This is
indicative that the above-mentioned automatic extrac-
tion and gene matching procedure is reliable and not
missing significant numbers of equivalent genes. We
subsequently followed up with an automated extraction
and comparison between the databases. The ranges are
0%-88% (Gene Agreement Percentage) and 0%-61%
(Gene Pair Agreement Percentage). These numbers
comfirm our earlier suspicion that there is an extremely
low level of consistency between the databases. For
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results depicting the level of overlap for the other path-
ways refer to Tables 3, 4 and 5.

Pathway Consistency
The pathways across separate databases were matched
via the following longest-common-substring-based tech-
nique (LCS): Given a pathway × in database 1, we gen-
erate a list of pathways Y in database 2. This list Y is
ranked according to the length of the longest common
substrings with pathway X. This list is next manually
scanned to obtain the pathway which has the closest
nomenclatural match to pathway X.
We compare three possible algorithms which could

have been used to find pathway matches and they are

1. LCS-based algorithm: pathways are matched by
matching the names of the pathways to the pathway
with the closest name followed by a manual
verification.
2. Gene pair overlap: pathways are matched by find-
ing pairs of pathways with the maximum number of
matched interacting gene pairs.

3. Gene overlap: pathways are matched by finding
pairs of pathways with the maximum number of
matched genes.

We carry out experiments to determine which of the
three approaches above is most suitable for finding the
best pathway matches. The quality of these algorithms
can be judged according to two different aspects:

1. The percentage accuracy of matching pathways
found: how accurate are the matching pathways
found by each individual algorithm (finding the max-
imum number of true positives).
2. The completeness of the algorithm in finding all
matching pathways: is the algorithm able to match
up all pathways that should be matched and not pair
up pathways that should not be matched (finding
the minimum number of false negatives).

Intuitively, the pathway pairs based on gene overlap
would have a lower accuracy than that of the gene pair
based overlap. The reason being it is much easier to
have spurious overlaps in genes as compared to gene
pairs. Therefore there will be a greater number of false
positives using the gene overlap algorithm. Hence we
perform quantitative analysis mainly on the LCS and
gene pair algorithms.
Let the matched pathway pairs found by the LCS algo-

rithm be defined as PLCS and the matched pathway pairs
found by the gene pair algorithm be defined as PRP . For
the sake of comparison (Figure 1), in both cases, we
include only those pathway pairs that have an overlap of
at least 20 interacting gene pairs. (If a lower threshold
was used, PRP would have an alarming increase in false
positives).
In total, LCS produces 24 pathway pairs while the

gene overlap algorithm produces 40 pathway pairs. 16
pathway pairs are common among these two algorithms
so they naturally do not affect any comparative studies
between the two algorithms. We thus ignore them in
this analysis. The 8 pathway pairs exclusively singled out
by our LCS technique are seen in Table 6 and the 14
pathway pairs exclusively singled out by the gene pair
technique are seen in Table 7.
Comparing Table 6 and Table 7, we see that the path-

way pairs in Table 6 are much more reasonable than
that of the pathway pairs in Table 7. This shows that
the LCS technique has a higher sensitivity in detecting
true positives. In addition, the rate of false negatives is
also lower because, even at a cursory look, none of the
pairs found by the gene-pair-based overlap matching
technique can be true matches in pathway pairs.
An example of a false positive found by comparing

gene pairs is the pathway pair “Long-term potentiation

Table 1 Table showing data overlap for Apoptosis
Pathway

Apoptosis Pathway

KEGG ×
Ingenuity

KEGG ×
Wiki

Ingenuity ×
Wiki

Gene Pair Count: 151 vs 3374 151 vs 133 3374 vs 133

Gene Count: 89 vs 169 89 vs 82 169 vs 82

Gene Overlap: 33 38 26

Gene % Overlap: 37% 46% 32%

Gene Pair Overlap: 21 21 15

Gene Pair %
Overlap:

14% 16% 11%

This table shows the manual calculation of the gene/gene pair differences
between the different repositories for the apoptosis pathway.

Table 2 Table showing data overlap for Apoptosis
Pathway

Apoptosis Pathway

KEGG ×
Ingenuity

KEGG ×
Wiki

Ingenuity ×
Wiki

Gene Pair Count: 182 vs 3486 182 vs 155 3486 vs 155

Gene Count: 84 vs 185 84 vs 79 185 vs 79

Gene Overlap: 28 36 24

Gene % Overlap: 33% 46% 30%

Gene Pair Overlap: 22 22 18

Gene Pair %
Overlap:

12% 14% 12%

This table shows the calculation of the gene/gene pair differences between
the different repositories for the apoptosis pathway based on the automated
processing described in this paper.
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(LTP)” and “Calcium signaling pathway” (Second line in
Table 7). Long-term potentiation (LTP) is the increase
of synaptic strength between two neurons following
high frequency stimulation to the synapse. It occurs
when the concentration of calcium inside the postsynap-
tic cell exceeds a critical threshold. A majority of
synapses that experience LTP involve an increase in cal-
cium which is mediated through activation of the
NMDA receptor. The difference is that the Calcium sig-
naling pathway in KEGG describes the general mechan-
ism of external calcium signal transduction into cells.
This process may take place via multiple pathways, and
the NMDA receptor is only one of them. Nevertheless,
the calcium signal transduction can actually activate

multiple downstream pathways, and LTP is one of them.
Thus, the LTP in Ingenuity can be considered as only a
downstream event of the calcium pathway in KEGG.
Another example is that of the pathway pair between

PPAR-alpha and TGF-beta (not in top list). PPAR-alpha is
a ligand activated transcription factor that belongs to the
family of nuclear receptors. After binding with its partner
RXR-alpha, PPAR-alpha plays essential roles in the regula-
tion of cellular differentiation, development, metabolism,
and tumorigenesis of higher organisms. On the other
hand, TGF-beta acts as antiproliferative factor in normal
cells at early stages of oncogenesis. It phosphorylates
smad2/3, which consequently binds with smad4 to form
an antitumorigenesis transcription factor. The formed

Table 4 Table showing data overlap between KEGG × Wiki

KEGG × Wiki

Pathway Name Gene Count Pair Count Gene % Overlap Pair % Overlap

Apoptosis 89 vs 82 151 vs 133 38(46%) 21(16%)

Apoptosis Modulation by HSP70 89 vs 18 151 vs 33 14(78%) 5(15%)

Cell cycle 119 vs 91 78 vs 147 76(84%) 35(45%)

G1 to S cell cycle control 119 vs 67 78 vs 25 45(67%) 1(4%)

Complement and coagulation cascades 69 vs 31 69 vs 107 52(80%) 24(35%)

Focal Adhesion 203 vs 188 706 vs 288 154(82%) 110(38%)

Insulin Signaling 138 vs 159 412 vs 255 66(48%) 13(5%)

MAPK Cascade 269 vs 31 819 vs 55 23(74%) 24(44%)

Notch Signaling 46 vs 46 90 vs 98 39(85%) 32(36%)

Regulation of actin cytoskeleton 217 vs 151 672 vs 244 133(88%) 113(46%)

T Cell Receptor Signaling 94 vs 135 175 vs 261 37(39%) 6(3%)

TGF Beta Signaling 87 vs 52 155 vs 80 23(44%) 6(8%)

Tryptophan metabolism 51 vs 94 233 vs 33 29(57%) 2(6%)

Urea cycle 28 vs 66 69 vs 14 13(46%) 1(7%)

Wnt signaling 152 vs 61 778 vs 184 49(80%) 34(18%)

Table 3 Table showing data overlap between KEGG × Ingenuity

KEGG × Ingenuity

Pathway Name Gene Count Pair Count Gene % Overlap Pair % Overlap

Apoptosis Signaling 89 vs 169 151 vs 3374 33(37%) 21(14%)

Axonal Guidance 129 vs 213 308 vs 1843 85(66%) 159(52%)

Calcium Signaling 179 vs 51 582 vs 202 18(35%) 0(0%)

Cell Cycle-G2M 119 vs 13 78 vs 18 11(85%) 11(61%)

Cell cycle 119 vs 31 78 vs 59 26(84%) 6(10%)

Fc epsilon RI signaling 78 vs 75 184 vs 225 61(81%) 108(59%)

JAK/Stat Signaling 155 vs 144 868 vs 3192 42(29%) 88(10%)

Actin Cytoskeleton Signaling 217 vs 213 672 vs 2297 137(64%) 230(34%)

T cell receptor Signaling 94 vs 63 175 vs 133 41(65%) 39(29%)

TGF-Beta Signaling 87 vs 84 155 vs 113 12(14%) 5(4%)

VEGF Signaling 74 vs 69 240 vs 167 29(42%) 27(16%)

Wnt Signaling 152 vs 76 778 vs 134 33(43%) 11(8%)
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smad2/3-smad4 factor is mutually inhibited with PPAR-
alpha-RXR-alpha complex. Thus the two pathways are
independent since both factors are not involved in the key
processes of the other pathway. The reason they are paired
is that they may have a mutual inhibition.
Furthermore, we realize that because some pathway

pairs that should be matched have low levels of gene
pair overlap. Consequently the gene-pair-based match-
ing technique is unable to match them (without simulta-
neously introducing a high level of false positive
matches). An example of such pathway pairs is the
TGF-Beta Signaling pathway between KEGG and Inge-
nuity (gene pair overlap ≤ 4%), Wnt Signaling (gene pair
overlap ≤ 8%) and Cell cycle (gene pair overlap ≤ 10%).
These pathway pairs however are successfully matched
by our LCS technique thus providing us with more
opportunities to merge and reconcile data resulting in
pathways that are more complete.

For the sake of completeness of analysis, we perform
three further checks that compare the LCS, gene-overlap
and gene-pair-overlap methods.
Comparison between LCS and gene overlap algorithms
We carry out a comparison between the LCS algorithm
and the gene overlap algorithm via the following techni-
que.

1. For each pathway P1, find a ranked list of pathways
PL such that each pathway PLi within PL is ranked
according to the gene overlap between P1 and PLi.
2. Execute the LCS algorithm on pathway P1 and
obtain its matching pathway, PLCS1.
3. Compare the ranked list PL with pathway PLCS1.
4. 94% of the time, the pathway PLCS1 obtained using
the LCS algorithm is found in the top three path-
ways within PL. The LCS algorithm disagrees with
the gene-overlap algorithm on the remaining 6% of
pathways. These 6% of pathways have a large num-
ber of genes. Leading to a higher probability of spur-
ious overlapping of genes.
5. To confirm, for these remaining 6% of pathways,
we calculate the percentage gene pair overlap
between P1 and PLCS1 and that of P1 and the top

Table 5 Table showing data overlap between Ingenuity × Wiki

Ingenuity × Wiki

Pathway Name Gene Count Pair Count Gene % Overlap Pair % Overlap

Apoptosis 169 vs 82 3374 vs 133 26(32%) 15(11%)

Calcium Signaling 51 vs 152 202 vs 111 14(27%) 0(0%)

Cell Cycle 13 vs 91 18 vs 147 7(54%) 5(28%)

G1/S Check point Regulation 31 vs 91 59 vs 147 24(77%) 10(17%)

IL-4 Signaling 21 vs 62 21 vs 47 8(38%) 1(5%)

IL6 Signaling 67 vs 100 148 vs 121 21(31%) 4(3%)

Insulin Recpetor Signaling 66 vs 159 148 vs 255 40(61%) 12(8%)

TGF-Beta Signaling 84 vs 52 113 vs 80 13(25%) 0(0%)

p38 MAPK Signaling 53 vs 34 88 vs 35 13(38%) 4(11%)

T cell receptor Signaling 63 vs 135 133 vs 261 25(40%) 3(2%)

Wnt Signaling 76 vs 61 134 vs 184 17(28%) 0(0%)

Figure 1 Comparison of pathway pair overlaps between the
LCS and gene pair overlap algorithm. Venn diagram showing the
pathway matches which are similar and between the LCS and gene
pair overlap algorithm.

Table 6 Table comparing pathway pairs obtained from
the LCS algorithm.

Pathway 1 Pathway 2

Regulation of actin cytoskeleton Regulation of Actin Cytoskeleton

Wnt signaling pathway Wnt Signaling Pathway

T cell receptor signaling T cell receptor Signaling

VEGF signaling VEGF Signaling

MAPK signaling MAPK Cascade

Apoptosis Apoptosis

Apoptosis Apoptosis Signaling

Toll-like receptor Toll-like receptor signaling pathway
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pathways in PL. It turns out that the former is
always higher than that of the top three pathways in
PL. This shows that the accuracy of the LCS algo-
rithm is sufficiently good.

Comparison between LCS and gene pair overlap algorithm
We carry out a second comparison between the LCS
algorithm and the gene pair overlap algorithm via the
following technique.

1. Compile a list of pathways PU that the LCS algo-
rithm could not find a match.
2. For each of the pathways PUi on this list, find a
corresponding matching pathway PUMi by using the
pathway with the highest gene overlap percentage.
3. We calculate the gene pairs percentage overlap
between each pathway pair PUi and PUMi.
4. Similarly, for each pathway P1 that the LCS algo-
rithm could find a matching pathway PLCS1, we cal-
culate the gene pairs percentage overlap between
pathway P1 and its matching pathway PLCS1.

5. The percentage overlap found in Step (3) is gener-
ally significantly lower than that in Step (4). Evi-
dently, our LCS technique manages to match up
pathways that should be matched and does not pair
up those that should not be matched.

This is illustrated in Figure 2. The blue spots indicate
the pathway pairs found by the LCS algorithm. The pur-
ple spots indicate the pairs found by the gene pair over-
lap algorithm (that the LCS algorithm is unable to find
a match for). The x-axis refers to the percentage of gene
overlap while the y-axis refers to the percentage of gene
pair overlap.
Comparison between gene pair overlap and gene overlap
algorithm
Our final analysis involves taking the LCS algorithm as
the reference algorithm and comparing the results of
the gene pair overlap and gene overlap approaches with
it. The results are reproduced in Figure 3. The purple
graph refers to the graph for gene pair overlap while the
blue graph refers to the graph for gene overlap. The x-
axis refers to the top (10%, 20%, etc) matching pairs
(ranked based on the size of gene overlap or gene-pair
overlap respectively from the two algorithms) that are
obtained. The y-axis refers to the percentage of overlap
of the pathway pairs between LCS and the gene pair
overlap or gene overlap algorithm. (For example, for the
first 10% of pathway pairs for the gene pair overlap
algorithm, there is a 17% overlap with that of the LCS.)
The graph shows the gradual decreasing of percentage

overlap, with the gene pair overlap graph always staying
above the gene overlap graph. This shows that the gene
pair overlap algorithm generally has more accurate

Figure 2 Comparison of gene/gene pair overlap on matching
pathways. Image comparing the percentage of gene and gene
pair overlap between matching pathways obtained from the LCS
algorithm (in blue) and that of the gene overlap algorithm (in pink).
The pink marks refer to pathways which are unable to be paired by
the LCS algorithm. The x-axis depicts the gene overlap percentage
and the y-axis the gene pair overlap percentage. The image shows
that pathways matched by the LCS algorithm consistently have a
higher gene pair overlap percentage.

Table 7 Table comparing pathway pairs obtained from
the gene pair overlap algorithm.

Pathway 1 Pathway 2

ErbB signaling pathway JAK/Stat Signaling

Calcium signaling pathway Synaptic Long Term Potentiation

Apoptosis Toll-like receptor signaling pathway

VEGF signaling pathway Axonal Guidance Signaling

Gap junction PPAR-alpha/RXR-alpha Signaling

Natural killer cell mediated
cytotoxicity

Fc Epsilon RI Signaling

T cell receptor signaling pathway Axonal Guidance Signaling

B cell receptor signaling pathway Axonal Guidance Signaling

Olfactory transduction cAMP-mediated Signaling

GnRH signaling pathway B Cell Receptor Signaling

Melanogenesis Wnt Signaling Pathway and
Pluripotency

Type II diabetes mellitus Insulin Recpetor Signaling

Colorectal cancer Toll-like receptor signaling pathway

Renal cell carcinoma Axonal Guidance Signaling

Pancreatic cancer PTEN Signaling

Endometrial cancer PTEN Signaling

Glioma ERK/MAPK Signaling

Prostate cancer JAK/Stat Signaling

Basal cell carcinoma Wnt Signaling Pathway and
Pluripotency

Melanoma FGF Signaling

Chronic myeloid leukemia GM-CSF Signaling

Acute myeloid leukemia PTEN Signaling

Small cell lung cancer Toll-like receptor signaling pathway

Non-small cell lung cancer GM-CSF Signaling
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results than the gene overlap algorithm (which fits into
our earlier postulation).
Conclusion
Therefore, our LCS technique achieves superior perfor-
mance (accuracy and completeness) compared to the
method of matching pathways according to their gene
overlap. We can safely conclude that the LCS algorithm
is most suitable for our purpose.

Database Comprehensiveness
This section conducts an independent audit on the
comprehensiveness of individual pathway databases. We
use two metrics to determine the comprehensiveness of
individual pathway databases. The first metric known as
the “Pathway Comprehensive Score” determines the
comprehensiveness of pathways within databases. The
second metric is known as the “Gene Pair Coverage
Score” and it determines how comprehensively each
database covers the number of unique gene pairs within
the databases. This is accomplished by dividing the
number of gene pairs within each database by the total
number of gene pairs within our database. We will ela-
borate further within this section.
The “Pathway Comprehensive Score” metric first

counts the total number of unique pathways present
within the three databases (Ingenuity, KEGG and Wiki-
pathways). A score for each database is next calculated
by dividing the number of pathways a database hosts by
the total number of unique pathways. A score of 0 indi-
cates that the database hosts nil pathways while a score
of 1 indicates it hosts all the pathways. Thus databases
having a small number of very large pathways will score
low on this metric because it is missing out many path-
ways completely.
KEGG achieves the highest score of 0.59. This is fol-

lowed by Wikipathways (0.42) and Ingenuity (0.13). This

short study indicates that KEGG Pathways remains the
most comprehensive of all databases in terms of number
of pathways contained. This is illustrated by a Venn dia-
gram in Figure 4.
The second metric known as the “Gene Pair Coverage

Score” calculates the percentage of gene pairs each indi-
vidual database has. It first counts the total number of
unique gene pairs present within the three databases
(Ingenuity, KEGG and Wikipathways). A score for each
database is next calculated by dividing the number of
gene pairs a database hosts by the total number of
unique gene pairs. Here, KEGG achieves the highest
score of 0.65. This is followed by Wikipathways (0.27)
and Ingenuity (0.16). In interpreting these numbers, it is
important to bear in mind that KEGG contains both
regulatory pathways and metabolic pathways. The latter

Figure 3 Comparison between gene/gene pair overlap algorithm with the LCS algorithm. Image comparing the overlap between the
gene overlap algorithm (blue) and gene pair overlap (purple) with the LCS algorithm. The image shows that the gene pair overlap algorithm is
generally better than that of the gene overlap algorithm.

Figure 4 Comparison of Database Comprehensiveness.
Comparison of Database Comprehensiveness.
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pathways are not the focus of Wikipathways and Inge-
nuity. As a result, KEGG contains many gene pairs
which catalyze adjacent steps in metabolic pathways that
are not found in Wikipathways and Ingenuity.

Database Compatibility
The two preceding sections demonstrate the inadequacy
of using only one selected database for data analysis.
Cross-database queries are the intuitive solution to har-
ness the required information across these databases.
However incompatibilities between different databases
makes cross-database accesses extremely challenging to
execute. We investigate these incompatibilities across
different databases and present them here.
Incompatible methods of data access
Different databases use different methods of data access.
Some databases only allow data to be downloaded via
web access. Others provide flexible access to their data-
bases through their API.
A lot of human intervention is required to download

the required information for databases with no public
API. This creates tedious challenges for software to
obtain information from such databases.
For databases whose API is public, there is no guaran-

tee that all such API would use the same programming
languages. This causes developers to incorporate clumsy
wrappers within their applications to adhere to the API
of the databases.
Incompatible data formats
All databases release their pathway information via some
non-standard graphical format. Such a graphical repre-
sentation is useful for visual manual analysis. However,
it is inconvenient for large-scale computational analysis.
Some repositories do release their data in formats

such as their proprietary markup languages or API data
structures. These are more convenient for large-scale
analysis. Indeed there are some efforts to make data
exchange formats compatible with one another. An
example of such an effort is BioPax [16]. We have car-
ried out a survey of the data formats used by popular
biological databases and found many who have not
adopted such standardized formats and have continued
using their own proprietary data formats. These findings
are summarized in the Table 8.
It has been demonstrated that JSON (as compared to

XML) uses significantly less server computational
resources and is capable of delivering content within a
much shorter time in [17]. E.g., one of the experiments
in [17] showed that the total time to access 100,000
objects took 78.26 seconds using JSON while taking
75.77 minutes with XML. The same experiment shows
that the average server utilization when using JSON was
13% compared with 45% for XML. Other references [18]

have also estimated that JSON parses data up to 100
times faster then XML in modern browsers.
We would like to highlight the fact that although

compression techniques are available to reduce the
amount of data to be transferred to 2-23% of their origi-
nal size [19], these techniques will inadvertently compli-
cate the architecture and increase client side processing
[19]. The same review paper also surveyed and com-
pared XML compression techniques and concluded that
there is still a lack of state-of-the-art XML compression
techniques that are stable, efficient and stable [19].
Hence for the above reasons, the flat xml file formats

used by BioPax might not be the best choice for large-
scale computational manipulation especially when deal-
ing with large-scale data of tens of thousands of genes
over hundreds of pathways. We have therefore opted for
using JSON as the data exchange format. This lack of a
consistent data format means that different databases
use different formats to represent their data. Hence
dedicated codes have to be written to parse, understand
and integrate data from each individual database.
Furthermore, note that the KEGG no longer supports
the BioPax format. From the WWW, even the KEGG
data in BioPax Level 1 (from January 2006) are no
longer available. The current method of doing so is to
convert the KEGG KGML data format first into PID
(Pathway Interaction Database) format and then con-
verting it to BioPax Level 2.
Incompatible molecular representations
Different repositories assign different naming conven-
tions to their pathway nodes. These nodes can be
described as proteins, genes or symbols depicting pro-
tein families. For example, KEGG describes most of
their elements as genes, Ingenuity describes them as
proteins, while wikipathways uses a combination of
both.

Table 8 Table comparing different data formats
supported by different databases.

Comparison of Data Formats

Database Pictorial Proprietary API/Data
Dump

BioPax Biopax
Format

KEGG Yes Yes Yes No NA

Ingenuity Yes No No No NA

Wikipathways Yes Yes No No NA

Reactome Yes Yes Yes Yes Lvl 3

HumanCyc Yes Yes No Yes Lvl 2

BioCyc Yes No Yes Yes Lvl 3

Pathway
Commons

Yes Yes Yes Yes Lvl 3

We point out that Biopax has since updated its data format three times,
known as Level 1, Level 2 and Level 3.
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Hence it is possible to miss crucial genetic relation-
ships because of such inconsistent representation. To
obtain all relationships represented within pathways,
algorithms are required to convert all nodes to a com-
mon representation.
Incompatible pathway names
Common biological pathways in different databases are
often given names with limited indication of how path-
ways are related to one another. For instance, KEGG
may refer to a pathway as “Wnt signaling and pluripo-
tency” and the Wikipathways might refer to it simply as
“Wnt signaling”. Other than the fact that both pathways
have the common terms “Wnt signaling”, there is no
way of knowing that the “Wnt signaling” pathway is a
subset of the “Wnt signaling and pluripotency” pathway
other than through human intervention.
This makes it difficult to determine pathways that

refer to similar biological processes (albeit sporting dif-
ferent pathway names). It is difficult to match and com-
pare similar pathways across different repositories.
Inconsistent data
Sometimes there is contradictory information across dif-
ferent biological sources. When such a scenario occurs,
the algorithm has to decide which contradictory infor-
mation to discard and which to keep. For instance
within the KEGG’s Cell Cycle Pathway, gene RB1 acti-
vates gene TFDP1. Ingenuity’s Cell Cycle Pathway how-
ever states that gene RB1 inhibits gene TFDP1.

Construction and content
In view of these issues mentioned above, we provide a
single common API to access the different databases.
This common API works in this manner: A local data-
base serves as a cache, storing data from the other reposi-
tories. Requests for information from the different
repositories are directed to this cache to obtain the
required information. To ensure that our interface is
always kept up to date, automatic incremental updates
are run periodically to extract the latest information from
the different repositories. This process creates a unified
interface for the different databases, as well as a unified
database where graphs of the same pathway are merged.
The database cache currently stores a total of 397

gene pathways, 21,314 genes and 60,900 gene pairs.
From this API, access to pathways from both the inte-
grated and the individual sources are provided. Further
details of this interface can be found at [20]. The API
consists of the following modules:

+ Pathway Formalization: Key features within
pathways
+ Database Cache: How we store, extract and update
the data

+ API Implementation: Short specification of the
API

Pathway Formalization: Key features within pathways
Pathway databases supply many informative features
that are useful for the purposes that these databases
were originally intended for. However, for use in gene
expression analysis algorithms such as ORA, FCS and
GSEA it is sufficient to capture only two key features in
these pathway databases.
One feature defines all the genes within the pathway

while the other defines gene-gene relationship within
the pathway. Here we only consider two relationships
between genes: activation and inhibition. (Gene relation-
ships in metabolic pathways are formalized in the same
manner based on how they catalyze adjacent steps
within the pathway. For metabolic pathways, relation-
ships between adjacent proteins are indicated as neutral,
meaning neither activating or inhibiting.) This formali-
zation helps organize and streamline information within
pathways.
For illustration, we redraw a KEGG pathway in Figure 5.

The original pathway is in Figure 6. The component
depicting genes within a pathway refers to the individual
genes MDM2, TP53, etc. The other component depiciting
gene-gene relationships refer to relationships (eg MDM2
inhibits P53, ATM activates CHK1) in the pathway
diagram.
Representing Genes within a pathway
As mentioned earlier, one of the inconsistencies across
different databases is the inconsistent usage of proteins,
genes or protein lists within pathway data. To address
this issue, all gene or protein representations are con-
verted to their corresponding NCBI Gene ID. The NCBI
Gene ID is obtained by issueing and parsing the results
of the query:
Webquery 1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=ge-

ne&cmd=search&term=Y+homo+sapiens
The symbol Y refers to the gene name. Executing this

query iteratively across all the genes/proteins within the
pathway provides us with the Gene IDs within the path-
way. This common terminology reconciles gene naming
inconsistencies across the different repositories.
Representing Genes-Gene Relationships within a pathway
There are only two types of relationships present
between genes: inhibition and activation. These two rela-
tionships are illustrated in Figure 7 where we see ATM
activating CHK1, CHK2 and MDM2 inhibiting p53.
By constructing such inhibitor-inhibitee/activator-acti-

vatee relationships, investigators explicitly know the
exact relationship of genes within pathways. This allows
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them to analyze the adherence of these relationships in
their experimental data.

Database Cache: How we store, extract and update the
data
Data Storage
We maintain a database cache to store information from
the other pathway repositories. To ensure fast response
to users, all queries submitted are directed to this data-
base cache. Our database cache is kept up to date with
a set of automated scripts written to do periodic incre-
mental updates from the other databases.
Data Extraction: Wikipathways
Data from wikipathways are publicly available via their
proprietary file format known as the GPML format [21].
Hence we first obtain the pathway IDs of all the path-
ways present within the wikipathways database. The
next step involves iterating through these ids to obtain
the GPML file associated to each pathway ID. The final
step parses the GPML format to obtain the pathway
genes and associations. All pathways within wikipath-
ways are obtained by issuing and parsing the query:
Webquery 2 http://www.wikipathways.org/index.php/

Special:BrowsePathwaysPage

The corresponding GPML file for each pathway is
obtained with this query:
Webquery 3 http://www.wikipathways.org//wpi/batch-

Download.php?species=Homo%20sapiens&fileTy-
pe=gpml&tag_excl=Curation:Tutorial
Here X refers to the name of the pathway.
The GPML format is designed towards the visual dis-

play of pathway information. Hence it contains detailed
coordinate information about the spatial location of
genes and arrows/t-bars (which depict activating/inhibit-
ing relationships). Yet how these genes are related is not
described in the GPML specifications. A parser is there-
fore needed to understand these spatial descriptions and
extract the relevant genes and associations. The different
components of the parser are:

+ Gene Extraction: Extraction of genes from the
GPML file requires the identification all occurrences
of the GPML DOM attribute name: “DataNode”.
This enables the parser to obtain the Gene Name,
Gene NCBI ID and the spatial coordinate locations
associated to this datanode.
+ Spatial Clustering: Activating/inhibiting relation-
ships are described across gene clusters spatially.

Figure 5 Sample KEGG Pathway. A short and sample of the KEGG Pathway simplified from an original KEGG pathway.
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Therefore the genes have to be spatially clustered to
determine spatially the activator/activatee or inhibi-
tor/inhibitee relationships.
An example is reproduced in Figure 8. Here the
genes CDK2, CYCE inhibits the entire cluster of
ORC genes. Hence we need to group the genes
CDK2, CYCE together as one cluster, and the ORC
genes as another.
Using the coordinates from the genes obtained
above, a nearest neighbour technique is employed to
organize the genes into their respective clusters.
Basically this nearest neighbour algorithm groups

genes together if their distance apart is below a
threshold (empirically determined as 100 pixels).
+ Relationship Extraction: Relationships within the
GPML files are represented by the attribute key-
words: “Arrow” for activating and “T-Bar” for inhi-
biting. These attributes provide their spatial
coordinate information of activating and inhibiting
relatioships. The challenge here is associating the
correct gene clusters to each relationship.
By representing relationships as a straight line, this
relationship line in the spatial space is extended
until it intersects with the nearest gene clusters on

Figure 6 The original KEGG Pathway. The original KEGG pathway.

Figure 7 Shows two sample relationships. The inhibiting and activating gene-gene relationship. The left relationship shows an activating
relationship between ATM and Chk 1,2 while the right relationship shows an inhibiting relationship between MDM2 and P53.
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both sides of it. This technique assigns the activator/
activatee or the inhibitor/inhibitee gene clusters to
both sides of the relationship.
For metabolic pathways (because the gene relation-
ship is neither activating or inhibiting), the GPML
attribute keyword is simply a “Solid” line attribute.
In such instances, the relationship type attribute to
the gene pair would be “neutral”.

Data Extraction: KEGG
Data is obtained from KEGG via a series of API calls
and processing the data (SOAP format) returned. An
API call is issued to obtain all the pathways first. This
returns all the relevant pathway IDs stored within
KEGG. Separate API calls are made for each pathway
ID to obtain the genes and gene pairs present for each
specific pathway.
The API call to obtain all the pathways for homo

sapiens is:
API 1 serv.list-pathways(“hsa”)
where “serv” refers to the created wdsl object to com-

municate with KEGG and hsa refers to the “homo
sapiens species”.
The API call for gene and gene pair extraction from a

KEGG pathway is:
API 2 serv.get-genes-by-pathway(X)
API 3 serv.get-element-relations-by-pathway(X)
where × refers to the pathway ID within KEGG.

Data Extraction: Ingenuity
Most pathway information available from Ingenuity is in
a pictorial format. This forces pathway data extraction
to be done manually, an extremely painful and time
consuming process.

Data Updates
An expiry date is assigned to all information stored
within our database cache. Upon reaching the expiry
date, scripts are triggered to run, automatically
extracting information from the reference databases
(KEGG and Wikipathways) and populating it into our
database cache. (Note that in the event where new
pathways are extracted, they are first matched by the
LCS algorithm and stored on a temporary database
before the manual process of scanning through the
pathway pairs).

API Implementation: Short specification of the API
The API was written in PHP, and data transfer in JSON
format. We have chosen JSON over SOAP or XML
because:

+ JSON is lighter in weight, transmitting less infor-
mation over the internet. Client applications there-
fore executes faster.
+ JSON has the ability to easily represent most gen-
eral data structures such as records, lists and trees.
+ With SOAP or XML, dedicated parsers are always
required on the client. JSON is innately supported
by most programming languages, eliminating the
need for client parsers.

Utility
The implemented functions of the API include:

+ GetDatabase: Returns all repositories supported by
our API. No parameters are required for this func-
tion. The usage example is: http://www.pathwayapi.
com/api/API_GetDatabase.php and the sample
results returned is: [“KEGG”,“Ingenuity”,“Wiki”].
+ GetGene: Returns the NCBI GeneID of the gene.
This function takes the name of the gene as the
parameter. An usage example is:
http://www.pathwayapi.com/api/API_GetGeneID.
php?SearchGene=MDM1. The format returned is:
[[“MDM1”,“252867”],[“MDM1”,“56890”]]. In this
case, there are two separate gene ids that are
returned.
+ GetDBPathways: Returns the all pathway names and
IDs of a specific repository. Only the database name
needs to be submitted to the function. For instance,
http://www.pathwayapi.com/api/API_GetDBPath-
ways.php?DatabaseName=KEGG. Here, the following
will be returned: [kegg{“1”:{“DatabaseName”:“-
KEGG”,“PathwayName”:“Glycolysis Gluconeogenesis
- Homo sapiens (human)”}, “2”:{“DatabaseName”:“-
KEGG”, “PathwayName”:“Citrate cycle (TCA cycle) -
Homo sapiens (human)”}, etc...] where “1” refers to
the Pathway ID, “KEGG” refers to the name of the
database and “Glycolysis Gluconeogenesis...” refers
to the name of the pathway.
+ GetPathway: Returns the pathway ID of a specific
pathway of a repository. Posting the name of the
pathway in this manner: http://www.pathwayapi.
com/api/API_GetPathway.php?Pathway=Apoptosis
will return the jason format like: [[“Apoptosis -
Homo sapiens (human)”,“KEGG”,“140”], [“Apoptosis
Signaling”,"Ingenuity”,“210”]].
In this instance, this implies that there are at least
two pathways with the “Apoptosis” keyword witin

Figure 8 Spatial relationships between genes. The appearance
of spatial relationships. Here the genes CycE and CDK2 are seen
inhibiting the family of ORC genes.
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their pathway names. The two pathways occurs in
the KEGG databases and in the Ingenuity databases.
The pathway id associated to each is 140 and 210
respectively.
+ GetPathwayGenes: Returns all the GeneID of a spe-
cific pathway of a repository. Providing the pathway
ID to this function will return you the genes within
this pathway in this manner: http://www.pathwayapi.
com/api/API_GetPathwayGenes.php?Pathway = 7
Resulting in: [“231”:“AKR1B1”,“2538”:“G6PC”,“2548”:“-
GAA”,“2582”:“GALE”] where “231” refers to the gene
ID and “AKR1B1” refers to the name of the gene.
+ GetGenePathways: Returns all the pathways which
a gene occurs. In the opposite note, this function
will return all the pathways which a supplied gene
occurs in. http://www.pathwayapi.com/api/API_Get-
GenePathways.php?SearchGene = 7157 We obtain
the following database pathway pairs: [“128”:“MAPK
signaling pathway - Homo sapiens (human)”,“134”:“-
Cell cycle - Homo sapiens (human)”,“135”:“p53 sig-
naling pathway - Homo sapiens (human)”] In this
example, “128” refers to the Pathway ID and “MAPK
signaling pathway - Homo sapiens (human)” refers
to the name of the pathway.
+ GetPathwayInteractions: Returns all interactions
within a pathway of a database. Passing in the ID of
the pathway, the API will return all the interactions
within the pathway. http://www.pathwayapi.com/api/
API_GetPathwayInteractions.php?Pathway = 7 will
result in [[“231”,“AKR1B1”,“2584”,“GALK1”,“Acti-
vate”],[“231”,“AKR1B1”,“2585”,“GALK2”,“Activate”]]
In the example above: “231” and “2584” refers to the
IDs of the gene pair “AKR1B1” and “GALK1” refers
to the corresponding genes of the ID.
+ GetPathwayDiff: Get the differences in genes and
gene interactions across pathways. This function
requires you to supply the IDs of the two pathways
you wish to check on the difference in. The call
below shows the difference in genes and gene inter-
actions between pathway 7 and pathway 8. http://
www.pathwayapi.com/api/API_GetPathwayDiff.php?
Pathway1 = 7&Pathway2 = 8
This gives the following results where: [[“AKR1B1”,
"G6PC”,“GAA”,“GALE”,“GALK1”], [“ALDH2”,
“ALDH3A1”], [“AKR1B1_GALK1”,“AKR1B1_-
GALK2”,“AKR1B1_GLA”],[]] Where ["AKR1B1”,
“G6PC”,“GAA”,“GALE”,“GALK1”] refers to the genes
within pathway 7 not in pathway 8.
[“ALDH2”,“ALDH3A1”] refers to the genes within
pathway 8 not in pathway 7.
[“AKR1B1_GALK1”,“AKR1B1_GALK2”,“AKR1B1_-
GLA”] refers to the gene interactions within pathway
7 not in pathway 8.

[] refers to the gene interactions within pathway 8
not in pathway 7. This set is empty because all inter-
actions in pathway 8 are in pathway 7.

Conclusions
It is widely accepted that analyzing microarray experi-
ments with biological information provides biological
inferences of a greater detail. Examples of such analysis
are [22-24].
However, such techniques run into issues if the data

source used is not consistent or comprehensive. For
example, using the same technique on a different data-
base yields a differing analysis result.
Faced with such an issue, the solution is to integrate

biological information across different data sources to
obtain a more wholesome analysis. Yet the incompatibil-
ity of the different data sources renders this option
extremely challenging.
Furthermore, we investigated and discovered low

levels of consistency, comprehensiveness and compat-
ibility among three popular pathway databases (KEGG,
Ingenuity and Wikipathways).
Our strategy of addressing this issue was to create an

API (freely available) which gives researchers access to
various pathway databases of their choice as well as to
an integrated database. This integrated database resolves
various incompatibility issues between databases such as:

1. Incompatible methods of data access
2. Incompatible data formats
3. Incompatible molecular representations
4. Incompatible pathway names

However we understand the limitations faced by such
systems. For instance, in the event that two databases
provide conflicting definitions of the same pathway,
both pieces of conflicting definitions will be included
within the pathway information itself. The integrated
database is also more comprehensive because it is the
union of the data sources. Every gene/edge in any of the
three data sources is also in the integrated database.
Furthermore, the integrated database is equipped with a
API to allow the user to conveniently identify inconsis-
tencies and to resolve them in accordance to his specific
application needs. To ensure fast responsiveness, API
connections are made towards a central unified database
which keeps a cached copy of the records of the other
databases. To make certain that the cached entries are
always kept up to date, entries from the cache are
flushed periodically and automatically updated again for
the reference databases wikipathways and KEGG. As
data from Ingenuity is obtained in a manual fashion,
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updates from Ingenuity can only be achieved laboriously
by curators importing new data physically from Ingenu-
ity. Note that data from Ingenuity will not be released.
There are many efforts on the aggregation of path-

ways data (like Reactome [25], PathCase [26,27] and

MappFinder [28]). There are also many tools to explore,
edit and export biological pathways (such as GenMapp
[29], BioCyc [30], PathVisio [31], Cytoscape [32]).
However manipulation of pathways in these earlier

works still relies heavily on human intervention with lit-
tle provision for programming interfaces. Indeed pro-
jects like Cytoscape and Pathcase have very
sophisticated GUI visualization tools to help researchers
manipulate pathways. Such visualization tools are
impractical when you are required to analyze thousands
of genes across hundreds of pathways for each microar-
ray experiment. The nearest to a programming interface
was the provision of a AQI (Application Query Inter-
face) [26] where users can recall predefined queries
using a web interface. Yet the scope of such queries
remains limited and insufficient.
Two of the projects that are similar to this work are

Pathway Commons [33] and BioWarehouse [34]. Bio-
Warehouse is an open-source software environment and
is often used for integrating a set of biological databases
into a single physical database management system for
data management, mining, and exploration. They are
able to do so by first deciding on a standard database
schema and having database loaders to import certain
pathway database formats (eg BioPax) into their envir-
onment. Being more of a software environment, they act
more as a tool to give researchers a easy way to merge

Figure 9 Number of pathways in each database. The number of
pathways in each database.

Figure 10 Distribution of pathway sizes in terms of genes and gene pairs. The left column shows the distribution of gene pairs within the
three databases while the right column shows the distribution of genes.
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data whereas we focus on allowing researchers easy
access to the data and on analysing the completeness
and consistency of the data. PathwayCommons is an
aggregated pathway database as well. Most of the data-
bases they host support the BioPax data format. How-
ever they do not host any of the three databases that we
aggregate. Thus our unified database and API are very
much complementary to the contributions Pathway
Commons has done.
One issue we have with most data aggregators is their

lack of explanation on how their data is kept updated.
For instance, little mention is made on how the aggre-
gated data is updated from the various repositories. In
fact this issue is acknowledged in [26]. Here we set an
expiry date for every data entry and once it expires, auto-
mated scripts are fired off to extract data from the data
sources and populate them within our database cache.
Our final point deals with the aggregator’s inaction to

develop integrated pathway data from their diverse data
sources. By standardizing gene references and key features
within pathways, we have the ability to integrate similar
pathways together. As a result our integrated pathways are
more comprehensive. Contrasting to prior available meth-
ods, researchers can easily use our API to obtain data for
each pathway either from the integrated database or from
a specific database of their choice. This gives researchers a
straightforward mechanism for incorporating pathway
information into their microarray analysis.

Availability and requirements
The database is available at http://www.pathwayapi.com.
Data from the sources can be accessed via the API as
described. In addition, the data will be available for
download as a CSV or SQL file. The database schema
and instructions on their usage are stated in the down-
loaded file. All information will be provided free of
charge. Information from Ingenuity will however not be
released as it is proprietary (unless the requester has a
valid subscription to Ingenuity). The latest number of
pathways in each database are shown in Figure 9 while
Figure 10 shows the distribution of pathway sizes in
terms of genes and gene pairs. The recommended
requirements are: 1 Mbps internet connection, 1GHz
Processor, 512MB Memory.
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