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Abstract

download.

Background: A simple classification rule with few genes and parameters is desirable when applying a classification
rule to new data. One popular simple classification rule, diagonal discriminant analysis, yields linear or curved
classification boundaries, called Ripples, that are optimal when gene expression levels are normally distributed with
the appropriate variance, but may yield poor classification in other situations.

Results: A simple modification of diagonal discriminant analysis yields smooth highly nonlinear classification
boundaries, called Swirls, that sometimes outperforms Ripples. In particular, if the data are normally distributed with
different variances in each class, Swirls substantially outperforms Ripples when using a pooled variance to reduce
the number of parameters. The proposed classification rule for two classes selects either Swirls or Ripples after
parsimoniously selecting the number of genes and distance measures. Applications to five cancer microarray data
sets identified predictive genes related to the tissue organization theory of carcinogenesis.

Conclusion: The parsimonious selection of classifiers coupled with the selection of either Swirls or Ripples provides
a good basis for formulating a simple, yet flexible, classification rule. Open source software is available for

Background

Simplicity and flexibility

Simple classification rules with few variables and para-
meters are preferable to complicated classification rules
for the following two reasons [1]. First, classification per-
formance is primarily a function of the first few variables
selected, with only slight improvements when additional
variables are included. Second, only those variables that
strongly predict class in the study data, namely the first
few selected, are also likely to moderately or strongly pre-
dict class in new data. A popular simple classification rule
for analyzing gene expression microarrays is diagonal dis-
criminant analysis, which is discriminant analysis with a
diagonal variance-covariance matrix [2]. Diagonal discri-
minant analysis yields linear or curved classification
boundaries, given the name Ripples. Although Ripples
are optimal boundaries for normally distributed expres-
sion levels in each class with the appropriate variance [3],
they can perform poorly with other distributions of gene
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expression levels [4]. A simple modification of diagonal
discriminant analysis with two classes yields a smooth
highly nonlinear classification boundary, given the name
Swirls. Swirls can outperform Ripples under certain sce-
narios. The proposed simple, yet flexible, classification
rule for two classes selects either Swirls or Ripples after
parsimoniously selecting the number of genes and the
distance measure.

Classification rules generally have two objectives: pre-
diction and understanding [5], which correspond to
Goals 1 and 2, respectively, which are described below.

Goal 1: Rule discovery and testing

Rule discovery and testing involves splitting the data
once into training and test samples, selecting the classi-
fication rule in the training sample, and evaluating the
performance of this classification rule in the test sample.
A univariate measure of performance when the training
sample is “fixed”, as in this case, is called the conditional
error [6]. Two measures of performance that are more
informative than the conditional error are the receiver
operating characteristic (ROC) curve and the relative
utility (RU) curve. The ROC curve plots true versus
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false positive rates. The RU curve plots the maximum
expected utility of prediction as a fraction of the utility
of perfect prediction versus the risk threshold, which is
the risk corresponding to indifference between harms
and benefits [7,8].

Goal 2. Gene discovery

Gene discovery involves identifying those genes that contri-
bute most to good classification by repeatedly randomly
splitting the data into training and test samples, computing
a distribution of ROC curves in the test samples to ascer-
tain classification performance, and tabulating the most
frequently selected genes in the training sample [9,10].

Data Sets

Applications of the proposed methodology with both
goals involve the following five publicly available data
sets for gene expression microarrays:

Colorectal cancer: 2000 genes, 22 normal and 40
tumor specimens [11],

Leukemia 1: 7219 genes, 47 ALL, and 25 AML speci-
mens [12],

Medulloblastoma: 7129 genes, 39 survivor and 21
non-survivor specimens [13],

Prostate cancer: 12,600 genes, 52 tumor and 50 non-
tumor specimens [14],

Leukemia 2: 12625 genes, 43 T-ALL specimens and
79 TEL-AML specimens [15].

Results

Classification Rule

Let j index gene, and k = 0 and 1 index class. The fol-
lowing quantities specify the classification rule:

F = classification components = (C, G, D, S), where

C = centroid set ={c ;v .1},
¢ j, = centroid =mean expression level for gene j in class k,
v, = estimated variance of expression level for gene j in class k, (1)
n;, = number of specimens in class ,

G = gene set,

D =distance measure fiom specimen to centroid,

S =score formula for combining distance measures.

Let z,; denote the set of expression level of gene j in
new specimen /, and let Z, = {z,;} denote the set of
expression levels for specimen /. The distance from spe-
cimen / to the centroid of class &, based on gene set G, is

\/Zjec(zhf —cp)’ /vjp, if D=1,
Distance(Z,,, k) = o

\/ZjeG(zhj —cp) /vy, if D=2,
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where vjp = {(no -1) vjo + (11 -1) vyi}/(no + my -2) is the
pooled variance over the two classes. Thus D is the dis-
tance measure with

D =1 = Euclidean distance divided by the pooled
variance,

D = 2 = Euclidean distance divided by the class-spe-
cific variance.

Division by the variance ensures that the distance
measure is not inappropriately weighted by genes with
high average levels of expression. The score for combin-
ing distance measures is

Distance (Z;, 0) - Distance (Z,1)%, ifS=1,
Distance(Z;,,0)
Distance(Z),,0) + Distance(Z;,1)’

Score(Z,,, F) = (3)

ifS=2.

Thus S indicates the score formula, either a difference
of squared distances or a fraction of the total of the dis-
tances. The classification rule for specimen /4, which is
based on the cutpoint u of the score, is

assign Z,, to class 1, if Score(Z;,,F) 2 u,

otherwise. (4)

Rule(Zy, Fru) = {assign Z,, to class 0,

Diagonal linear and quadratic discriminant analysis
correspond to § = 1 with D = 1 and D = 2, respectively
[2]. A classification rule with S = 2 and Euclidean dis-
tance was previously used to analyze microarrays [10]
but without a discussion of its implications.

Swirls and Ripples

By setting equation (3) equal to various constants and
plotting the solution, one can see that the score formula
S = 2 yields a classification boundary that encircles a
centroid and the score formula S = 2 yields a boundary
of lines and curves (Figure 1). These boundary shapes
motivate the following terminology for the score for-
mula,

S =1 = Ripples,
S = 2 = Swirls.

If the data in each class are normally distributed,
Ripples is the optimal classification boundary if the
correct variance (pooled or class-specific) is specified
[3]. However if the data in each class are normally dis-
tributed with class-specific variances, and one specifies
a pooled variance to avoid adding parameters, then
Swirls can dramatically outperform Ripples (Figure 2).
The proposed classification rule selects either Swirls or
Ripples, which increases flexibility without adding
parameters.
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Figure 1 lllustrative classification boundaries for two genes. The points are the centroids. Vertical and horizontal lines at the centroid are
proportional to the variances. Distance measures are D = 1 = pooled variance and D = 2 = class-specific variance.
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Implementation

The proposed classification rule involves randomly split-
ting 70% of the data into a training sample and 30%
into a test sample. Classification performance in the
training sample is measured via the area under the ROC
curve, denoted AUC, computed assuming a normal dis-
tribution of scores in each class. Details are provided in
the Methods Section.

For each score formula and distance measure D, the
classification rule selects a gene set G by first identifying
the 50 highest ranking genes in terms of AUC of the
score and, after starting with the highest ranking gene,
successively including genes from these 50 highest rank-
ing genes until there is little improvement classification
performance. A greedy algorithm, which is sometimes
called forward stepwise selection, successively adds the
gene that most improves classification performance
given the previously selected genes in the classification
rule. For the greedy algorithm, the classification rule

adds a gene only if the increase in AUC of the score is
at least 0.02. A wrapper algorithm selects features by
“wrapping around” (invoking) the full method of select-
ing a classification rule that uses both training and test
samples, when these samples are nested within the
training sample [16]. The wrapper algorithm randomly
splits half the training sample data into training-training
and training-test samples, which is repeated five times.
On each random split, a greedy algorithm within the
wrapper algorithm formulates a classification rule based
on centroid set in the training-training sample and the
gene expression levels in the training-test sample, suc-
cessively adding a gene to the classification rule only if
the increase in AUC of the score is at least 0.01. The
wrapper algorithm selects the best performing classifica-
tion rule among classification rules obtained in the five
random splits. (Although the wrapper algorithm makes
use of a greedy algorithm, reference to a greedy algo-
rithm, unless otherwise noted, means the greedy
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Figure 2 Swirls and Ripples applied to data generated with D = 2.

algorithm not embedded in the wrapper algorithm).
After the classification rule computes the gene set G as
described above, for each score formula S the classifica-
tion rule selects D = 1 if the increase in AUC with D =
2 is less than 0.02, and selects D = 2 otherwise. Finally
the classification rule selects the score formula, S = 1
=Ripples or S = 2 = Swirls, that has the highest AUC.

Computations for Goal 1 are based on a distribution
of ROC curves in the test sample computed from 20
bootstrap iterations. The RU curve is derived from the
concave envelope of the mean ROC curve over the
bootstrap iterations. Computations for Goal 2 are based
on 100 random splits into training and test samples.

Simulation

Simulations are useful for investigating some aspects of
classification rules, but one should not overly rely on
their results because little is known about the true dis-
tributions of gene expression levels [17]. Here a simula-
tion was used to investigate the ability to identify
informative genes in a simple setting. The simulation
involved 2002 genes with independent normal distribu-
tions including (i) 2000 non-informative genes with
mean 0 and standard deviation 5 in each class and (ii) 2
informative genes, used for Figure 2, each with mean 0
and standard deviation 5 in class 0 and mean 2 and
standard deviation 1 in class 1. Sample sizes were 50

and 100 per class. For Goal 1, the classification rule
under the wrapper algorithm included both informative
genes and performed well for both sample sizes In con-
trast, the classification rule under the greedy algorithm
included only one informative gene and performed
poorly with a sample size of 50 per class and performed
well with a sample size of 100 per class (Tables 1 and 2
and Figure 3). For Goal 2, the two informative genes
were selected much more frequently than the non-infor-
mative genes (Table 3), as anticipated.

Data analysis

For Goal 1, the classification rules under both greedy
and wrapper algorithms performed well in all data sets
except for medulloblastoma (Tables 4 and 5 and Figure

Table 1 Classification rules selected from simulated data
using a greedy algorithm

Gene set = G Centroid set = C

Samplesize S D j Description Go Ci1 Vo Vji
n, =50 Swirl 1 2002 informative -08 20 44 44
n, =100 Swirl 2 2002 informative 01 21 55 09
2001 informative 01 19 51 09
162 non-informative 05 -07 50 55

1118 non-informative -14 09 52 50
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Table 2 Classification rules selected from simulated data
using a wrapper

Gene set = G Centroid set = C
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Table 3 Most frequently selected genes in simulated data

Sample size S D j Description Go C1 Vo Vj
ng = 50 Swirl 2 2002 Informative 22 17 65 10
1771 non-informative -09 25 39 67

ne =100 Swirl 2 2002 Informative 1.1 23 57 08
7 non-informative 04 04 50 6.5

2001 Informative -03 20 53 09

323 non-informative -03 10 51 60

4). For Goal 2, there was good classification in test sam-
ples obtained by random splits in all data sets except for
medulloblastoma (not shown). The most frequently
occurring genes among random splits of the training
sample associated with good classification were desmin,
zyxin, hepsin, and HLA class II. See Table 6.

Discussion

The reason for using AUC to measure classification per-
formance in the training sample is that it can be com-
puted quickly under a binormal assumption and is
familiar to many researchers. The threshold increase in
AUC to add a gene to the classification rule of 0.02 for
the greedy algorithm and 0.01 for the wrapper algorithm
represents a small improvement in performance relative
to the range of AUC from 0.5 to 1.00. The specified
threshold increase in AUC is smaller with the wrapper
than with the greedy algorithm because splitting of the
training sample into a training-training sample and
training-test sample with the wrapper avoids overfitting,
unlike the case with the greedy algorithm in which the
entire training sample is used both gene selection and
evaluation. Investigating various values for the threshold
increase in AUC to determine an optimal threshold
increase in AUC is not desirable in this setting because

Gene

Sample Feature j Description Percentage of
size selection splits
ng =50 Greedy 2002 informative 48%
20071 informative 20%
1565 non- 4%

informative
Wrapper 2002 informative 48%
2001 informative 14%
707 non- 3%

informative
ng=100  Greedy 2001 informative 38%
2002 informative 27%
996 non- 4%

informative
Wrapper 2002 informative 26%
2001 informative 26%
1941 non- 1%

informative

it would require the use of the test sample for both rule
selection and evaluation, which could bias the results.

Some centroid-based classifications of microarray data
shrink centroids to the mean of the centroids and select
genes based on soft thresholding [18]. However this pro-
cedure is not desirable for our goals because it “makes
the class centroids look more similar to each other” [19]
and typically selects many more genes than with our
approach. Some classification rules are based on the
connectivity of each gene in a network [20]. However
this approach is not desirable for our goal of identifying
the few genes most directly predictive of class as some
highly connected genes may be selected due to multiple
associations with many moderately predictive genes and
not because they are highly predictive themselves.
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ROC: datasim n=50: wrapper

TPR
If = — =
I g
0.8
i /’
0.6
[/
& 7
oafy
02 s
FPR
02 04 06 03 1
ROC: datasim n=100: greedy
TPR
If = = == = =
02 ’J — e
0.6 4
st/
o4t/
02l 7
= FPR

02 04 06 08 1 02 04 06 08 1

Figure 3 ROC and RU curves for simulation.

RU: datasim n=50: greedy RU: datasim n=50: wrapper
RU RU

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

RU: datasim n=100: greedy RU: datasim n=100: wrapper
RU RU

o o o o
)

risk ko = fisk

o
=)
s

0.6 08

o
[
s
=)
o
o




Baker BMC Bioinformatics 2010, 11:452
http://www.biomedcentral.com/1471-2105/11/452

Table 4 Classification rules selected in data sets using
greedy algorithms

Gene set = G Centroid set = C

Data set S D j Description Co G Ve

Colon cancer Swirl 1 493 myosin heavy 716 278 338
chain

Leukemia 1 Swirl 1 3532 glutathione S- 81 1456 449
transferase

Medulloblastoma Swirl 1 6230 myosin heavy 0 -53 234

polypeptide 7

Prostate cancer ~ Swirl 1 6185 serine protease 48 184 70
hepsin

Leukemia 2 Swirl 1 8828 HLA class Il 1504 40640 7151
alpha

With Goal 1 of rule discovery and testing for purposes
of prediction, one should consider baseline clinical vari-
ables as well as microarray data when formulating a
classification rule. Binary variables can be coded as 0 or
1. Ordered variables created from continuous variables,
such as age categories, can be assigned the midpoint of
each category. An ordered variable of low, medium, and
high can be treated as two binary variables, one compar-
ing low versus medium and high, and one comparing
low and medium versus high. To evaluate the use of
classification rules to stratify patients for treatment, in a
new sample one could select patients with the highest
class probabilities based on the classification rule and
randomize them to treatment.

With Goal 2 of gene discovery, the most frequently
occurring genes (desmin, zyxin, hepsin, and HLA class
II) among random splits of the training sample in the

Table 5 Classification rules selected in data sets using a
wrapper

Gene set = G Centroid set = C

Data set s D j Description o G Vip
Colon cancer Swirl 11772 myosin heavy 44 125 6l
chain
249 desmin 1958 467 793
1582 p cadherin 53 174 83
1423 myosin reg 763 196 213
light chain 2
745 ORF, xq 188 226 179
terminal portion
Leukemia 1 Swirl 1 3532 glutathione S- 37 1460 569
transferase
Medulloblastoma Swirl 1 977 zinc finger 38 -102 87
protein HZfq
Prostate cancer ~ Swirl 1 8850 cDNA 24 215 110
DKFZp564A072
Leukemia 2 Swirl 1 8828 HLA class Il 785 41345 7280
alpha
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four data sets with good classification performance in
the test samples have an interesting connection to the
tissue organization field theory of carcinogenesis. Tissue
organization field theory postulates that a disruption of
intercellular communication between the microenviron-
ment and the cells in which cancer arises is the proxi-
mal cause of cancer [21-23]. In contrast the somatic
mutation theory postulates that genetic alterations in
the cells in which cancer arises are the proximal cause
of cancer. Desimin is associated with pericytes, cells in
the blood vessel walls, that have been implicated in for-
eign-body carcinogenesis [24], a phenomenon that likely
involves disruption of intercellular communication [25].
Zxyin is associated with morphogenesis [26]. Hepsin
mediates the digestion of extracellular matrix compo-
nents in initial tumor growth [27]. Lastly HLA class II is
a marker for tumor-infiltrating dendritic cells [28].
These genes involve changes in the tumor microenvir-
onment, which is important to the development of can-
cer under the tissue organization field theory.

Conclusion

The proposed simple and flexible classification rule that
select Swirls or Ripples after parsimoniously selecting
genes and a distance measure is a good basis for either
rule discovery and testing or gene discovery.

Methods

Computing the centroid set in the training sample

Let zg;r denote the gene expression level for gene j in
specimen i of class k of the training sample Let nypy
denote the number of specimens in class k of the train-
ing sample. The centroid set C in the training sample is

Crp = {C’I‘R(jk)l VrR(ji) MIR(R) } where

. I 2 (5)
ZTR(ijk) (ZTR(ljk) CTR(]k)) (
CTR(jk) = E — o VIR(jK) T E -

= TUIR(R) - Ny —1

Measuring classification performance using AUC
Selection of the gene G, set distance measure D, and
score formula S for the training sample involve the AUC
under a binormal distribution [29] applied to the score,

Mrr0) — M1R(1)

AUCS(Z g, F)=® , where

 Z W TR(R)
Zir ={Z1r(ity}» where Z g iy = {Z1r(ijiy }»
Str(ik) = Score (Zrg(ixy F),

2
N - s 2N —m
(TR)ik (STR(ik) TR(K))
MRy = E WTR(k) = E _ ,
=y . NyReey =1

(6)
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Figure 4 ROC and RU curves for data sets.
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and @ denotes the cumulative normal distribution
function.

Selecting the gene set, distance measure, score formula
in the training sample

For each score formula S and each distance measure D,
the classification rule selects a gene set G. To simplify
notation, let Frr(, 5 = (Crr,G = {a,b}, D, S), where a
and b refer to different genes. To make computations
tractable, the classification rule starts with a preliminary
filter that selects the 50 genes in the training sample
with the highest values of AUCS(Zrz, Frry), where j
indexes genes. Subsequent calculations involve these 50
genes.

The greedy algorithm selects the gene a with the high-
est AUCS(Z7g, Frris) and identifies the gene b with the
highest AUCS(Z1g, Frriap). If the increase in AUC is
less than 0.02, G = {a}; otherwise G includes {a,b} and
this procedure continues for additional genes.

The wrapper algorithm involves five random splits,
each with 50% of the training sample constituting a train-
ing-training sample (TR:TR) for formulating the classifi-
cation rule and 50% constituting a training-test sample
(TR:TE) for computing AUC. The algorithm selects the
gene a with the highest AUCS(Zg.1x, FrrrE(a)) and iden-
tifies the gene b with the highest AUCS(Zyg.1r, Frr.7E(,
»y)- If the increase in AUC is less than 0.01, G = {a};
otherwise G includes {g,b} and this procedure continues
additional genes. The wrapper selects the best classifica-
tion rule, in terms of AUC, among the random splits.

For each S with G already selected, the classification rule
selects D = 1 if the increase in AUC for D = 2 is less than 0.02
and D = 2 otherwise. For each S with D and G already
selected, the classification rule selects S with the highest AUC.

Computing ROC and RU curves in the test sample
Let Frp denote the components of the final classification rule
derived from the training sample. Let z7x(;x) denote the gene
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Table 6 Genes most frequently selected in data sets
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Gene
Data set Feature selection j Description Fraction of splits
Colon cancer Greedy 249 desmin 0.17
493 myosin heavy chain 0.15
1772 collagen alpha 2 0.12
Wrapper 249 desmin 0.13
1772 collagen alpha 2 0.08
1582 p cadherin 0.06
Leukemia 1 Greedy 4847 zxyin 046
6855 TCF3 transcription factor 3 0.17
1834 CD33 antigen 0.17
Wrapper 4847 zxyin 0.22
3252 glutathione S-transferase 0.16
6855 TCF3 transcription factor 3 0.1
Medulloblastoma Greedy 5585 drebrin £ 0.05
4174 COL6A2 collagen type IV alpha 2 0.04
3185 pancreatic beta cell growth factor 0.04
Wrapper 2426 prostaglandin D2 synthase 0.04
4710 acylphosphatase isozyme 0.03
3185 pancreatic beta cell growth factor 0.03
Prostate cancer Greedy 6185 serine protease hepsin 0.70
8965 mitochondrial matrix protein P1 0.09
10494 mRNA, nel-related protein P1 0.07
Wrapper 6185 serine protease hepsin 0.31
8965 mitochondrial matrix protein P1 0.09
4365 T-cell receptor Ti gamma chain 0.07
Leukemia 2 Greedy 8828 HLA class Il alpha chain-like 0.59
9101 MHC class Il lymphocyte antigen 0.23
2610 mRNA for oct-binding factor 0.13
Wrapper 8828 HLA class Il alpha chain-like 041
9101 MHC class Il lymphocyte antigen 0.20
2610 mRNA for oct-binding factor 0.17

Genes listed in bold occur most frequently and are discussed in the text.

expression level for gene j in specimen i of class k of the test
sample, and let Z7g = {z7£(ik)}. Let nrgy denote the num-
ber of specimens in class k of the test sample. At each cut-
point u, which corresponds to a decile of the combined
distribution of gene expression levels over the two classes,
the true positive rate (TPR) is the fraction of specimens from
class 0 classified as 0, and the false positive rate (FPR) is the
fraction of specimens from class 1 classified as 0,

TPR, = Z—d“)“
u s
= TE(0)

1 Score (Z gy, Frg) < u,
iku = .
0 otherwise.

ilu

FPR, = Zd—

= 1E(1)

, where

7)

For Goal 1, confidence intervals are computed by
bootstrapping the data in the test sample 20 times. For
each bootstrap sample, TPR at FPR = 0.1, 0.2, ..., 0.9 is
computed via linear interpolation. The ROC curve plot
for the bootstrap iterations consists of the mean ROC
curve and upper and lower bounds based on the stan-
dard deviation of the ROC curves. An RU curve is com-
puted from the concave envelope of the mean ROC
curve, where the risk thresholds are derived from the
slopes of the ROC curve. If the concave ROC curve has
only one point between (0,0) and (1,1), there are insuffi-
cient data to compute a RU curve.

Availability and requirements
Project name: Swirl
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Project homepage:

http://prevention.cancer.gov/programs-resources/
groups/b/software/swirls

Programming language: Mathematica 7.0 [30]

Disclaimer: This code is provided “as is”, without war-
ranty of any kind, express or implied, including but not
limited to the warranties of merchantability, fitness for a
particular purpose and noninfringement. In no event
shall the National Cancer Institute or the individual
developers be liable for any claim, damages or other lia-
bility of any kind. Use of this code by recipient is at
recipient’s own risk. The National Cancer Institute
makes no representations that the use of the code will
not infringe any patent or proprietary rights of third
parties.

Reproducibility. Functions are provided to reproduce
calculations.

Inputs: The user needs to specify (a) the gene expres-
sion data, consisting of two matrices, one for each class,
with rows corresponding to genes and columns corre-
sponding to specimens, (b) a list of gene names, the
name of the data set, and names of the two classes, and
(¢) the class probabilities in the target population, if dif-
ferent from study population, for computing the RU
curve.
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