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Abstract

Background: The clustered heat map is the most popular means of visualizing genomic data. It compactly displays
a large amount of data in an intuitive format that facilitates the detection of hidden structures and relations in the
data. However, it is hampered by its use of cluster analysis which does not always respect the intrinsic relations in
the data, often requiring non-standardized reordering of rows/columns to be performed post-clustering. This
sometimes leads to uninformative and/or misleading conclusions. Often it is more informative to use dimension-
reduction algorithms (such as Principal Component Analysis and Multi-Dimensional Scaling) which respect the
topology inherent in the data. Yet, despite their proven utility in the analysis of biological data, they are not as
widely used. This is at least partially due to the lack of user-friendly visualization methods with the visceral impact
of the heat map.

Results: NeatMap is an R package designed to meet this need. NeatMap offers a variety of novel plots (in 2 and 3
dimensions) to be used in conjunction with these dimension-reduction techniques. Like the heat map, but unlike
traditional displays of such results, it allows the entire dataset to be displayed while visualizing relations between
elements. It also allows superimposition of cluster analysis results for mutual validation. NeatMap is shown to be
more informative than the traditional heat map with the help of two well-known microarray datasets.

Conclusions: NeatMap thus preserves many of the strengths of the clustered heat map while addressing some of
its deficiencies. It is hoped that NeatMap will spur the adoption of non-clustering dimension-reduction algorithms.

Background

With the advent of high-throughput experiments, whole
genome measurements across multiple conditions have
become common. Human pattern recognition is still
unmatched by computers, making it advantageous to
visualize this data. Over the past decade, the clustered
heat map has become by far the most popular visualiza-
tion technique. It has been used in thousands of publi-
cations spanning a multitude of organisms and a variety
of data types [1-3]; it has even been dubbed [4] a “post
genomic visual icon.” There are good reasons for the
clustered heat map’s popularity. It provides a compact,
easy to grasp, depiction of a large amount of data across
two variables (e.g., gene and sample) with large contigu-
ous bands of similar colors that encourage the formula-
tion of more general hypotheses between these
variables. Still, the clustered heat map has some glaring
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flaws. As its name suggests, the rows and columns are
ordered using hierarchical clustering algorithms (while
there are other clustering schemes [5], they are typically
not used to construct heatmaps, so here, clustering
should be understood to refer to hierarchical clustering).
Distances in a clustering result are measured along the
tree branches and not by the proximity in branch tip
ordering. While these measures are related (especially
for very similar elements), they could be very different
[6]. Additionally, during clustering, when objects are
assigned to different clusters, further analysis essentially
involves these clusters as a whole, and the relationship
between the elements themselves is lost (see analysis of
human gene atlas in Results). Consequently, clustering
does not provide any natural ordering; the rows and col-
umns may be reordered arbitrarily by ‘swinging’ the
arms of the tree at each bifurcation yet preserving the
tree structure. The ordering produced by clustering thus
does not respect the intrinsic topology (if any) of the
data, making it a poor choice for use in a heat map.
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This is why ‘swinging’ based reordering using an inde-
pendent method is often required, post-clustering, to
capture the structure of the data. There are two pro-
blems with this reordering. Firstly, unlike the clustering
schemes, the reordering algorithms, while complex
enough to warrant dedicated software packages, are
often not elaborated upon or even stated. This reduces
the reproducibility of the result. More seriously, this
procedure could potentially place (deliberately or other-
wise) objects that are distant along the tree in close
proximity in the row/column order. Heat maps are
commonly read in this order rather than by their den-
drogram structure (if this were not the case, such reor-
dering schemes would not be needed). Effectively a
spurious pattern could be created, leading to incorrect
results (e.g., see clustered heat map for Spellman data in
Results).

So far we assumed the clustering results themselves
were meaningful. Indeed, when the underlying data is
tree-like, or at least some clustering/grouping tendency
is present, cluster analysis+reordering performs well.
However, this is not always the case. As group separa-
tion becomes fuzzier, other data-reduction schemes
often outperform cluster analysis. Usually, it is consid-
ered good practice to test for clustering tendency before
performing clustering or to perform bootstrap-like
methods to estimate cluster quality post-clustering [7].
Unfortunately, this kind of information is not typically
provided in a heat map. Thus validation is only by visual
inspection of the color patterns, and this may be
misleading.

Biological data often has a low dimensional structure
that may be visualized as a spatial pattern, so direct use
of a suitable dimension-reducing algorithm could, in
many cases, be more natural and better characterize the
data than the current combination of structure destroy-
ing clustering + restoring algorithm. There are many
such algorithms whose utility in the analysis of biologi-
cal data has been demonstrated [8,9]. Multiple packages
in R [10], and otherwise, implement them. Despite this,
we believe their use has been limited, at least partially,
by the lack of associated visualization methods with the
visceral impact of the clustered heat map.

Here we present an R package called NeatMap to
meet this need while addressing some of the deficiencies
of the clustered heat map. It consists of novel plot-types
in two and three dimensions intended to be used in
conjunction with any dimension-reduction scheme cap-
able of embedding results in low dimensional Euclidean
space (e.g., Principal Component Analysis (PCA) and
Multi-Dimensional Scaling (MDS)). This places weaker
constraints on the data than does (hierarchical) cluster
analysis, which requires the data to exist in a tree space.
Like the heat map, and unlike typical visualization

Page 2 of 9

schemes for these methods, NeatMap displays the entire
dataset underlying the result. It also has provisions to
superimpose the cluster analysis results, for mutual vali-
dation. This feature is not commonly implemented in
software packages, and our implementation is more
informative about individual points than existing imple-
mentations [11]. Also note that unlike the clustered heat
map, the layout of the plot is almost entirely determined
by the output of the dimension-reduction scheme,
thereby respecting the intrinsic structure in the data
more than a clustering based reordering would.

There are a number of alternatives to hierarchical
clustering (see, for example, the R package seriation
[12]), designed specifically to produce an ordering that
reflects the relative relations between elements. Neat-
Map is a visualization method, and in general it is not
intended to compete with these (in fact they can easily
be used in conjunction). However, some of these techni-
ques involve ordering by the first component of PCA/
MDS. Unless, this component captures most of the rele-
vant information, NeatMap, which uses 2D embeddings,
is likely to better utilize the dimensional reduction
results. On the other hand, we do not consider alternate
clustering algorithms such as k-means clustering [13],
tight clustering [14] and various model based clustering
algorithms [15-17]. Although these avoid some of the
problems faced by hierarchical clustering as outlined
above, and have been shown to perform better [5], they
typically just assign (or give probabilities of assigning)
objects to clusters. No relations among objects within a
cluster are provided, and typically the relations among
clusters is not used either. Thus, they do not naturally
support the construction of heatmap like plots. Self
Organizing Maps (SOM) [18] used with a small number
of nodes/clusters face a similar problem. However, as
the number of clusters increases, they essentially involve
mapping objects onto points in a low dimensional space
much like multidimensional scaling. In this case, it
should be possible to use SOMs in conjunction with
NeatMap, although we have not considered it in this
paper. Methods such as model based clustering do not
presently have associated visualization methods, but if
their results could somehow be mapped onto points in
Euclidean space, they too could be visualized with the
help of NeatMap. Note that NeatMap analyzes the rows
and columns of the gene expression matrix separately,
and is therefore not intended to visualize bi-clustering
results.

Implementation

The general class of data considered involves factors
(e.g., genes) being measured across multiple conditions
(e.g., samples, times, tissues, etc.). For each factor, these
measurements will be referred to as its profile. It is
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assumed here that some dimension-reduction scheme,
(e.g., PCA) has been used to depict the relationship
between factors by embedding them into a 2D Euclidean
space. The plots described here allow us to visualize
these relationships, while simultaneously showing the
profiles underlying them. NeatMap may be used to
visualize the results produced by any appropriate dimen-
sional reduction scheme of the user’s choice. For the
case when the user does not already have a dimension-
ally reduced result, NeatMap can itself invoke and then
visualize (the results of) one of two dimensional reduc-
tion methods:

1. Principal Component Analysis (PCA) [19] pro-
duces a low dimensional representation of the data
using the linear combinations of variables that cap-
ture the maximum amount of variance. Being a lin-
ear scheme, it is very fast, although this may
sometimes be at the expense of quality of result.

2. non-Metric Multi-Dimensional Scaling (nMDS)
[20,21] is a dimensional reduction scheme that
attempts to represent factors as points in a low
dimensional Euclidean space such that the (relations
among) distances between the points in the low
dimensional space are consistent with those in the
original data. nMDS is a non-linear scheme that is
typically found to outperform PCA, but is slower for
large data sets.

The utility of both methods in the analysis of gene-
expression data has previously been shown [8,9,22].
Based on the performance differences between nMDS
and PCA, we suggest that if less than 3000 points are
being used, nMDS should be used, while PCA is better
for larger sets (at least on an ordinary laptop computer).
nMDS was used as the dimension-reduction scheme for
the demonstrations in this paper, because, generally
speaking, the embedding produced by nMDS is more
informative than the corresponding PCA result (results
for larger data sets embedded using PCA can be seen in
Additional File 1). An R implementation of nMDS is
included for convenience in the package. There are mul-
tiple plots in this package, each emphasizing different
aspects of the factor-condition relationship:

1. heatmapl: This is the traditional heat map,
except a dimension-reduction scheme other than
clustering (for examples see [12]) may be used for
ordering of rows and/or columns. NeatMap itself
provides a novel way to do this from a 2D embed-
ding method: normalize the data, or use an ampli-
tude neutral distance measure such as the Pearson
correlation. Then, the embedded result produced by
PCA, nMDS, etc., is often annular and can be
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parameterized, approximately, by a single variable,
viz., the angular position (figure 1d). This is a better
option than using the ordering based on a single
component. The standard cluster dendrogram may
be superimposed on the heat map for mutual
validation.

2. circularmap: Similar to heatmapl except the
arrangement is circular (figure le) rather than linear
to emphasize the periodicity of the angular positions
obtained as above (or using other methods [23] that
produce annular results). It is easy to make compari-
sons across conditions and factors. The factor clus-
tering result may be superimposed on this plot.

3. lineplot: The 2D dimensionally-reduced factor
relationship result is gridded, and the profiles of all
the factors within each grid cell are displayed
together as line graphs (figure 1c). This provides a
global understanding of the nature of the data and
its embedding. However, individual factors are
harder to pick out, and comparison across condi-
tions is more difficult.

4. draw.dendrogram3d: Cluster validation of the 2D
embedding result for factors (figure 2b) in a 3D
environment. The clustering result for both factors
and conditions may be superimposed on
profileplot3d.

5. profileplot3d: Addresses the inability of heat-
map]l and circularmap to depict radial information
by visualizing the profiles in a 3rd dimension using a
rotatable 3D environment (figure 3a).

6. stereo.profileplot3d: A stereo plot where two ver-
sions of the same profileplot3d result are shown as
viewed from slightly different perspectives to produce
the impression of a true 3D view (figure 3b). The plot
may be rotated dynamically to provide different views.
This plot should also be useful for producing 3D plots
for publications where rotation is not possible.

The functions above are dimension-reduction method
neutral; dimensionally-reduced results provided by the
user are plotted. Convenience wrapper functions make.
heatmap1, make.circularmap, make.profileplot3d and
make.stereo.profileplot3d are also provided. They take
just the raw data as input, perform dimension-reduction
using either nMDS or PCA, and finally produce the
appropriate plots. All 2D plots were implemented by
using ggplot2 [24] and 3D plots using rgl [25]. These
libraries have numerous functions for additional custo-
mization and modification of the plots produced by
NeatMap.

Results and Discussion
The utility of the plots described above are demon-
strated with the aid of two different microarray-based
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datasets. The 2D plots are illustrated with the help of
the Spellman et al. [26] dataset identifying cell cycle
related genes in yeast, while microarray data from the
human gene atlas study [27], profiling gene expression
across multiple tissues, is used for the 3D plots.

2D plots

Spellman et al. [26] produced genome-wide time course
profiles in yeast using micro-arrays under different syn-
chronization methods. Fourier analysis was then used to
identify 800 genes, with the correct periodicity, as cell
cycle related. We consider only these 800 cell cycle
related genes and study their profiles under alpha syn-
chronization. For an example with a larger number of
points without such periodicity see Additional File 1.
Since a natural time ordering of the measurements exists,
we are only interested in the relationship between genes.
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For comparison to the plots produced by NeatMap
we used the Multiexperiment Viewer (MeV) software to
generate the standard clustered heat map for this data
(figure 1a). Average linkage hierarchical clustering of the
Pearson correlation, followed by MeV’s function for
optimal reordering of genes were used. Although the
periodicity of these genes is clear, and locally good
groupings are seen, the pattern as a whole appears quite
jagged. This is because a cluster like topology was forced
on an essentially continuous distribution. Closely related
groups of genes are correctly clustered together but the
global relations between genes in different clusters
(which is essential for complete ordering) are lost.
Figure 1b shows the result produced by a 2D embedding
of the gene profiles using nMDS, again with the Pearson
correlation. A clear continuous ring like pattern emerges
naturally. (PCA, with normalized profiles, shows a
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Figure 1 Different ways of representing the cyclic genes for the alpha experiment in Spellman et al. [26]. (a) is the standard heat map
using average-linkage hierarchical clustering in MeV, shown here for comparison. (b) is the result of 2D nMDS. The profiles for all the genes in
each grid cell in (b) are shown using lineplot in the corresponding grid cell in (c). (d) shows heatmap1 in which the angular positions of genes
in (b) is used to reorder the rows in (a). (e) is circularmap using the angular positions of points in (b).
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similar result although the ring structure is more diffuse;
see Additional File 2).

Such a ring-like structure is very common when an
amplitude-normalized distance measure such as the
Pearson correlation is used. In this situation, it is natural
to parameterize the position of a gene by a single angle.
This is what heatmap1 does. For each gene, its angular
position in the nMDS result (figure 1b), with respect to
its center of mass, is determined, and the profiles are
placed (figure 1d) in a standard heat map ordered
according to this angle. The periodic nature of the pro-
files is now clear, and it is evident that points are
arranged by time of up-regulation; essentially the cell
cycle phase in which the gene is expressed. While in
this case the angular co-ordinate was interpretable as
the cell cycle phase, this method works even with non-
periodic data when such interpretation is not the possi-
ble (see, for example, Additional File 1). Note that heat-
mapl also accepts orderings produced by other
methods. The R package seriation [12] offers a variety of
these, and heatmapl plots using them for the Spellman
data set are available as Additional File 3. In general, the
NeatMap ordering is superior, except for the case of
Rank Two Ellipse [23]. This method, like NeatMap, uses
angular ordering based on normalized profiles (the cor-
relation matrix itself in this case). heatmapl also allows
the superimposition of clustering results. Evidently, the
local arrangements in nMDS and clustering are consis-
tent. Large scale rearrangement, produced by incorrect
‘swinging’, however, makes the clustered heat map result
seem poOr.

There are some long lines in the gene clustering result
in figure 1c spanning the entire length of the heat map.
This is a consequence of the periodicity of the angular
variable, which results in the two opposite ends of the
heat map being almost identical. To avoid artifacts from
this periodicity, one may use circularmap (figure 1le).
The ordering of profiles is identical to heatmap1, except
they are placed along a circle according to their angular
positions in figure 1b. One additional advantage of this
format is that the non-uniformity in the phase distribu-
tion stands out more clearly. It is much harder to gain
this type of information from a traditional heat map
display.

Figure 1c shows the lineplot based on the nMDS
result in figure 1b. As explained earlier, each cell in the
grid in figure 1c shows the time course profiles of all
the genes in the corresponding cell in figure 1b. The
sinusoidal nature of the profiles is much clearer in this
plot. It also emerges that the radial coordinate in this
case is a measure of ‘cyclicity’, with the genes close to
the centre being less cyclic.

Thus, lineplot emphasizes the overall nature and
change in profiles with position. However, compared to
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heatmapl and circularmap, comparison of expression
at a fixed time across genes is more difficult. It is also
more difficult to quickly look up a specific gene. On the
other hand, heatmapl and circularmap are intended
for essentially one dimensional results. To deal with the
more general case we must use 3D rotatable plots.

Assuming the profiles are stored in matrix form in
alpha.profiles, the code to produce figure 1c, d,
and le (except for specific graphics options) is:

pos .nMDS<-nMDS (alpha.profiles) $x; # Per-
form nMDS embedding

lineplot (pos.nMDS, alpha.profiles, nor-
malize=T); #1lc

make.heatmapl (alpha.profiles, row.nor-
malize=T); #1d

make.circularmap (alpha.profiles); #le

To use PCA instead of nMDS, a single parameter spe-
cifying this would need to be added to each of these
plots.

3D plots

We illustrate the 3D plots using the gene atlas dataset.
Su et al. [27] used microarrays to analyze the expression
profiles of genes in a variety of tissues in both humans
and mouse. There is no natural ordering of the genes or
tissues, but the relationships between tissues are more
easily understood. We therefore primarily focus on
these.

Since, in the present context, we are not interested in
cross-species comparison, for this demonstration only
human data was used (mouse gives similar results). The
1000 genes on the HG-U133A array showing largest
variance across the 79 tissues were analyzed. Function-
ally, there are broadly 3 groups of tissues: those from
the brain proper, some nervous system related tissues,
and those from other parts of the body. The result of
applying hierarchical clustering (average-linkage) using
the Pearson correlation to the tissues is shown in
figure 2a. Three distinct clusters are seen, one of which is
composed solely of brain tissues. However, the nervous
tissues are mixed with the other non-brain tissues in the
second cluster and no relation to the brain can be
gleaned from the leaf order or distance along the tree.

A 2D embedding of the same data using nMDS with
Pearson correlation was also performed. The cluster
analysis result was superimposed on the 2D nMDS
result in a rotatable 3D environment using draw.den-
drogram3d (figure 2b). The same three clusters are pre-
sent, and there is broad agreement between the
clustering and nMDS results. Unlike the clustering
result, however, the relationship between the brain and
nervous system tissues is much clearer. The nervous
system genes are also quite similar to the central cluster
of tissues in figure 2b. Apparently, cluster analysis
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Figure 2 Representations of the tissue relations in the human gene atlas data: (a) is the average-linkage hierarchical clustering (using
Pearson correlation) result applied to the tissues; (b) shows the superimposition of the clustering result on a 2D nMDS embedding of tissues
using draw.dendrogram3d.
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Figure 3 Representations of the human gene atlas data: (a) shows the expression profiles underlying figure 2(b) using profileplot3d. The
different groups of tissues are marked with labels of differing colors. (b) is a stereo plot of the same result created using stereo.profileplot3d.
(BP = Brain Proper, ONS = Other Nervous System and R = Rest)
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assigns them to this cluster, and in doing so their rela-
tionship to the proper brain tissues is lost.

The profiles underlying the nMDS result may be dis-
played in a rotatable 3D environment by using profile-
plot3d. Figure 3a shows this with the cluster analysis
results for genes and tissues superimposed on it. The
genes were ordered according to their angular positions
in a ring-like nMDS embedding by making use of the
Pearson correlation, much like heatmap1. The separa-
tion between the three groups of tissues can be seen as
before. However, profileplot3d makes it clear that
there are different set of genes up-regulated in these
groups. The same result can be viewed as a rotatable
stereo plot using stereo.profileplot3d (figure 3b). This
type of plot could be useful for publications and other
environments where dynamic rotations are not
possible.

Assuming the data is stored in matrix form (with
genes along the rows and tissues along columns) in
atlas.profiles, the cluster analysis result for tis-
sues in atlas.cluster, and the three groups are
color coded in atlas.group.colors the code to
produce the plots in figure. 2 and 3 are:

atlas.nMDS<-nMDS (profiles) $x;

draw.dendrogram3d (atlas.nMDS,atlas.
cluster, labels=colnames (atlas.profiles),

label.colors=atlas.group.colors) ;

make.profileplot3d(atlas.profiles,col-
umn.method="nMDS”,

labels=colnames (atlas.profiles), label.
colors=atlas.group.colors) ;

make.stereo.profileplot3d(atlas.pro-
files, column.method="nMDS”,

labels=colnames (atlas.profiles), label.
colors=atlas.group.colors) ;

Conclusions

The clustered heat map, an immensely popular means
to visualize large amounts of data, is encumbered by its
dependence on cluster analysis. Many alternative dimen-
sion-reduction schemes have the potential to do better,
but have so far lacked effective means to visualize whole
datasets in the way the heat map can. NeatMap is an R
package that addresses this need. Using the well-known
Spellman yeast cell-cycle and human gene atlas microar-
ray datasets, we have shown that a dimension-reduction
method (nMDS was used in this paper for illustration)
in conjunction with NeatMap is more informative than
the clustered heat map. It is hoped that this package
will increase the popularity of these methods and spur
the development of novel visualization schemes.

Availability and requirements
Project name: NeatMap
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Project home page: http://cran.r-project.org/web/
packages/NeatMap/index.html

Operating system(s): Platform independent
Programming language: R

Other requirements: R, R packages(ggplot2 and rgl)
License: GPL-3

Additional file 1: Analysis of the gene atlas data using PCA and
NeatMap. Unlike in the analysis of the gene atlas data in the main text,
where the expression profiles of only 1000 ESTs were considered, here
we analyzed all 13,034 ESTs. The tissue and gene expression profiles
were both normalized to zero mean and unit variance. Both the gene
and tissue profiles were analyzed using PCA and were represented using
the first two principal components. The gene expressions results lay in a
circular region and were therefore parametrized/ordered by their angular
positions. The tissue result was more skewed and we therefore ordered
tissues according to their first principal component. (a) shows the result
using heatmap1 with the rows (genes) ordered by the angular position
of the 2D PCA embedding and the columns (tissues) ordered according
their first principal component. (b) shows the circularmap result using
the angular position and tissue ordering as described above. Both plots
clearly place similar genes and tissue close to each other, although there
is no simple interpretation of the angular variable as in the case of cell
cycle data.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
45-S1PDF]

Additional file 2: Spellman et al. [26]data analyzed using PCA and
NeatMap. The NeatMap plots in figure 1 produced using PCA instead of
nMDS. Spellman et al. data using alpha synchronization was visualized
using PCA and NeatMap. The profiles were normalized to have zero
mean and unit variance, and all profiles with missing data were
discarded (a) is the standard PCA result, (b), (c) and (d) show the
lineplot, heatmap1 and circularmap functions respectively applied to
(a).

Click here for file

[ http//www.biomedcentral.com/content/supplementary/1471-2105-11-
45-S2.PDF ]

Additional file 3: heatmap1 for the Spellman data [26]using
different ordering schemes in the R package seriation [12].
heatmap1 may be used in conjunction with orderings produced using
external algorithms. The R package seriate [12] contains a number of
these. heatmap1 using the Spellman data [26] and different ordering
schemes using seriate are shown in the figure. a) uses the Travelling
Salesman Algorithm, b) orders rows according to the first component of
the PCA embedding of the rows, c) is ordering according to elliptic
ordering method proposed by Chen [23], d) by the method proposed by
Gruvaeus and Wainer, e) by the 1st component of the MDS embedding
of rows, f) by the Optimal Leaf Ordering algorithm.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
45-S3.PDF]
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