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Abstract

identified genes by genomics technology.

to study the query proteins.

from database searching.

Background: Genome sequencing and post-genomics projects such as structural genomics are extending the
frontier of the study of sequence-structure-function relationship of genes and their products. Although many
sequence/structure-based methods have been devised with the aim of deciphering this delicate relationship, there
still remain large gaps in this fundamental problem, which continuously drives researchers to develop novel
methods to extract relevant information from sequences and structures and to infer the functions of newly

Results: Here we present an ultrafast method, named BSSF(Binding Site Similarity & Function), which enables
researchers to conduct similarity searches in a comprehensive three-dimensional binding site database extracted
from PDB structures. This method utilizes a fingerprint representation of the binding site and a validated statistical
Z-score function scheme to judge the similarity between the query and database items, even if their similarities are
only constrained in a sub-pocket. This fingerprint based similarity measurement was also validated on a known
binding site dataset by comparing with geometric hashing, which is a standard 3D similarity method. The
comparison clearly demonstrated the utility of this ultrafast method. After conducting the database searching, the
hit list is further analyzed to provide basic statistical information about the occurrences of Gene Ontology terms
and Enzyme Commission numbers, which may benefit researchers by helping them to design further experiments

Conclusions: This ultrafast web-based system will not only help researchers interested in drug design and
structural genomics to identify similar binding sites, but also assist them by providing further analysis of hit list

Background

Over the past decade, a significant proportion of the
protein structures deposited in the Protein Data Bank
(PDB) have come from the advanced high-throughput
methods of various structural genomics initiatives[1,2].
Although the themes of these funded post-genomic pro-
jects differ at many levels, there is a central problem
which is: how these sequences and structures are related
to their functions. By increasing the structural reper-
toire, it is hoped that we will be able to improve our
understanding of fold space and how proteins evolve
new functions(3,4]. This structure-function relationship
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is especially essential in the drug design field where
researchers try to target specific proteins involved in
disease mechanisms by using structure-based drug
design methods [5-7].

The number of in silico methods which can infer pro-
tein functions has grown enormously in the recent
years. They can be categorized as sequence-based and
structure-based[8]. Powerful BLAST-like sequence-
search methods are able to transfer the function of a
well-defined protein family to a protein with a high
sequence similarity[9]. For lower sequence similarity
instances, more subtle methods such as “profile” or
“hidden Markov models” can be constructed from mul-
tiple sequence alignments and applied to find obscure
patterns in the protein sequences, thus assigning a func-
tion to them [10-12]. All of these algorithms above
assume that similar sequences are derived via divergent

© 2010 Xiong et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


mailto:bxiong@mail.shcnc.ac.cn
mailto:jkshen@mail.shcnc.ac.cn
http://creativecommons.org/licenses/by/2.0

Xiong et al. BMC Bioinformatics 2010, 11:47
http://www.biomedcentral.com/1471-2105/11/47

evolutions. However, this is limiting, as demonstrated by
numerous studies showing that evolution in structure
space is much more conserved than in sequence space
[13]. This has spurred researchers to develop methods
to infer functions directly from structural information.
Many structure fold/domain classification databases
have been compiled in efforts to build a basis for such
algorithms [14-16]. Although they have assisted
researchers in assigning functions to proteins with simi-
lar folds, these fold information based methods also
have their drawbacks, as it is shown that sequence/
structure can also dynamically change due to convergent
evolution[17]. This is exemplified by many proteins
involved in metabolism pathways, which although they
do not have any fold similarity, all process similar meta-
bolites. One explanation could be that they have a simi-
lar spatial arrangement of key residues in their catalytic
binding sites. Such limitation further encourages
researchers to develop methods based on key residues
or local structural motifs.

Searching for similar local spatial patterns in structure
databases is an especially challenging task, since it
involves a large searching space and is usually time-con-
suming. Given its importance both in basic biology
research and drug design, several algorithms have been
devised to tackle this difficult problem of finding similar
functional sites in structures [18-24]. Among these local
spatial similarity detection methods, some rely on the
curated local structure patterns, like in TESS and
SPASM systems, and identify the similar local structures
by comparing these curated structure templates with the
query. Others are more flexible and able to take many
structures into account, then build the structure pat-
terns during the process and detect the similar local
structures on the fly as exemplified by Hamelryck’s mul-
tidimensional index tree method[25]. These methods
not only give hints about structure evolution and pro-
tein functions, but also play a significant roles in pre-
dicting drug side-effects caused by ligand cross binding
to similar surface patches on various target structures.
At the fundamental level, the elementary searching algo-
rithms used in these methods are usually based on geo-
metric hashing and graph clique detection. Due to the
significant computational expenses of these algorithms,
they typically rely on previously calculated data sets and
it would be nontrivial to apply them within the whole
structure space represented by the PDB. Users can only
visualize and analyze results stored in a pre-compiled
database. While as a consequence of structural genomics
research, there is a continuously increasing demand for
performing binding site similarity searches with user
input structures in order to find possible functions for
these binding sites as well as for the proteins in a large
scale and fast way.
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Here we present a new ultrafast binding site similarity
search method along with a simple analysis of occur-
rences of Gene Ontology (GO) term and Enzyme Com-
mission (EC) numbers in hit list[26]. Our method was
inspired by the fingerprint and pharmacophore concepts
commonly used in chemoinformatics[27]. We first sys-
tematically extracted possible binding sites from protein
structures, mapped pharmacophore properties to the
binding sites and calculated fingerprints for later data-
base searches. To enable users to identify subtle similar-
ity between binding sites, a panel of fingerprint
measurements was tested to find the optimal solution.
Further, a statistics-based score method was developed
to evaluate hits with the aim of eliminating false posi-
tives. This novel binding site similarity search method
should enable researchers in the structural biology field
to examine in detail for possible binding sites in an
ultrafast large scale way. Also it will benefit researchers
in the field of drug development by allowing them to
predict and investigate possible side effects due to ligand
cross binding events.

Methods

Extract possible binding sites from PDB database

First, a total of 41449 protein structures were gathered
from the RCSB PDB (up to 2008.1)[28]. Then, a geome-
try-based protein binding site detection method, named
PASS (Putative Active Sites with Spheres)[29], was
adopted to extract possible binding sites from every
polypeptide chain in the database of protein structures.
This tool is able to characterize concave regions of a
protein surface and to identify positions likely to repre-
sent binding sites based upon the size, shape, and burial
extent of these volumes[29]. The output spherical
probes of PASS were processed with an in-house pro-
gram based on a minimum spanning tree algorithm to
split the probes around the protein surface into clusters
at least 5 A apart. This resulted in 201,233 probe clus-
ters, which were further filtered so that only probe clus-
ters containing 30 to 200 probes were considered as
binding sites. These feasible binding sites were used to
extract protein residues within 6 A of these probes.
These binding site probes along with the identified
binding site residues were stored into the database for
later visualization and fingerprint calculation. Two other
datasets which compiled with known small molecular
binding sites were also constructed for a better evalua-
tion of our method. First, the HETATM residues in
PDB database were filtered such that only the ones
which have molecular weights between 100 and 800
were retained. Also, if one residue shows up for more
than 10 times in PDB database, then it will be regarded
as a common molecule and discarded. Finally, 13227
PDB structures were subjected as a database for later
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geometric hashing and fingerprint calculation. In geo-
metric hashing calculation, only the backbone CA atoms
and centroids of functional fragments of side chains of
binding site were retained. (See the additional file 1,
Table S1 for definitions of fragment types). We named
this dataset GH Validation Dataset. The other dataset is
FP Validation Dataset, which use the known binding
sites of these 13227 PDB structures to calculate the fin-
gerprint with the method describe below.

Fingerprint calculation

A fingerprint, commonly utilized in chemical similarity
research, is a string representation of molecular struc-
ture and properties. Normally, fingerprints take account
for atomic distance or connectivity patterns. And a com-
parison of fingerprints can provide an inexpensive way
to obtain similarity comparisons between query and
reference structures. Given that the aim of the present
work is to develop a fast method for binding site simi-
larity searches, we borrowed the concept of fingerprint
to characterize binding site in proteins. Generally, each
amino acid was split into several fragments (see addi-
tional file 1, Table S2 for details), and these fragments
were classified according to 7 physicochemical types:
hydrogen bond donor/acceptor(type 1), hydrogen bond
acceptor(type 2), hydrogen bond donor(type 3), aromatic
(type 4), lipophilic(type 5), positive charged(type 6),
negative charged(type 7). The fragments of the binding
site residues were mapped into these pharmacophore-
like types and the centroid of each fragment was calcu-
lated. The distances between each fragment-fragment
centroid were binned into 0-40 A categories with a 1 A
stepsize (the procedure is illustrated in Figure 1).

‘ PDB database

\ 4

| Possible binding sites ‘

| Fragments of binding site residues classified as 7 types |

3

‘ Distances between the centroids of fragment pairs ‘

FingerPrint ‘

typel-type?

typel-typel typeT-typel

Figure 1 Workflow to compute a fingerprint from a binding
site structure. The atoms of the binding site residues are divided
into 7 fragment types according to their properties. Distances
between the centroids of each pair of fragments were then
calculated and the distances are recorded and binned into the
corresponding locations in the fingerprint (FP).
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Fingerprint scoring function

The heart of any similarity comparison system is the
measurement method for quantifying the degree of
resemblance between two objects. Several binary and
quantitative fingerprint scoring functions were assessed
including Tanimoto Distance, Euclidean Distance, Can-
berra Distance and Angular Separation. The Canberra
Distance (Equation 1) was identified as giving the best
performance measurement:

Xifp—%
FP _Score;; = 2' i~ k| (1)
|xlk|+|x]k|

which denotes the dissimilarity score between finger-
print i and j, both of which have n bins.

Obviously the number of fragments in a binding site
will affect the score of the fingerprint similarity function
(the greater the number of fragments, the larger the
count in the fingerprint). The relationship between frag-
ment number and the dissimilarity score should be
investigated. In the present work, we first randomly
selected 3000 binding sites from our database and then
calculated the dissimilarity scores between these finger-
prints. Let the fragment numbers of two binding sites i
and j be denoted as Num; and Num;. Considering the
algorithm of the scoring method, we calculated a new
Fix_Num,; for each two binding sites:

_ INumj—Num;j|

Fix _ Num; ij =

2)

|Num;|+|Numj|

Scores (FP_Score) below 100 (which indicate similar
binding sites not representing random comparison
pairs) were eliminated and remaining scores were stored
into bins of Fix_Num, (window length 0.002), where for
each bin the averages and standard deviations (SD) were
computed. This is similar to the procedure of regress 3
in Pearson’s FASTA sequence alignment scoring func-
tion[30]. Then least square fitting was carried out for
the histogram data of the averaged scores and SD
against the fixed fragment number Fix_Num;. The fitted
Meang, and SDy; can be calculated for each Fix_Num;;
using the parameters obtained from the fitting. Now the
Z-score for every pair ij can be defined as:

FP _ Scorejj—Mean fjy
i~ SDflt

ZScore;; (3)

Thus, a comparable Z-score is available for selecting
similar binding sites from the fingerprint database.
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Results

Analysis of possible binding sites

The goal of structural biology is to investigate and
understand protein functions through three dimensional
structures. Proteins execute their functions via binding
to other cellular components such as ligands. The con-
tact points located on the protein surface are commonly
known as binding sites. Although it still remains a chal-
lenge to identify binding sites solely from a three-
dimensional structure, several computational methods
have been developed to detect such spatial motifs. One
of them, PASS[29], is a binding site detection program
based on an analysis of the geometric features of the
protein surface. Due to the great difficulty of identifying
biologically meaningful binding sites, we decided to
gather all possible binding sites for the analysis. At first,
a total of 41449 structures were retrieved from the PDB
[28] database and filtered to remove all non-standard
amino acids. Next, each chain containing more than 100
amino acids was saved as a file to be used in binding
site detection using the PASS program, which resulted
in 201233 possible binding sites, or roughly two binding
sites per polypeptide chain. A detailed analysis of these
possible binding sites shows that the average size of a
binding site is 30 amino acids (summarized in additional
file 1, table S3). Mapping the binding site residues to
pharmacophore fragments identifies about 88 fragments
per binding site. By analyzing the pharmacophore type
distribution in the binding sites, it is clearly shown that
both hydrogen bond donor/acceptor and aromatic frag-
ments are enriched in the binding sites compared to the
whole  proteins, while not the lipophilic
pharmacophores.

To further examine the amino acid distributions in
binding sites, we also investigated the amino acid occur-
rence both for all the residues in binding sites (within 6
A of the PASS probes) and only solvent accessible resi-
dues. As shown in Figure 2, the amino acid distribution
pattern of whole binding sites is consistent with the
fragment types found in the binding site, while the dis-
tribution of solvent-accessible residues are quite differ-
ent. In binding sites, the positively/negatively charged
residues (ARG, LYS; ASP, GLU) occur more frequently,
while the amino acids CYS and PRO are rarely found.
This is consistent with an analysis of the catalytic resi-
dues in enzyme binding sites. Although in enzymes, his-
tidine is also a critical player in catalysis[31].

Similarity scoring system

Due to the difficulty of obtaining a gold standard bench-
mark of similar binding sites in a meaningful scale, we
use simulated datasets described below as a control to
identify the most appropriate measurement for those
fingerprints containing modest similarity. We first
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Figure 2 Binding site residues distribution.

grouped the binding sites in the database according to
their fragment numbers, denoted as Group, (n is the
fragment number in the binding site). For each Groups,;
(i =6,7,8, .., 40), we selected 10 binding sites ran-
domly. Two synthesized binding site datasets were cre-
ated with the following strategies.

Dataset |

For each binding site S (with fragment number Numy),
we created 100 new structures denoted as S,q,, (k =
1,2,3, .., 100). In each S, , the previous structure of
S was kept and Numsxlyoo random points were
added with the follow procedlure:

« Fragment types are selected randomly from 1 to 7;
+ Two farthest points in binding site are located, and
then two spheres of 8 A radius are created centred
by these two points;
» Randomly set point coordinates inner the spheres
until certain number of points have been got, every
point should be separated by at least 3.5 A.
Dataset I
This dataset is derived from Dataset I. The atom types
in Spew , are re-defined randomly while the coordinates
of binding site structures are retained. We consider this
dataset as a random dataset.

Several binary and numerical fingerprint similarity
measurement methods were assessed using these two
datasets with the aim of finding one that could separate
the similar binding sites from the random ones. The
influence of bin step size (0.1 A, 0.5 A, 1 A, 1.5 A, 2 A)
in the fingerprint calculation was checked, and it
showed that a 1 A bin size was detailed enough to give
a good description of binding site shape. After investi-
gating the similarity measurement methods, the Can-
berra Distance (see Method Section) was found to be
the most appropriate scoring function in our case. As
shown in Figure 3, this similarity measurement method
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Figure 3 Raw fingerprint scores for two simulated binding
sites data sets. Here only six groups are shown. The black are

scores of Dataset I. The red lines are scores of random Dataset II.

is capable of separating partially similar binding sites
from random binding sites when they have similar sizes,
especially when the fragment number in the original
binding site is less than 100. Even when the binding
sites are large, this scoring function still worked if the
fragment numbers added do not exceed 50% of the ori-
ginal fragment number.

Although the Canberra Distance scoring method out-
performs other fingerprint scoring methods in this
simulation, it was clearly not feasible to separate similar
binding sites from random ones if the binding sites were
in different groups. This spurred us to devise a Z-score
function to correct the similarity score calculated for
different binding sites.

For the sake of generalization, we randomly selected
3000 binding sites from our binding site fingerprint
database and calculated similarities for each pair
(9,000,000 pairs). After removing obviously similar pairs
(FP_Score < 100.0), the histograms of the mean and
standard deviation versus the Fix_Num;; were calculated
with the procedure of regress 3 in Pearson sequence
alignment score function[30]. Only the number of score
data points in the histogram which are larger than 5000
were considered reliable and used in later fitting. As
depicted in Figure 4, the smooth line for the mean value
is obtained from the cubic polynomial fitting with an R-
square value of 0.991. The standard deviation fitting is
slightly worse with an R-square value of 0.953.

With the parameters obtained above, the mean and
standard deviation of the score at a given Fix_Num,; can
be defined as the following:

Mean , =169.09461 ~ 98.64539 x Fix _ Numy; + 2328.25499x Fix _ Num} = 2201.57396 x Fix _ Num} (4)

SDj; =27.9058 - 4.23179x Fix _ Num;; + 502.12018 X Fix _ Num} - 821.60683x Fix_Numf,(S)
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Figure 4 Least square fitting of the mean and standard
deviation of the raw fingerprint scores.

The Z-score can then be computed with Equation 3.

To evaluate the Z-score performance, Dataset I and II
were used again to recalculate the Z-score for them. It
was found that the Z-score for the similarity of the ran-
dom binding sites were around 2.5, except for the case
of very small binding sites. This should allow users to
better judge the results from database search.

In general, throughout the analysis of the simulated
datasets, the more points added to the original binding
sites, the more difficult it is to detect the subtle similar-
ity between them. Also, the Z-score scheme needs a
cut-off value to indicate cases of reliable similarity when
searching the binding site database. To accomplish this
critical assessment for the boundary of the Z-score func-
tion, the Receiver Operating Characteristic (ROC) curve
method was adopted[32]. In order to calculate the ROC
curves, we randomly chose 1000 binding sites from the
simulated Dataset I and labelled these binding sites as
the true similar group. Another 1000 binding sites ran-
domly chosen from Dataset II were labelled as the false
group. We then varied the Z-score cut-off (from -5 to 5
with a step size of 0.1) to calculate true positive (TP),
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Figure 5 ROC curves calculated from the Dataset | and Il. to
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false positive (FP), false negative (FN) and true negative
(TN) values. After that, the true positive rate (TPR) and
false positive rate (FPR) were calculated following equa-
tion 7,8 and plotted as a ROC curve (Figure 5, stars).

TPR = TP / (TP + FN) (6)

FPR = FP | (FP + TN) ?)

The TPR represented the sensitivity while the FPR is
the 1-specificity.

As demonstrated in Figure 5, it is not surprising that
the classification ability is limited in some cases.
Although at lower Z-score cut-offs (from -5 to -2) the
TPR is dominant, the similarity detection ability falls off
as long as the Z-score cut-off rose up. To take account
of the effects of added points on Z-score performance,
we also randomly chose 1000 binding sites from Dataset
I and converted binding sites with an added point per-
centage larger than 80% to the false group. Combined
with another 1000 randomly chosen binding sites from
Dataset II, the ROC curve was calculated again and
plotted as the 80% line in Figure 5. Similarly, we calcu-
lated 60%, 50%, 40% and 30% lines and plotted them in
Figure 5. Clearly and intuitively, the power of the classi-
fier increases as the more subtly similar binding sites
are assigned to the false group. From the ROC curve, it
was illustrated that even when we added 50% random
fragments to the binding sites, the Z-score scheme was
still able to give encouraging results. With a Z-score
cut-off of -1.5, the true positive rate is about 50% and
the false positive rate is only 10%.

Assessment with known ligand binding sites

To validate our fingerprint scoring strategy, a geometric
hashing based similarity measurement was implemented
for a comparison. Geometric hashing is a well known
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sequence-independent 3D similarity searching method,
which has been adopted as a basis by web servers like
SitesBase[33]. 450 PDB entries were randomly selected
from known binding site dataset. Then they were
searched by both geometric hashing and our fingerprint
scoring method, against GH and FP Validation Dataset
respectively. Totally 431 PDB binding sites were suc-
cessfully processed by both methods.(All the validation
results and softwares can be accessed at our web site
http://202.127.30.184:8080/bssf/validate_exp.jsp and
http://202.127.30.184:8080/JChem/li/indexGH.jsp).

The output from geometric hashing method was cate-
gorized into three levels of similarities according to the
percentages of matched points with the query (>1/3,>1/
2 and > 2/3). In this test, 11121, 4309, 1568 pairs of
similar PDB entries were found at 1/3, 1/2 and 2/3
levels respectively.

We also defined a manner to classify the results from
fingerprint based method. For each query, first, we
counted PDB entries which were found as similar by
geometric hashing method in certain level, this number
was set as N;,. Then the searching result of fingerprint
method was sorted by the Z-scores from lowest to high-
est. After we get the numbers, the sorted list of finger-
print search result will be truncated so that only the
first Ngim x Ngola (Ngora = 1,2,3,4,5) entries will be kept.
Then the truncated list was investigated by counting the
PDB entries(N¢yunq) Which were considered as similar in
geometric hashing measurements. Finally, the number
Ntound/Nsim Was used as a success ratio to assess the fin-
gerprint Z-score strategy.

As demonstrated in Figure 6, even when truncated at
1 fold, the fingerprint result is still promising. If we use
the geometric hashing level 2/3 as the positive data, at
Ngoq = 1, the fingerprint method can detect about 87%
PDB entries from the geometric hashing similar list. At
Niola = 2, it can detect about 92% PDB entries. If lower
similarity level in geometric hashing method was
selected as positive data set, the PDB entries detected by
fingerprint method also diverge gradually. Through Fig-
ure 6, one can found that the results from N, q = 2 are
almost the same as the five fold, which clearly shows
the nature of rapid convergence of this fingerprint
method. We also checked the average Z-scores among
the truncated list. For the truncated list from Ngyq = 1
fold, they are -4.3, -5.2 and -6.0 at the 1/3, 1/2, 2/3 level
respectively. While for the fold two truncated list, the
average Z-score values are slightly up to -3.4, -4.1 and
-4.8.

Taking a close look at the results from geometric
hashing and fingerprint methods, it is clear that they
can complement each other. For example, According to
the PDB annotation, the entry 3H4A is E.coli 6-Hydro-
xymethyl-7,8-dihydropterin pyrophosphokinase (HPPK)
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Figure 6 Comparison of the geometric hashing method with
the fingerprint Z-score method.

complexed with AMPCPP[34]. From the geometric
hashing searching, total 11 PDB entries were found hav-
ing similarities better than 1/3 level (Matched points
more than 1/3 of query binding site). Blast searching the
sequence of 3H4A against these 11 PDB also shows that
all of them have Blast E-value which are lower than 1E-
50. This demonstrated our geometric hashing procedure
is capable to find the similar binding sites. Interestingly,
after investigating the fold two truncated list from fin-
gerprint method, we found this list not only covers the
11 entries found above, but also includes some other
entries, like 1CBK and 2BMB (which have low blast E-
values 4E-47 and 1E-17 with 3H4A), 1C85, 1C86 and
1C88 (all of which are protein-tyrosine phosphatase 1B)
[28]. All of these extra entries have low fingerprint raw
scores and Z-scores but not show up in either geometric
hashing.

We also incorporate SCOP classification and blast E-
values to check the sensitivity and robustness of our fin-
gerprint Z-score method, since both of topology and
sequence similarities can partly imply a possibility of
binding sites similarity. PDB entries from known bind-
ing site data set were grouped based on sequence identi-
ties and SCOP family terms. Then for each of the 431
PDB entries, we checked the results from our method
with these reference groups for overlaps. As shown in
Figure 7, at low Z-score value, the similar pairs found
indeed have high sequence similarity. This further
demonstrated the ability of our fingerprint scoring sys-
tem in detecting the obviously similar cases. At Z-score
cutoff -3.0, about 80% predicted similar pairs are either
contained in the same SCOP family or have the
sequence blast E-value lower than 1E-10. However, the
other 20% cases, which also have strong similarity Z-
scores, can not be simply regarded as false positive,
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because two proteins may have similar shape of binding
sites but don’t have much similarity at the overall level.
For example, in this study, from the result list of PDB
entry 1DJY, 1PCM has a Z-score -3.15. But these two
proteins do not show any relation on either sequence
similarity (E-value 1E-10) or SCOP classification.
Through detailed examination of their active sites, it
was found that both of them contain a metal atom and
phosphate sugar-like ligands, which implies that their
binding sites have certain similarity(Please refer the
additional file 1, Figure S1).

Comparison with other servers/softwares

Finding similar binding sites is an important issue in the
field of computational structural biology. It is not only
useful in rational drug design, but also can provide
information on protein functions. To evaluate the per-
formance of our fingerprint scoring method, we also
compared it with several web servers and softwares. The
PocketMatch dataset was used in this comparison[35].
As listed in Table 1, the fingerprint Z-score method is
effective in all the cases except the 1ZID_ZID-
2CIG_1DG pair, for which PocketMatch has a low
PMC,,in Score. Also, the comparison shows that in sev-
eral cases, the SuMo and geometric hashing method
used in SitesBase fail to identify the similarity of the
pairs. while the fingerprint Z-score method is able to
find the relations. Clearly, the Z-score scheme is neces-
sary in fingerprint method. For example, the 1GJC_130
and 1V2Q_ANH have a raw fingerprint score 194.09,
which is high enough to recognize as similar. But the Z-
score method normalizes this raw score and gives the
-4.00, a value strongly suggested the similarity relation-
ship between two binding sites.

12 T T T T T T T T T
m-— Known similar pairs in SCOP, BLAST

1.0 LLLLLL LT -
LT T
L]

0.8 ] -

0.6 - LY 4

044 \ -

Known similar entries %
| |

02 L 4

0.0 T T T T T T T T T

Z-score

Figure 7 Validation the fingerprint Z-score method with SCOP
and Blast Dataset.
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Table 1 Case studies by comparison with other servers/softwares.
PDB1 PDB2 ProFunc SuMo SitesBase PocketMatch PyMol BSSF

Score Score Score Pl PMScoremin PMScore rmsd FP_Score Z_score
Cases from same SCOP families
1DHJ_MTX ADFR_MTX 12 100 8333 0 85.25 85.25 0.231 6191 -3.87
1A4G_ZMR TNSC_SIA 12 76 93.67 0 99.91 88.39 0.141 85.58 -2.90
1SDU_MK1 1SDT_MK1 X NA 100 0 98.93 88.39 0.298 4034 -5.00
1B42_SAH 2VP3_SAH 241 91 76.92 0 99.4 89.29 0.088 77.96 -3.20
1GJC_130 1V2Q_ANH 229 89 29.38 3E-28 93.65 50.17 0.294 194.09 -4.00
1GJC_130 2AYW_ONO 217 40 NA NA 56.9 52.29 1.186 394.22 -142
1GJC_130 103P_655 X NA 54.80 0 100.0 88.01 0.113 87.31 -2.95
1ADD_1DA 2ADA_HPR 150 45 93.06 0 94.72 83.59 0.149 77.22 -3.21
1KV5_PGA 2JGQ_PO4 104.58 X NA NA 80.48 2840 3.527 83.63 -2.98
1BZC_TP1 1GFY_12P 174 27 60 24E-40 96.87 7541 0.236 86.52 -2.94
1DJX_13P 1DJY_12P X 58 86.79 2.5E-38 100 69.05 0.160 61.35 -4.16
1AJ6_NOV 1EIT_ANP 102 X 55.55 7.6E009 9153 21.16 3019 214.00 -1.78
Cases from different SCOP families
TECM_TSA 4CSM_TSA X X 54.65 8.6E-27 74.22 55.56 0.640 84.86 -3.02
TM6Z_HEC 1LGA_HEM X X X X 67.58 63.85 5875 149.16 -0.66
121D_ZID 2CIG_1DG X X X X 5894 56.01 5.691 17640 0.27
1V07_HEM THB1_HEM X X 46.81 2.6E-16 68.94 6142 0.690 144.04 -0.92
Web server pressing requirement for experimental or computational

A supporting website http://202.127.30.184:8080/bssf/
was constructed for user-defined calculations and pre-
dictions. The web site was built with Java JSP technol-
ogy and the analysis and prediction procedure consist of
four steps: 1) The user supplies a newly determined
crystal structure or a PDB entry ID to conduct the ana-
lysis. Following submission of the data, the binding site
detection and fingerprint calculations are initialized. 2)
The user can visualize the binding sites in the crystal
structure using the web embedded Jmol[36] program. 3)
The user can select the binding site to perform a data-
base search with the Z-score scheme. After finishing
this fast database search (normally about 1 minute), the
result will appear in a table on the web page for inspec-
tion. The user can download the result for later analysis
or further query the NCBI with blast program, checking
the PDB entry in PDB database. Also, the user can take
further steps to analyze the hit list to check the occur-
rences of some basic information such as GO terms and
EC numbers. These metric may benefit researchers to
design new experiments to study the query protein at
hand.

Discussion

A major goal of structural biology is to understand cel-
lular functions in the context of the atomic details of
molecules. With increasing deposits of three-dimen-
sional structures in the RCSB Protein Data Bank
through structural genomics initiatives, there is a

methods to correlate functions to these structures. This
sequence-structure-function relationship underlies the
numerous investigations aimed at dissecting the biologi-
cal properties of proteins.

In the present work, we describe a fast method for
detecting similar binding sites in protein structures in
the whole PDB database. This may shed light on protein
function and possible drug side-effects due to ligand
cross binding to similar sites. Our method is developed
for 3D local structure similarity detection and comple-
ments sequence-based or fold-based methods. It can
uncover similarities in small spatial surface regions on
protein structures and provide additional evidence for
inferring protein functions[37]. In contrast to many 3D
motif similarity searching methods, we use a fingerprint
approach to represent the binding sites. The fingerprint
concept is heavily implemented in the chemoinformatics
field for small molecule database searching and has
been proved to be fast and useful in ligand similarity
research. We have extended it to label binding sites in
macromolecules. To simplify the large number of atoms
in binding sites and to implicitly add flexibility for fin-
gerprint representation, every residue in each binding
site was fragmented into subgroups and mapped to 7
properties similar to the pharmacophore concept. This
fingerprint representation not only eliminated the
sequence order dependence usually encountered in
sequence/structure similarity measurements, but also
enabled an ultrafast method of searching a
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comprehensive binding site database. The time con-
sumed to perform a single query with our binding site
database (188959 entries after the binding sites smaller
than 30 points or larger than 200 points being filtered)
is approximately 1 minute on an Intel XEON 2.8 G pro-
cessor. This gives researchers tremendous opportunities
to conduct large scale comparison studies to elucidate
functions for any possible binding site.

The method described here differs substantially with
structure-template based methods. In these methods,
local structure-template are curated from the protein
structures and usually only contains very few residues,
exemplified in TESS system three residues catalytic traid
“O-HIS-0O”[24]. Although the method presented here
also needs to extract the binding sites from PDB struc-
tures in advance, the binding sites are not limited to a
fixed number of residues. Based on the fingerprint con-
cept, variable binding sites can be represented and com-
pared without any difficulty. Such circumstances would
be very time-consuming with the graph clique algorithm
or geometric hashing algorithm based methods [22,23].
Recently, Xie and Bourne, based on the weighted graph
maximum clique detection algorithm, devised a method
SOIPPA, which can find the similar functional sites
through sequence order-independent profile-profile
alignment([38]. Through implemented several heuristic
rules, authors accelerate the functional matching phase
and simultaneously found and aligned the similar bind-
ing sites. But due to that the intrinsic algorithm is based
on the graph maximum clique detection, the running
time still beyond the routine database search for the
whole PDB database with all the possible binding sites,
especially in the situation of fast growing of the struc-
tures out from the structural genomics project.

In comparison to the similar very fast method
pvSOAR[18], which also extracts possible binding sites
with an automatic alpha shape method, our method is
sequence-order independent and does not take into
account the local sequence similarity between the two
binding sites. This represents a more natural way to
describe the shape and properties of a binding site, espe-
cially where two binding sites only share sub-pocket
similarity. WebFeature is another ultrafast binding site
similarity comparison and functional annotation system
[39]. It uses the calculated biophysical properties of
binding sites to represent the binding site and utilizes a
machine learning method to train the system and pre-
dict the function for the query. Compared to their
approaches, our method is merely based on the original
PDB structure data and does not go through the train-
ing phase. Also the WebFeature method is based on the
already determined functional motif stored in PROSITE
database, then may not cover all the possible binding
sites represented in the PDB structures.
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The binding site database in our method could be
further improved to expand coverage and accuracy. In
the current implementation, only binding sites that
involve single polypeptide chains are taken into account.
We do so mainly because it is very difficult to separate
true multi-chain complexes from artefacts due to crystal
packing interactions in a unit cell. Nevertheless, includ-
ing such binding sites in our database will expand its
coverage and enhance function inference. Another draw-
back of our method is that the PASS predicted binding
sites may not be the true binding sites on the protein
surface. This may increase the false positive rate and
reduce prediction power. Although there exists such
computational methods to identify the true binding
sites, this shows to be a very difficult task due to the
limitation of our knowledge of possible protein-ligand
interactions which exist in nature.

A major challenge in analyzing local spatial patterns is
how to assess the significance of the detected similarity.
Due to the difficulty to obtain the gold standard of the
binding site data sets, we decided to use the simulated
binding sites as the representation for later statistical
judgement. To overcome the limitations of the original
fingerprint Canberra Distance score function, we devised
a Z-score scheme and investigated its boundary in detail
by gradually changing two variables, namely Z-score
cut-off number and Fix number. It was found from the
ROC curve that the performance is promising even at a
Z-score cut-off value of -1.5 and with less than 50%
added random points. This validation strengthens the
utility of our method and provides guidelines for later
database searches. As demonstrated by the ROC curve,
our method has the capability to detect sub-pocket simi-
larity. It is very important in drug design, to detect such
weak similarity, since a ligand may only interact with a
few key residues in a binding site to execute its biologi-
cal role. This will help researchers to identify possible
targets similar to known drug targets and to predict
side-effects for certain drugs.

In future, one important further extension of our
method is to combine it with other sequence-based or
structure-based function inference methods to enhance
accuracy in assigning functions. Recently Brylinski and
Skolnick provided a method named FINDSITE[40],
which can locate the binding sites in protein structure
through a threading alignment of distant homologies.
Their method can successfully identify 70.9% binding
sites in the top five predicted binding sites. Although
the prediction power dropped down when the sequence
identities of homologies are below 35%, combinations
with the fold information or sequence information could
improve the prediction accuracy[41]. Like in the com-
prehensive protein functional annotation database Pro-
Know[42], Pal etc. integrate information about the query
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protein and then weighted the information in a Bayes
framework. Their investigation clearly demonstrated
that the multiple sources of information will enhance
the prediction power. Given the ability of our ultrafast
binding site similarity method, it could be assembled
with others sequence and structure similarity measure-
ment and improves the prediction for the binding site
functions.

Conclusions

It is well recognized that sequence and structural fold
are dynamically changing under evolutionary pressure
over long time scale. These diverging and converging
evolutionary phenomena produces a challenging pro-
blem of how to infer the functions of newly discovered
genes from their sequences and structures. Many
sequence-based and structure-based methods have been
developed to correlate functions to sequences and struc-
tures and to extend our ability to understand the funda-
mental relationship between sequence, structure and
function. Although some cases can be easily solved,
some more difficult cases often just contain very weak
sequence and structure similarity with proteins with
known functions in curated databases. As a conse-
quence, there is an ongoing need of novel methods to
broaden our capability to predict function in this post-
genomics era. Here we presented a novel and fast bind-
ing site similarity detection and function inference sys-
tem. By utilizing fingerprint representations of binding
sites, we are able to conduct an economical similarity
measurement. Furthermore, for the accurate detection
of similar binding sites, especially ones where there is
only weak or sub-pocket similarity, a statistical validated
Z-score scheme was devised to improve sensitivity. This
system could be used in the drug design field to identify
promising targets for drugs by using the binding site of
its known target as a query. It could also benefit
researchers in the field of structural biology field by
allowing them to find similar structures at binding site
level.

Additional file 1: Supporting material. It includes the fragment types
in geometric hashing method and pharmacophore fingerprint. Also it
contains the properties of binding sites.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
47-S1.00C]
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