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Abstract

Background: The Gene Ontology (GO) is used to describe genes and gene products from many organisms. When
used for functional annotation of microarray data, GO is often slimmed by editing so that only higher level terms
remain. This practice is designed to improve the summarizing of experimental results by grouping high level terms
and the statistical power of GO term enrichment analysis.
Here, we propose a new approach to editing the gene ontology, clipping, which is the editing of GO according to
biological relevance. Creation of a GO subset by clipping is achieved by removing terms (from all hierarchal levels)
if they are not functionally relevant to a given domain of interest. Terms that are located in levels higher to rele-
vant terms are kept, thus, biologically irrelevant terms are only removed if they are not parental to terms that are
relevant.

Results: Using this approach, we have created the Neural-Immune Gene Ontology (NIGO) subset of GO directed
for neurological and immunological systems. We tested the performance of NIGO in extracting knowledge from
microarray experiments by conducting functional analysis and comparing the results to those obtained using the
full GO and a generic GO slim. NIGO not only improved the statistical scores given to relevant terms, but was also
able to retrieve functionally relevant terms that did not pass statistical cutoffs when using the full GO or the slim
subset.

Conclusions: Our results validate the pipeline used to generate NIGO, suggesting it is indeed enriched with terms
that are specific to the neural/immune domains. The results suggest that NIGO can enhance the analysis of
microarray experiments involving neural and/or immune related systems. They also directly demonstrate the
potential such a domain-specific GO has in generating meaningful hypotheses.

Background
An ontology is a formal way for the representation and
sharing of knowledge in a certain domain by describing
the concepts (or terms) in that domain and the relation-
ships between them. An ontology formalizes the mean-
ing of concepts, or terms, by a set of assertions and
rules that characterize them and connects them to other
terms within the ontology [1,2].
The Gene Ontology (GO), a widely used bio-ontology,

is used to describe genes and gene products from
numerous organisms [3,4]. GO is constructed from

three separate ontologies which capture the three main
biological areas of knowledge regarding gene products.
These ontologies are: molecular function, biological pro-
cess and cellular component. Thanks to relentless efforts
of the Gene Ontology Consortium [5], GO includes a
very large number of terms. As of February 2009, it con-
tained approximately 26,800 terms. These terms are
interrelated via five relatively simple types of relation-
ship: is-a, part of, regulates, positively-regulates and
negatively-regulates. Since terms can have more than
one parent, the structure of the ontology can be repre-
sented as a directed acyclic graph (DAG), in which the
terms are the nodes and their relationships are the
edges.
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One common use of the Gene Ontology is the func-
tional annotation of the results of high throughput
experiments, such as transcription profiling arrays [5,6].
In such cases, association is sought between GO terms
and genes or gene products that are affected by a parti-
cular treatment. Such terms allow the changes in gene
expression to be generalized, providing a list of GO
terms that characterize the response to a treatment
rather than a list of genes.
The fact that GO covers most of biological knowledge

related to gene functions may complicate functional
analysis. For any given studied system, many terms may
be completely unrelated yet are still considered during
analysis. This dilutes the number of actual hits, increas-
ing the likelihood of falsely reported enrichment and
complicating the interpretation of the resulting list of
terms. Consider, for example, the use of the term
‘sperm motility’ (GO:0030317) when studying systems
such as brain aging or eye diseases. Including this term
in the enrichment analysis will increase the number of
terms considered in the analysis, in turn reducing the
statistical power of the enrichment analysis by requiring
more rigorous multiple testing correction, while in most
likelihood contributing very little to the interpretation of
the results.
This problem may be overcome by constructing a

domain-specific ontology. Such an ontology can be con-
structed from scratch by defining all the domain-specific
terms and linking them to all those genes that can be
defined by these terms. However, this approach is highly
demanding and largely overlaps with the massive efforts
of the GO consortium.
An alternative approach is to create a subset of GO,

choosing terms pertinent to a specific task. Taking this
course, existing GO terms (and their relevant relations)
are selected from GO rather than defining new terms.
This approach is extensively used in generating GO
‘slims’, which are frequently used for creating a birds-
eye view of the results, allowing the results to be sum-
marized and compared [6,7]. Slimming of GO is
achieved by choosing high level terms from each of the
three major component gene ontologies: cellular compo-
nent, biological process, and molecular function. The
resulting GO slim typically involves a small number of
annotations, and separates gene products into very
broad categories such as ‘metabolism’ or ‘signaling’.
However, while useful for achieving a high level of gen-
eralization, the massive loss of resolution greatly reduces
the ability of GO-slims to pinpoint relevant processes. A
second approach to creating GO subsets uses a method
that describes each GO term according to the amount
of information it holds. Thus, top-level terms which are
more general are assigned a lower ‘information score’,
while more specific terms are assigned a higher score.

By describing GO terms in this manner, GO subsets
(called partitions) containing terms with consistent
information content (i.e., the same level of specificity)
can be created [8]. Although this approach allows crea-
tion of subsets that contain GO terms at any level of
specificity by setting a desired threshold of abstraction,
many of these terms may still be biologically irrelevant
for the analysis of a specific dataset.
We propose that domain-specific Gene Ontology sub-

sets that contain only terms relevant to specific systems
can be created by clipping irrelevant terms from the
ontology, while maintaining the ontology consistency i.e.
maintaining the relationship between terms as defined
in GO (Figure 1). We hypothesize that by considering
terms from all levels, better and more comprehensible
results for functional analysis of microarray data may be
achieved, with minimal loss of resolution. We test this
hypothesis by developing a GO subset specializing in
the neural and immune systems of human, mouse and
rat, and comparing the performance of the resulting
clipped GO with that of the full GO and a generic GO-
slim. We show that enrichment analysis using the
resulting Neural-Immune GO (NIGO) gives better and
more interpretable results than the full GO when con-
sidering relevant experimental systems, but not in unre-
lated systems.

Results
The Neural/Immune Gene Ontology (NIGO)
A neural/immune-specific gene ontology (NIGO) was
created by clipping those GO terms that are not asso-
ciated to any gene in human, rat and mouse, and by
clipping terms not found to be relevant to the neural
and/or immune domains using a 5-step filtration pro-
cess (Figure 2, Materials and Methods; see Figure 1 for
a definition of the clipping operation). The lists of GO
terms removed by each filter can be found in the Sup-
plementary Material (Additional file 1). For the Cellular
Component section of GO, only organism-based clip-
ping was performed, since attempts to decide whether
terms from this section of GO contribute to the analysis
of neural/immune-related datasets were found to be
exceptionally difficult and eliminated only a small num-
ber of terms. We elected to create a domain specific
subset of GO that includes both the neural and immune
domains since our interest lies in annotating microarray
studies which exploit both these systems.
The clipping process led to a 5-fold decrease in the
number of terms, from 26,837 to 4,835 (Figure 3).
Most of the terms were removed through organism-
based clipping, which left a total of 9,354 terms, 8,341
that were kept since they were directly associated with
one or more human/mouse/rat genes, and 1,013 terms
that were kept for being parental to these terms.
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Organism-based clipping was performed mainly to
reduce the burden associated with manual reviewing
steps. Clipping according to biological relevance
further reduced the ontology by 50%, leaving a total of
4,835 terms, of which 4,175 terms were deemed rele-
vant to the neural/immune systems and 660 terms
were parental.

Comparative analysis of NIGO, GO and GO-slim
NIGO was developed based on the hypothesis that a
domain-specific subset of GO will perform better in
detecting interesting terms in that domain. In order
to test this hypothesis, the performance of NIGO in
functional analysis of microarray data was compared
to the full Gene Ontology. The performance of each

Figure 1 Comparison of the two methods used for editing the Gene Ontology. Comparison of the two methods used for editing the Gene
Ontology, i.e. slimming and clipping. Slimming of GO involves the assignment of high level terms from each of the three major gene ontologies,
namely cellular component, biological process, and molecular function, to a set of genes of interest. Clipping of GO involves editing of GO
according to biological relevance to the domain of choice. Creation of a GO subset by clipping is done by removing terms (from all hierarchal
levels of the ontology) if they are not functionally relevant to the domain of interest. Terms that are located in levels higher to relevant terms
are kept. Thus, biologically irrelevant terms are only removed if they are not parental to relevant terms.
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ontology was compared for nine neural and/or
immune related microarray data sets and, as a con-
trol, three non neural/immune data sets (see Addi-
tional file 2). Enrichment analysis was performed for
each experiment using the GSEA algorithm [9], cho-
sen for its simple interface that provides the option
of uploading user defined gene annotations in the
form of gene sets, and for its lack of arbitrary thresh-
olds which need to be separately tuned for each
experiment.

The results of this analysis (Tables 1 and 2) show that
functional analysis of neural/immune related microarray
experiments with NIGO improved the false discovery
rate (FDR) values of relevant GO terms in comparison
to the full GO with minor loss of relevant terms for the
related experiments, but not for neural/immune unre-
lated experiments.
For three GEO expression profiles, the results of the

analysis are described in detail (Table 1). In the analysis
of the GSE6476, in which the effect of chronic Fluoxetine

Figure 2 The five step filtering system. The five step filtering system used to determine whether any given GO term is biological relevant.
Boxes marked with a star are judgment-based, and require a domain expert to consider each term separately. The remaining boxes indicate
computational filters.

Figure 3 Overall approach to the creation of NIGO. The creation of NIGO was done in two main stages: 1. Clipping by relevance to specific
organisms. Terms that are not used to annotate genes or gene products in human, rat or mouse (according to the GOA-EBI annotation files)
were removed while higher classes of terms kept were also kept to preserve the consistency of the graph. 2. Manually clipping according to
biological relevance of the GO terms to the neural/immune systems. A total number of 22,002 terms were deleted from the full GO in order to
create NIGO.
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treatment on hippocampal gene expression was exam-
ined [10], eleven terms passed statistic filtering with
NIGO and not with the full GO, out of which 7 were
directly related to neural/immune functions or processes
(Table 1A). Four of the eleven terms were retained in
NIGO due to the graph structure. In addition, NIGO

improved FDR scores for terms that were also significant
by the full GO (e.g ‘Defense response to bacterium’).
Only one term that is included in the full GO but not in
NIGO passed the statistic cutoffs but this term (‘Protein
self-association’) was functionally irrelevant and contrib-
uted very little to the analysis.

Table 1 Difference in the performance of NIGO, Full GO and GO-slim

A.

Gene Ontology Term Full GO NIGO Generic GO slim

External side of plasma membranea Not Found 0.14 Not Found

Immune response Not Found 0.14 Not Found

Antigen processing and presentation of peptide antigen via MHC class I Not Found 0.170194 Not Found

Peptide antigen binding Not Found 0.176371 Not Found

MHC class I protein complex Not Found 0.186667 Not Found

Defense response Not Found 0.196994 Not Found

Bindinga Not Found 0.200462 Not Found

Positive regulation of T cell mediated cytotoxicity Not Found 0.201567 Not Found

Transporta Not Found 0.214781 Not Found

Mitochondriona Not Found 0.231303 Not Found

Antigen processing and presentation of exogenous peptide antigen via MHC class I Not Found 0.235161 Not Found

Protein self-association† 0.247254 Not Found Not Found

Defense response to bacterium 0.239803 0.156774* Not Found

Response to superoxide 0.24346 0.176879* Not Found

Plasma membrane 0.246877 0.155097* 0.21

Transporter activity Not Found 0.187933* 0.21

B.

Gene Ontology Term Full GO NIGO Generic GO slim

Integral to membranea Not Found 0.16 Not Found

Regulation of cell growth Not Found 0.16 Not Found

Membranea Not Found 0.16 Not Found

Immune response Not Found 0.16 Not Found

MHC class I protein complex Not Found 0.186667 Not Found

Antigen processing & presentation Not Found 0.224 Not Found

Nucleus Not Found 0.16* 0.19

C.

Gene Ontology Term Full GO NIGO Generic GO slim

Viral capsid Not Found 0.522253 Not Found

Structural molecule activitya Not Found 0.456971 Not Found

Viral infectious cycle Not Found 0.406196 Not Found

Viral envelope Not Found 0.365577 Not Found

Plasma membrane Not Found 0.553399 Not Found

Protein binding 0.504518 Not Found Not Found

Binding 0.56242 Not Found Not Found

Structural molecule activitya Not Found 0.456971* 0.505641

External side of plasma membrane 0.744269 0.508488* Not Found

(A) Enrichment in genes with up-regulated expression in hippocampus treated with Fluoxetine, based on GEO profile GSE6476. All terms passed FDR > 0.25 and
state the FDR values. (B) GEO profile GSE6675. All terms passed FDR < 0.25 and state the FDR values (Up-regulated in Control in comparison to FGF2 treatment).
(C) GEO profile GSE6509 All terms passed nomPval < 0.05 and state the FDR values (Up-regulated in LPS Dmso). ‘Not Found’ indicates that the term was not
detected by the analysis. * indicates the best FDR value for that term. a indicates terms retained in NIGO to keep the consistency of the graph’s structure.
† indicates terms that were not included in the NIGO subset.
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For the GEO profile GSE6675, in which astroglial gene
expression program elicited by fibroblast growth factor-
2 was examined, four terms relevant to neural/immune
systems passed statistic filtering with NIGO and not
with the full GO (Table 1B). These include the terms
‘regulation of cell growth’, ‘immune response’, ‘MHC
class I protein complex’ and ‘antigen processing and
presentation’ which are functionally relevant to the
tested system. In addition, two terms passed statistical
thresholds with NIGO and were retained due to the
graph structure. Furthermore, NIGO improved FDR
scores for the term ‘nucleus’ that was also significant by
the generic GO slim subset but not with the full GO.
The term ‘MHC class I protein complex’ received a FDR
value of 0.18 when analysis was conducted with NIGO
and a FDR value of 0.55 when analysis was conducted
with the full GO. This is an example of how without the
use of NIGO one would have to raise the cutoff to at
least 0.55 in order for this term to appear in the analysis
results.
Functional analysis of GSE6509 with NIGO also

revealed statistically significant terms that were missed
when using the full GO. This experiment involved
microarray expression profiling designed to explore the
effect of RU486, a synthetic steroid compound (also
known as Mifepristone) on LPS-induced gene expression
in the CNS [11]. Three relevant terms were revealed by

NIGO but not detected with the full GO (Table 1C).
These include the terms ‘viral envelope’, ‘viral infectious
cycle’ and ‘viral capsid’. In addition, two terms that were
kept in NIGO due to the graph structure rather than
their direct relevance to the neural/immune systems
were also reported with NIGO but not with the full GO.
Intriguingly, two terms that were retained in NIGO (for
being parental to relevant terms) passed the statistical
cutoffs only for the full GO and not with NIGO. Both
of these terms were functionally irrelevant, and both
had p-values that are marginally significant for the full
GO and generic GO slim (0.025 and 0.0384), and mar-
ginally insignificant for NIGO (0.058824 and 0.057692,
respectively). This suggests that the difference in analy-
sis stems from the stochastic nature of GSEA, and not
from differences in the performance of NIGO and the
full-GO. One term passed the statistical criteria both
using NIGO and the full GO, in which case the FDR
value observed with NIGO was lower than the FDR
value obtained with the full GO. The generic GO slim
performed very poorly in this analysis, with only one
enriched term being noted, namely ‘structural molecule
activity’, which also passed the significance criteria for
NIGO with a lower FDR value.
We noticed that some terms, included both in NIGO

and the full GO, received higher FDR values when
NIGO was used (Table 2), contrary to our expectations

Table 2 An overview of the performance of NIGO, full GO and GO-slim in enrichment analysis using GSEA

Unique to Subset Lowest FDR Value

Experiment Cutoff used Full GO NIGO Generic GO slim Full GO NIGO Generic GO slim

Neural- or immune-related studies

GSE6509 P < 0.05 2 (2) 5 0 0 2 0

GSE6675 FDR < 0.25 0 6 0 0 1 0

GSE6476 FDR < 0.25 1 (1) 11 0 0 4 0

GSE3779 P < 0.05 7 (3) 13 1 (1) 0 1 5

GSE8425 P < 0.05 6 (1) 0 0 3 3 1

GSE6690 P < 0.01 2 (2) 0 0 1 8 8

GSE6136 P < 0.05 3 2 0 0 0 1

GSE8788 P < 0.01 6 (6) 0 0 11 3 1

GSE8788* P < 0.01 6 (6) 0 0 3 11 1

GSE9659 P < 0.01 6 (6) 0 NSA 4 28 NSA

Non-neural- or immune-related studies (negative controls)

GSE7407 P < 0.01 5 (5) 0 0 0 1 2

GSE2259 FDR < 0.25 3 (1) 0 1 (1) 1 2 1

GSE8191 P < 0.05 5 (2) 0 0 0 0 0

The enrichment analysis results of GSEA, providing the full GO, NIGO or GO-slim as the sole source of gene sets, are compared for neural/immune-related (top)
and unrelated (bottom) studies. A statistical cutoff was chosen for each analysis such that at least five terms were found to be significantly enriched in any of the
analyses. Studies are identified via their GEO accession. The number of terms that passed the statistical cutoff inclusively for each subset are provided (’Unique to
Subset’), together with the number of terms that are not included in the NIGO subset out of the total number of terms that passed the statistical cutoff only
with the full GO or generic slim (given in parentheses). The number of terms that passed the statistical cutoff with NIGO and at least one additional GO subset
(the full GO or generic slim) are also shown for each term (’Lowest FDR Value’), with the number of terms with the lowest FDR values for each subset given in
separate columns. *To test the effect of stochasticity, the analysis of this profile is based on 3-fold averaged FDR values from three independent GSEA analyses.
A Profile GSE9659 involves rat tissue, and was not analyzed with the mouse GO-slim.
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from the impact of reducing the ontology size. For
example, in the analysis of GSE8788 in which gene
expression analysis was conducted using Trib1-deficient
macrophages treated with LPS as compared to LPS-trea-
ted wild-type macrophages [12], 11 out of 14 terms
(that passed statistical cutoff with the full GO and
NIGO) had lower FDR values with the full GO. Since
NIGO only effects multiple testing correction, we
hypothesized that the lack of improvement in FDR
values when using NIGO is partially due to the stochas-
tic nature of the GSEA algorithm. To test this hypoth-
esis, the same analysis was repeated three times with
each of the ontologies for GSE8788. FDR values were
averaged and a comparison of analysis results was per-
formed based on these averaged FDR values. In accor-
dance with our hypothesis, the averaging of FDR values
improved the apparent performance of NIGO. Out of
the terms that passed the statistical cutoff with NIGO
and the full GO, averaged FDR values of 11 terms were
lower with NIGO, while analysis with the full GO
received lower averaged FDR values for only three terms
(for a summary of results with and without averaging of
FDR values, see Table 2).
Three non-neural- or immune-related datasets were

used to test the performance of NIGO in functional
analysis of microarray data in comparison to the full
GO and the generic GO slim subset. These datasets
included the GEO expression profile, GSE7407, in which
gene expression in heart tissue with cardiac specific
over-expression of Sirt1 was examined [13], the GEO
expression profile, GSE8191, in which the gene expres-
sion profile of mammary glands from pregnant mice
was compared to that of mammary glands from lactat-
ing mice [14], and the GEO expression profile,
GSE2259, in which gene expression in testis from sertoli
cell-selective androgen receptor knockout mice was
examined [15].
In all three of the neural/immune-unrelated datasets,

NIGO did not reveal any terms that did not pass the
statistical cutoff when conducting the analysis with the
full GO or the generic GO slim subset (for an overview
of the results, see Table 2; for complete details, see
Additional file 3). Terms that passed statistic filtering
with the full GO or the slim subset include the terms
‘ATP binding’, ‘mRNA cleavage’, ‘nucleotide binding’,
‘integrase activity’ and ‘positive regulation of mRNA 3’-
end processing’, none of which are included in the
NIGO subset. In addition, multiple terms with marginal
significance were detected with the full GO but not
NIGO due to the stochastic nature of GSEA (e.g. ‘pro-
teolysis’, ‘cytoplasm’, ‘caspase activation’ and ‘metal ion
binding’). Due to its reduced size, those terms that were
identified with NIGO and the full GO and/or the gen-
eric GO slim often received lower FDR values in NIGO.

These results were further supported by analyzing the
same expression profiles with Ontologizer [16], which
uses a modified Fisher Exact Test, to test deterministi-
cally for over-representation of each GO term, given
two groups of genes, and using the Benjamini-Hochberg
method to control for the false discovery rate. Most
terms that passed the statistical threshold for both the
full GO and NIGO had lower adjusted p-values when
analysis was conducted with NIGO (Table 3 and Addi-
tional file 4). However, in the case of two non-neural-
or immune datasets, some terms received lower adjusted
p-values with the full GO than with NIGO. Careful
examination of the data suggests that this is the result
of the multiple testing correction method, as the distri-
bution of p-values shifts when terms are omitted, lead-
ing to differences in the adjusted p-value assigned to the
remaining terms. Thus, Ontologizer gave results that
partially reproduce the phenomena observed with
GSEA, both in terms of improved sensitivity of the ana-
lysis with NIGO over the full GO and in the occasional
lower p-value estimate (after multiple testing correction)
for the full GO when non-neural/immune datasets are
analyzed.
These results, together with the analysis of five addi-

tional neural/immune-related experiments not described
in Table 1 (namely profiles GSE3779, GSE8425,
GSE6690, GSE6136 and GSE9659) are summarized in
Table 2 (see Additional file 3 for complete results).

Discussion
We present here an approach for generating domain-
specific subsets of GO, via an editing method we call
‘clipping’. We show that the use of a clipped subset of
GO can improve functional analysis of microarray data
relevant only to the domain of the clipped ontology. We
present NIGO, a clipped subset of GO directed at ner-
vous and immune systems. Evidence that the immune
system affects neuronal processes, such as neuronal
maintenance and repair, is accumulating. It was recently
shown, for example, that mice lacking both T- and B-
cell populations (Severe Combined Immune Deficiency,
SCID) show impairment in neural precursor cell prolif-
eration and differentiation into mature neurons [17].
We thus chose to create a neural and immune subset of
the Gene Ontology since we were specifically interested
in annotating microarray experiments which link the
two systems. Even though the design of the subset is
aimed for the annotation of such experiments, NIGO is
also useful for the annotation of expression studies
which investigate only one of these two biological sys-
tems. We show that NIGO outperforms the full GO or
a generic GO-slim in finding relevant terms that are
enriched in genes with varied expression in these sys-
tems. NIGO revealed GO terms, from all hierarchical
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levels of the ontology, that were relevant to the experi-
mental system used to create the microarray data and
that did not pass the statistical cutoff when conducting
the analysis using the full GO. In addition, NIGO
improved the statistical scores assigned to many neural/
immune-relevant GO terms that passed the statistical
cutoff for the full GO.
It is important to stress the fundamental difference

between a clipped subset of GO and a slimmed subset.
While a slimmed subset will also achieve improvement
of statistical scores assigned to the enriched terms, the-
ses terms will be general top-level terms that will reveal
a lot about the nature of the biological differences
between two sets of samples, but little regarding the
specific responses. The power that lies in a clipped sub-
set of GO is not only in improvement of statistical
scores but also in enrichment of terms from all hier-
archical levels which reveals more about the biology
underlying the study. In this work, we used a generic
slim subset which contains 152 top-level GO terms.
While a neural/immune specific GO slim could have
performed better than a generic slim, it would most
likely not include specific terms, such as ‘Antigen pro-
cessing and presentation of exogenous peptide antigen
via MHC class I’ and ‘Positive regulation of T cell
mediated cytotoxicity’ which are located 6 and 7 steps
away from the root, respectively. Such terms proved to
be important for the interpretation of a relevant micro-
array dataset (see Table 1) and thus demonstrate how a

clipped subset of GO could outperform even a specific
slimmed subset.
In one study, the use of NIGO actually allows the for-

mulation of hypotheses that are otherwise missed when
using the full GO. In studying the effect of chronic
Fluoxetine treatment on hippocampal gene expression,
Miller et. al. compared expression patterns in the hippo-
campi of mice with or without treatment with the anti-
depressant, Fluoxetine, for 21 days [10]. NIGO revealed
several immune-related terms that were not identified
with the full GO. These include GO terms such as ‘anti-
gen processing and presentation of peptide antigen via
MHC class I’, ‘MHC class I protein complex’, ‘positive
regulation of T cell mediated cytotoxicity’, and ‘defense
response’ Furthermore, this group of terms was not
found to be significantly enriched in the original analysis
of this dataset.
The hypothesis that can be derived from this finding,

namely that treatment with Fluoxetine alters immune-
related processes in the brain via the MHC-class I path-
way, is in agreement with previous knowledge. Chronic
stress and depression are widely known to down-regu-
late the immune system and several lines of evidence
indicate that some antidepressants can reverse this
impairment by producing various immunomodulatory
effects [18-20]. Interestingly, it was shown that uptake
of serotonin 5-hydroxytryptamine (5-HT) is impaired by
Fluoxetine, a process which may interfere with mechan-
isms of immune regulation [21]. Moreover, rats treated

Table 3 An overview of the performance of NIGO, full GO and GO-slim in enrichment analysis using the Fisher Exact
Test

Unique to Subset Lowest FDR Value

Experiment Cutoff used Full GO NIGO Generic GO slim Full GO NIGO Generic GO slim

Neural- or immune-related studies

GSE6509 P < 0.0001 1 (1) 1 0 0 22 2

GSE6675 P < 0.05 1 (1) 0 11 (1) 0 2 0

GSE6476 P < 0.0001 0 2 2 0 15 3

GSE3779 P < 0.1 0 0 0 0 2 0

GSE8425 P < 0.1 0 0 0 0 0 0

GSE6690 P < 0.001 0 2 0 0 9 1

GSE6136 P < 0.000001 0 1 0 0 37 7

GSE8788 P < 0.01 0 2 0 0 4 1

GSE9659 P < 0.001 0 3 NSA 0 33 NSA

Non-neural- or immune-related studies (negative controls)

GSE7407 P < 0.0000000001 33 (30) 0 0 9 0 0

GSE2259 P < 0.1 63 (35) 0 2 8 8 7

GSE8191 P < 0.001 6 (6) 7 6 (2) 0 16 3

Enrichment analysis results from Ontologizer, providing the full GO, NIGO or GO-slim as the GO subset to be used are compared for neural/immune-related (top)
and unrelated (bottom) studies. Studies are identified via their GEO accession. The number of terms that passed the statistical cutoff inclusively for each subset
are provided (’Unique to Subset’), together with the number of terms that are not included in the NIGO subset out of the total number of terms that passed the
statistical cutoff only with the full GO or generic slim (given in parentheses). The number of terms that passed the statistical cutoff with NIGO and at least one
additional GO subset (the full GO or generic slim) are also shown for each term (’Lowest P-Value’), with the number of terms with the lowest P-values for each
subset given in separate columns. A Profile GSE9659 involves rat tissue, and was not analyzed with the mouse GO-slim.
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with Fluoxetine demonstrated reduced CD4+ cell num-
ber, increased number of CD8+ cells and elevated levels
of cytokines such as IL4 and IL2 in vitro [22]. The
NIGO-based finding thus coincides with the observed
increase of CD8+ cells since the term ‘positive regula-
tion of T cell mediated cytotoxicity’ was found by NIGO
to be enriched in the dataset. Furthermore, most cyto-
toxic T cells express T-cell receptors (TCRs) that recog-
nize a specific antigenic peptide bound to class I MHC
molecules. Accordingly, GO terms related to MHC class
I antigen presentation were also found by NIGO to be
enriched in this dataset. This line of evidence suggests
that Fluoxetine, and possibly other antidepressants,
exert their effects, at least partially, via modulation of
CD8 T cell’s activity. These results further demonstrate
that analysis with NIGO can enhance interpretation of
functional analysis results produced for relevant micro-
array datasets.
In the analysis of the GSE6509 expression dataset,

three relevant terms passed the statistical cutoff with
NIGO but not with the full GO. These terms, ‘viral
envelope’, ‘viral infectious cycle’ and ‘viral capsid’ are all
terms related to mouse genes involved in viral infection.
It was previously shown that for this dataset, clustering
of the GO nodes revealed that the GO term ‘response
to virus’ was enriched in genes down-regulated by LPS
treatment [11]. Several lines of evidence show a connec-
tion between Mifepristone and viral infection. For exam-
ple, it was shown that Mifepristone can increase target
cell sensitivity to retroviral infection [23]. Though the
analysis of this dataset with NIGO did not reveal any
new biological knowledge, detecting and interpreting the
‘response to virus’ related terms was made much easier.
In several cases, terms were detected by the full GO

but did not pass the same cutoff when conducting func-
tional analysis with NIGO, even though these terms
were included in the NIGO subset. Such terms received
FDR or p-values that were very close (but larger) than
the cutoff values used. This is partially explained by the
stochastic nature of the GSEA algorithm. Indeed, for
one set (GSE8788), we compared the raw results with
averaged FDR values. Averaging dramatically decreased
the number of such terms. Furthermore, we conducted
a similar functional analysis using the Fisher Exact Test
and found that while this method included no stochastic
element, several of terms that were found by both the
full GO and NIGO (in the analysis of two non-neural/
immune related datasets) had lower adjusted p-values
when conducting the analysis with the full GO (see the
Results section).
Out of nine neural/immune-related expression data-

sets used to evaluate the performance of NIGO in com-
parison to the full GO, NIGO revealed terms that did
not pass statistical cutoff with the full GO for five. For

two of the four datasets in which NIGO did not reveal
new terms, this ontology improved the FDR values for
over half of the terms that passed the statistical cutoff
with the full GO. Hence, for approximately 77% of the
datasets used, NIGO outperformed the full GO either
by revealing new terms or improving FDR values for
more than 50% of the terms that passed the statistical
cutoff with both ontologies. For neural- or immune
unrelated microarray studies, on the other hand, NIGO
did not outperform the full GO or the generic GO slim.
These results are well in agreement with the design and
purpose of NIGO.
Alternative approaches may lead to the creation of

domain-specific subsets from the GO. One approach
involves the selection of terms that are descendant of
the GO term or terms that are most pertinent to that
domain. In the case of NIGO, this would mean choosing
all those terms that are direct descendants of the terms
‘immune system process’ (GO:0002376) or ‘neurological
system process’ (GO: 0050877). We believe that this
approach would lead to many relevant terms being
omitted, since not all pertinent terms are necessarily
defined in GO as a neural or immune system process/
function. For example, the term ‘muscle hypertrophy’
(GO:0014896) is not defined in GO as a neurological
system process but was found to be linked to the neuro-
logical system by the UMLStermFinder (Figure 4B). It is
highly likely that not all of the information linking bio-
logical processes to these systems have been incorpo-
rated into the Gene Ontology. It is our opinion that by
adding knowledge from the literature and from other
biomedical ontologies (included in UMLS), terms that
are not directly associated with these biological systems
can still be included in NIGO, or any other domain-spe-
cific subset. Another possible approach is to create a
domain-specific slim. While this approach will probably
create a highly compact ontology, setting some thresh-
old of abstraction, which is the declared purpose of GO
slimming, would necessary lead to loss of information.
In this study, for example, it is hard to imagine a GO
slim that would go so far down the GO graph as to
include the terms ‘Antigen processing and presentation
of exogenous peptide antigen via MHC class I’ and
‘Positive regulation of T cell mediated cytotoxicity’ with-
out defeating the purpose of the slimming process. Yet
these two terms were found to be enriched in GSE6476,
and are crucial for generating a hypothesis based on the
expression profile. This shows that GO slims may be
complemented by small, yet fully detailed domain-speci-
fic subsets of GO.
NIGO is obviously not a perfect representation of all

knowledge related to neural/immune-related gene func-
tion. Due to the massive use of human-based curation
of GO terms used for the production of NIGO, wrong
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Figure 4 The UMLStermFinder. (A) The underlying algorithms. A GO term is associated with a Unique Concept Identifier (CUI) using the UMLS
classes file (MRSAT). The UMLS relations file (MRREL) is then used to identify CUI terms that are parental to the input GO terms, recursively
traversing the DAG up to 3 levels up. All the aliases to any of these terms are also extracted. Each CUI found in the resulting sub-graph is
associated with their corresponding strings, which are searched for any of the following: ‘immune’, ‘neuro’, ‘inflam’, ‘brain’, ‘lymph’ or ‘nerve’. The
outputs of the algorithm are the terms that contain these strings. Arrows of different types denote different sources from which relationships
were asserted. (B) An example of how UMLStermFinder works. Using the GO term ‘muscle hypertrophy’ (GO:0014896) to search the UMLS
ontologies, the corresponding concept identifier is found and used to find the concept’s parents and synonyms (framed CUIs) of the initial
concept and its parents. After all concepts are collected, they are searched for neural and/or immune-related string content (grey boxes). The
UMLStermFinder finds concepts from several ontologies; by each arrow in the figure appears the name of the source ontology from which the
relationship was asserted. A Perl script implementing the UMLStermFinder algorithm is freely available as Additional file 7.
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judgment calls have most likely lead to some erroneous
inclusion or exclusion of terms. The use of the core
gene set (filter 2) may lead to errors of commission due
to the multifunctional nature of genes. Thus, the use of
the subset in analyzing high-throughput experiments
may lead to some loss of information and may include
irrelevant terms. Error of commission only leads to a
slight degradation of the statistical power of analysis as
long as the fraction of falsely included terms is small.
Since the results must be interpreted by someone versed
in the domain to be useful, the inclusion of a small frac-
tion of non-specific terms would do little to degrade the
usefulness of the results. Errors of omission, on the
other hand, may more significantly degrade the results.
In theory, it is sufficient that one important term be
missing to blind the interpreter from seeing the true
biological meaning of the results. Nevertheless, our ana-
lysis of actual microarray data demonstrates that even in
its current form NIGO allowed interesting enrichments
to be identified that were otherwise missed. However, to
overcome the impact of errors of omission, at least in
part, we recommend that in addition to using NIGO (or
other subsets generated in a similar fashion), one should
conduct a parallel analysis using the full GO. This will
ensure that the domain-specific GO subsets could do no
harm - the interpretation of the results using both full
and clipped GO cannot be less informative than inter-
preting the full GO alone.
The approach we present here for constructing

domain-specific GO clipping can be applied to other
fields. It is possible, for example, to divide NIGO into
immune-specific and neural-specific sets. It should also
be possible to generate specific subsets that are relevant
to other domains, although significant work is involved
in the process, especially in the step involving a domain
expert’s review of a significant fraction of all GO terms.
It is possible that this step can be largely replaced by
automatic procedures, or that the pipeline described here
can be improved to reduce the number of decisions that
require an expert’s opinion. Furthermore, the five-step
filter used to decide upon NIGO inclusion/exclusion
could be altered to include more steps, such as searches
of other knowledge sources. Improved automation, or
alternatively a major community effort, could lead to the
creation of a library of domain-specific clipped GO sub-
sets, which could, in turn, enhance the interpretability of
many microarray experiments. Improved automation
could, in principle, be obtained by reversing the logic of
our NIGO evaluation, domain-related GO terms can be
picked by examining the GO terms that are associated
with expression profiles deemed by domain experts to be
related to some domain.
Another challenge in developing high quality GO sub-

sets is their maintenance. The Gene Ontology is

constantly growing, with new terms and annotations to
genes being regularly added. It is thus important to con-
tinually update GO subsets, such as NIGO. NIGO could
be updated by periodically reviewing new terms and
annotations that have been added to the GO, subjecting
them to the filter system developed to find relevance of
terms to the neural/immune systems and adding the
relevant terms, along with their parental terms, to the
subset. Assuming no dramatic increase in the rate of
growth of the GO, this can be achieved with modest
effort as the number of new terms is much smaller than
the number of existing terms.
Further research into the automation of domain-speci-

fic ontology clipping and/or community efforts may lead
to the emergence of multiple domain-specific derivates
of GO that will improve the interpretability of high-
throughput gene-related analyses.

Conclusions
We developed NIGO, a clipped subset of the Gene
Ontology directed at the neuronal and immune systems.
NIGO was validated by showing that it indeed improves
the functional analysis results of neural/immune related
expression profiles. Moreover, in the analysis of at least
one dataset NIGO allowed generation of a hypothesis
which would otherwise have been missed. We thus pro-
pose that clipped domain-specific GO subsets can pro-
duce clearer functional analysis results and help
generate meaningful hypotheses.

Methods
Overall approach
NIGO was created by removing terms not associated
with any gene in human, mouse and rat, and choosing
neural/immune relevant terms using a five step filtering
system. The performance of the resulting NIGO was
analyzed in comparison to the full GO and a generic
GO slim by comparing their performance in functional
analysis of relevant and non-relevant microarray data.

Data and tools
Ontology source files (the full GO and the generic
mouse slim subset of GO) were obtained from the GO
consortium web site [24] in the OWL format [25]
(October 2008).
The slim subset contains 152 high level GO terms

listed at http://bioinfo.bgu.ac.il/rubin/supplementary/
NIGO/Supplementary.html.
The ontologies were clipped using the Protégé 4.0 beta

OWL editor [26].
For by-species filtering, annotation files for human, rat

and mouse were downloaded (October 2008) from
GOA-EBI [27]. Association files used for GSEA analysis
were generated based on the GOA-EBI annotation files
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and in the format required by GSEA. In this format,
each row represents a GO term. The first column con-
tains the GO term ID, the second column contains a
description (or NA) and the rest of the columns contain
the genes that GO term is used to annotate. For NIGO,
the association file contained only terms included in the
subset. These files can be found at http://bioinfo.bgu.ac.
il/rubin/supplementary/NIGO/Supplementary.html. The
mapping between these terms and genes was kept iden-
tical to the ones in the GOA-EBI annotation files. For
UMLS-based filtering, the UMLS version 2008AB files
were used [28]. Microarray data analysis and functional
analysis were conducted using the GenePattern [29],
GSEA [9] (release 2.5) web servers, and Ontologizer [16]
as follows: (1) for each study, raw data (.CEL files) were
downloaded from GEO [30]; (2) expression files (.gct
files) were created using the Gene Pattern Expression
File Creator module; (3) where necessary (i.e. for expres-
sion files GSE6509, GSE6675, GSE6476, GSE7407,
GSE8788 and GSE9659), preprocessing was applied
using the Gene Pattern Preprocess Dataset module. (4)
Functional analysis was conducted using the GSEA
module. GSEA was run three times for each dataset,
using a different GO version for each run. For the full
GO, we used the organism-specific GO subset. In the
analysis of GSE8788, GSEA was run three times for
each of the three ontologies and FDR values were aver-
aged over the three runs. (5) Differentially-expressed
genes were found using the Gene Pattern Comparati-
veMarkerSelection module. Cutoff values for selection
of genes were chosen such that for each dataset, at
least 150 differentially-expressed genes were found in
at least one sample set. (6) Functional analysis was
conducted (April 2010) using Ontologizer. Term-for-
term analysis was conducted and the Benjamini-Hoch-
berg method was selected for multiple test correction.
Cutoff values for significant GO terms were selected
based on the results obtained with the full GO but
were never higher than 0.1. For analysis, NIGO was
defined as a subset in the full GO file (OBO format)
and all GO terms included in NIGO were tagged as
belonging to this subset (available from: http://bioinfo.
bgu.ac.il/rubin/supplementary/NIGO/Supplementary.
html). The same strategy was performed on the generic
mouse slim subset. For a complete description of the
parameters used to run each of the GenePattern mod-
ules, see Additional file 5.

The 5 step filter system
Each term was subjected to testing using a five-step fil-
ter. In each step, terms were selected based on their
relevance to the neural/immune systems. Only terms
that were not selected were passed forward to the next
step (Figure 2).

1. Filtration by name: Based on a domain expert’s
knowledge, terms were selected if their name indicated
their relevance (for example, the terms ‘neuron migra-
tion’ or ‘establishment of T cell polarity’ would pass this
filter and will be included in NIGO). Terms were
selected for inclusion if they seemed even remotely rele-
vant to the neural- or immune domains. This step
involved manual evaluation of thousands of GO term
names. Note that this step is subjective, making NIGO
biased towards the opinion of the experts who evaluated
the terms.
2. Association with a core gene list: A subset of genes

described in the literature as neurological or immunolo-
gical markers was compiled (see below). These genes
are routinely used in our lab as biomarkers for neurolo-
gical and immunological processes. We note that select-
ing these genes was partially subjective and based on
our past experience. Terms used to annotate at least
one gene from this list were flagged for inclusion in
NIGO. The genes used in the core group were PCNA,
PVALB, Tuj1, Calb1, Calb2, DCX, DPYSL2, HH3, Eno2,
GFAP, MKI67, MSI1, Nes, NeuN, Map2, NT3, P75
(NGFR) for neural processes and STAT1, STAT3,
SOCS1, SOCS2, IGF1, IFNgR, IL1b, IL6, BDNF, CNTF,
IFNg, TNF, IL4 for immunological processes.
3. Google Scholar search: The term name, when used

to search with Google Scholar, returned a neural- or
immune-related paper in the top 5 results. Searches
were performed (October - November 2008) by seeking
exact matches to the term name and adding at least one
key word from the following list: ‘neuro’, ‘immune’,
‘inflam’, ‘lymph’, ‘nerve’, and ‘brain’. This filter was
applied liberally, i.e. terms were selected if search results
were deemed even remotely related to the neural- or
immune domains.
4. UMLS-based filtration: terms are flagged as positive

results using the UMLStermFinder (see below).
5. Ontological integrity: Terms were selected to be

included in NIGO if they were parental (i.e. a super-
class by means of an ‘is_a’ or ‘Part_of’ relationship) to
any term that was flagged as positive by any of the
other filters. The ‘is_a’ relations were traversed up to
the root of the graph (in such a way that for each term
included in NIGO the direct and indirect ‘is_a’ parents
were included) and part_of relations were only used to
include directly related GO terms. Links via the ‘regu-
lates’, ‘negatively regulates’ and ‘positively regulates’
were not traversed.

UMLStermFinder
The UMLStermFinder is a tool developed for this study
for federated searches across the multiple ontologies
included in the UMLS. It tests the relevance of a GO
term to the neural- or immune systems by traversing
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the UMLS, seeking neural/immune-related terms that
are connected, directly or indirectly, to an input term
(Figure 4). The connections of UMLS concepts to the
tested GO term are provided by UMLS and defined
within the UMLS data files.

Microarray data sets
All microarray data sets were downloaded from GEO at
NCBI [30]. The GEO sets used in this study are
described in Additional file 2.

Availability
NIGO is freely available as Additional file 6 and for
download from: http://bioinfo.bgu.ac.il/rubin/supple-
mentary/NIGO/Supplementary.html as flat-file, or in the
OWL and Open Biomedical Ontologies (OBO) [31]
formats.
All supplementary material is freely available for

download from: http://bioinfo.bgu.ac.il/rubin/supple-
mentary/NIGO/Supplementary.html

Additional material

Additional file 1: Filtered GO terms. This file contains all the terms that
were tested using the five-step filter, by which step of the filter they
were flagged and which of the terms were included or excluded from
NIGO.

Additional file 2: Microarray Datasets for Comparative analysis of
NIGO, GO and GO-slim. This file contains a summary of the microarray
datasets downloaded from GEO at NCBI and used to test the
performance of NIGO.

Additional file 3: GSEA analysis results. This file contains a summary
of the GSEA analysis results for each of the microarray studies used to
test the performance of NIGO, GO and GO-slim.

Additional file 4: Ontologizer analysis results. This file contains a
summary of the Ontologizer analysis results for each of the microarray
studies used to test the performance of NIGO, GO and GO-slim.

Additional file 5: Parameters Used to Run GenePattern Modules.
This file contains the parameters used to run GenePattern modules
(Parameters not mentioned here were left as default)

Additional file 6: NIGO. This file contains the NIGO ontology in the
OWL format.

Additional file 7: MLStermFinder. This file contains the
UMLStermFinder script implemented in Perl.
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