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Trees on networks: resolving statistical patterns
of phylogenetic similarities among interacting
proteins
William P Kelly1,2, Michael PH Stumpf1,2,3*

Abstract

Background: Phylogenies capture the evolutionary ancestry linking extant species. Correlations and similarities
among a set of species are mediated by and need to be understood in terms of the phylogenic tree. In a similar
way it has been argued that biological networks also induce correlations among sets of interacting genes or their
protein products.

Results: We develop suitable statistical resampling schemes that can incorporate these two potential sources of
correlation into a single inferential framework. To illustrate our approach we apply it to protein interaction data in
yeast and investigate whether the phylogenetic trees of interacting proteins in a panel of yeast species are more
similar than would be expected by chance.

Conclusions: While we find only negligible evidence for such increased levels of similarities, our statistical
approach allows us to resolve the previously reported contradictory results on the levels of co-evolution induced
by protein-protein interactions. We conclude with a discussion as to how we may employ the statistical framework
developed here in further functional and evolutionary analyses of biological networks and systems.

1 Background
The biological structure and function of organisms at
the cellular level are the product of interactions between
proteins and other molecules. The resulting networks of
biological interactions found in an organism have been
studied using concepts from graph theory, and the
quantitative analysis of biological networks has become
important for the description of biological systems [1-3].
While protein-protein interaction (PPI) data are incom-
plete, and in most instances suffer from either abundant
noise or potential experimental bias as a consequence of
prior biological knowledge [4,5], there have been numer-
ous reports over the last decade highlighting the use of
PPI network data, including how these can be used to
understand molecular processes, disease phenotypes,
and evolutionary properties of biological systems (e.g.
[6,7]).
In addition to their functional role, protein interaction

networks (PINs) have also been analyzed from an

evolutionary perspective. A host of analyses have stu-
died, e.g. the potential link between the evolutionary
rate of a protein and its degree or position in PINs
[8-16]. Similarly, properties of interacting proteins have
been investigated in order to determine whether or not
their properties are more similar than those of non-
interacting proteins [16-18]. Such an evolutionary
signature could, for example, be used to predict protein-
protein interactions from comparative analyses of biolo-
gical sequence data. But many of these studies have
reported partially contradictory results: some analyses
find a clear (but weak) correlation between degree (or
other network measures such as centrality) and protein
evolutionary rate, while others fail to detect any statisti-
cal signature in the data. The problem of reconciling
these conflicting findings is exacerbated by a number of
factors: different analyses use different protein interac-
tion data; potentially confounding factors are not always
accounted for; statistical approaches differ; and the
underlying protein interaction and evolutionary data are
themselves subject to considerable uncertainty and
variability.
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Here we develop and discuss suitable statistical frame-
works for the analysis of highly structured network data.
Most previous analyses have compared the observed
network data with randomized networks where generally
only the degree sequence was maintained by the ran-
domly rewired networks [19,20]. Such an approach is
based on the implicit (and rarely explicitly stated)
assumption that the main contribution of the network
to the evolutionary characteristics of the constituent
proteins stems from the different number of interactions
proteins have. This is a sensible and computationally
convenient, yet potentially very restrictive statistical null
model.
Here we apply our statistical framework to the analysis

of phylogenetic trees of proteins generated for a panel of
yeast species, where we can discuss the relative merits of
different null models on the evolutionary analysis. In
particular, we will seek to quantify the similarity of the
phylogenetic trees of interacting proteins. These trees
capture a different level of correlation in the overall
data: the correlations between orthologous proteins in
different species. High levels of concordance between
the individual proteins’ phylogenetic trees are antici-
pated as these should tend to follow the species tree
[21]. However, whether or not characteristics of phylo-
genetic trees, especially their topology, show concor-
dance between interacting proteins greater than would
be expected by chance in random graphs has not pre-
viously been explicitly tested on a global level. We assess
the extent of such similarities for different protein inter-
action datasets and different phylogenetic reconstruction
methods in order to determine the level of variability
arising from differences in the data or methodological
differences alone, and mitigate for this if possible.
Section 2 introduces the different network null models

that are used to compare the phylogenies under differ-
ent assumptions regarding the underlying PIN. These
enable subtly different questions to be asked about any
correlation which is discovered between the topology
and reported PPIs. The PIN data used in the study are
also introduced here as well as the similarity measures
used to assess linkage between interactions and phyloge-
netic trees. Section 3 presents the results of the topolo-
gical analysis, including association between PPIs and
phylogenetic profiles in yeast, and the main differences
between different PIN datasets and phylogenetic tree
methodologies. Section 4 draws the results together and
concludes that although there is correlation between
topological similarity and PPIs when compared to all
protein pairs, this is not true once the network structure
is constrained to reflect the structure of the empirical
data. This shows the importance of using an appropriate
null model when seeking significant biological traits in
interactome studies and also adds to evidence from

alternative sources regarding the role of co-evolution, or
correlated evolutionary rates, and how this relates to the
observed interactions in S. cerevisiae.

2 Methods
Here we describe the methods used to compare differ-
ent phylogenetic trees for each protein found in S. cere-
visiae. First, the sources of data are outlined. Second, we
discuss how to compare the topologies of phylogenies.
Finally, we describe the network ensembles, which are
used to represent statistical null models for PINs.

2.1 Data
To generate phylogenetic trees for each S. cerevisiae
protein, a selection of 9 other yeast species, from the
Saccharomyces and Candida genera, have been mined
for orthologous proteins to all S. cerevisiae proteins
using a best-reciprocal-hit BLAST approach [15]. The
10 species are thought to have diverged from S. cerevi-
siae between approximately 10 million years (S. para-
doxus) and over 300 million years (S. pombe) as shown
in Figure 1. Multiple sequence alignments (MSA) were
obtained using CLUSTALW [22] for each S. cerevisiae
protein and its identified orthologues.
Three different algorithms were used to infer the pro-

tein phylogenetic trees from the MSAs: PARS and
PROML from Phylip 3.6 [23]; and the Codonml routine
from PAML [24]. For each inference method, the analy-
sis is restricted to those proteins where trees were deter-
mined unambiguously (as an algorithm can return
multiple trees with equal confidence). For each protein,
we analyzed both gapped and ungapped sequences but
did not detect any differences between the two sets;
results shown here are from the gapped set.

Figure 1 Phylogeny of study species. This shows the
phylogenetic tree for the study species used in this paper. The
evolutionary relationship is shown for the ten yeast species used
[53,54]. S. cerevisiae proteins resulting from gene duplication events
are thought to retain the same interactions as the original gene for
millions of years rather than tens or hundreds of million years [55].
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The species tree, shown in Figure 1, and the protein
trees may not necessarily agree [25]. As well as the pro-
tein trees being on a subset of the 10 study species
(dependent on the availability of homologues) the topol-
ogy may also be different. The evolutionary history
between species is described by the species tree, whilst a
protein tree represents how a set of homologous pro-
teins may have evolved relative to each other. Such dif-
ferences can become particularly apparent when the
divergence time between the species is short [26], so for
the yeast species used here there should be apparent
variability between the trees produced.
In order to generate the random networks, an empiri-

cal PIN for S. cerevisiae is also necessary. As there is
still uncertainty over the network (regarding both the
interactions and overall size of the graph), three differ-
ent datasets are used. CORE and DIP graphs are formed
from the data contained in the Database of Interacting
Proteins (DIP) [27], whilst a literature curated graph
(LC) has been taken from BioGRID [28]. The LC dataset
[29] forms a combination of small scale and high-
throughput experimental results were obtained as part
of a large scale literature curation exercise of the avail-
able interactome studies found in S. cerevisiae.
The three empirical graphs form different samples of

S. cerevisiae PPIs, containing data that has been hand
curated (LC), passed some expert criteria [30] (CORE),
or is a complete interaction database (DIP). Table 1
details some of the graph statistics for each of the three
empirical graphs.
A number of biological features have been proposed

as means of classifying protein-protein interactions
[31-34], or linked with PPIs [20,35,36]. A collection of
these biological characteristics are used here to generate
conditional random graph null models: (a) molecular
function, biological process or cellular component anno-
tations taken from the GO slim ontology [37]; (b) multi
protein complexes found in [38]; and (c) mRNA expres-
sion levels as a proxy for S. cerevisiae protein expression
levels from [39].

2.2 Protein phylogeny similarity
In order to explore the role of evolutionary constraints
on S. cerevisiae protein pairs and how these may be
linked to the reported S. cerevisiae PIN the similarity of

phylogenetic trees is assessed using two different mea-
sures. First, the differences found between the phyloge-
netic profiles of protein pairs are used; this relies only
on the orthologues identified rather than the inferred
protein phylogenetic trees. Second, the similarity of the
topology of the phylogenetic trees for pairs of proteins
are used to assess how PINs, PPIs and the phylogenetic
trees relate to one another.
2.2.1 Phylogenetic profile
The orthologue information is used to construct the
phylogenetic profiles for each protein [8]. Proteins for
which no orthologues are available have been excluded
from the analysis (the profile would be trivially the null
vector and is excluded to avoid bias). The phylogenetic
profiles of a protein pair are compared by counting the
species in which both either exhibit, or do not exhibit,
an orthologous protein. Accordingly, the score between
two protein phylogenetic profiles is between 0 (available
orthologues for both proteins occur in the same species)
and 9 (only one of the proteins has an orthologue in
each assessed species).
2.2.2 Tree topology
Proteins are said to co-evolve if they have similar evolu-
tionary paths [40] where the mutational changes in one
protein are triggered by changes in the co-evolving pro-
tein – i.e. the changes are compensatory. One conse-
quence of co-evolution between protein pairs is a
tendency to see similar rates of evolutionary change
which are reflected through the branch lengths exhibited
on the protein phylogenetic trees [41]. These branch
lengths, whilst indicative of possible co-evolutionary
behaviour, may also be indicative of correlated evolu-
tionary rates, which may also be non-compensatory, as
has been shown in S. cerevisiae [42]. The correlation
observed in the evolutionary distances is a consequence
of constraints on the evolutionary rate, rather than a
consequence of compensatory changes.
Whilst co-evolutionary behaviour between proteins

will influence their rates of evolution, it also could affect
the topology of their respective phylogenetic trees. If the
proteins do interact, then each divergent split (reflected
in the topology) will trigger changes in the co-evolving
protein. If proteins A and B co-evolve then any evolu-
tionary change in protein A will trigger compensatory
changes in the second protein B - and vice versa.

Table 1 Protein interaction networks

Graph Proteins Interactions Components Maximum degree Mean degree Clustering coefficient

CORE 2,528 5,728 78 91 4.8 0.21

DIP 4,931 17,471 31 283 7.0 0.10

LC 5,109 21,283 42 319 8.5 0.13

Statistics for the PINs used to complete the phylogenetic analysis. These have been taken from BioGRID (a literature curated subset) and DIP. The LC data form
the largest network dataset, whilst the CORE data are a subset of the DIP interactions which are more highly clustered but formed of a higher number of
individual components.

Kelly and Stumpf BMC Bioinformatics 2010, 11:470
http://www.biomedcentral.com/1471-2105/11/470

Page 3 of 12



The patterns of divergence, as a proxy for possible co-
evolutionary changes, are measured through recording
the similarity between phylogenetic topologies. In order
to assess how well these topologies reflect the co-adap-
tion which may be present in interacting protein pairs,
above that found in the protein population as a whole,
the similarity between phylogenetic topologies is mea-
sured. The similarity between proteins is highly depen-
dent on the level of protein divergence within the
species (the trees are not independent observations), but
should be linked with the observed PPIs if there is evi-
dence that protein pairs co-evolve as a consequence of
interactions.
Given two protein trees, their topologies match if the

phylogenies, on the set of species that appear in both
topologies, are non-trivially identical. This requires that
the two trees share at least 3 distinct species. If they do
not match on the set of shared species, then to measure
the similarity of the two trees, an edit distance, h, on a
set of n species can be defined. This distance is based
on a nearest-neighbour interchange method [21]. Each
phylogenetic topology, e.g. ((1, 2), (5, (3, 4))), contains a
set of species, {1,2,3,4,5}, and divergence events or inter-
nal nodes where lineages split (here represented by
brackets). Topologies are neighbours of one another if
they can be made identical by moving a single species
across a node. For the string tree notation, across a
node means either: (i) swapping a species with the first
bracket either side in the string (and deleting unneces-
sary brackets); or creating a bracket around two species
in the same set of brackets - e.g. (1, 2, 3) is a neighbour
of ((1, 2), 3). For example, for ((1, 2), (5, (3, 4))) the
neighbours are: (1, 2, (5, (3, 4))), ((1, 2), (5, 3, 4)), and
(5, (1, 2), (3, 4)). Figure 2 shows a minimal sequence of
neighbouring phylogenetic trees to travel from topology
((1, 3), (2, 4, 5)), for protein A, to ((1, 2), (5, (3, 4))), for
protein B. The distance, hA, B, is the minimum number
of tree topology changes required to generate matching
trees.

Each protein may have a different number of homolo-
gous proteins on which the phylogenetic tree is based.
The edit distance is thus not directly comparable
between protein pairs as the possible number of trees is
dependent on the number of species found in each tree.
Consequently, let the similarity of topologies, ΓA, B Î [0,
1], be defined as:

Γ A B
A B
Mn

,
, .= −1


(1)

where hA, B is the score between two trees sharing the
same n species and Mn is the maximum possible score
between two trees on n species. The maximum edit dis-
tance between two phylogenetic trees on n species is
found by the recursion:

M M nn n+ = + −( )1 2 , (2)

with M3 = 2.
For rooted bifurcating trees the total number of possi-

ble topologies for n species, Tn is:

T
n

n n
n =

−( )
− −( )
2 3

2 1 1

!

!
(3)

Multifurcating rooted trees may have more than two
lineages at each internal tree node, so the number of
different topologies on n species is larger than bifurcat-
ing trees. The number of trees is given by the sum over
the number of internal nodes, m, found in the tree:

T n m T Tn m n m n m, , , ,= + −( ) +− − −2 1 1 1 (4)

for m Î [1, n - 1], Tn, 1 = 1 and Tn, m = 0 ∀ m ≥ n.
The possible topologies, and associated maximum
scores, Mn, between distinct trees on n species are
shown in Table 2.

Figure 2 Topology edit distance. This shows an example of how the edit distance is found for different topologies on the same number of
species (in this case 5 different lineages). Each move allows the splitting or joining of a pair of lineages. The score is then used to find the
similarity between tree topologies taking into account the number of species being compared. This example compares the tree topologies:
((1,3),(2,4,5)) and ((1,2),(5,(3,4))). The score here is 5.
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2.3 Null networks
A variety of different graph ensembles, or null models,
have been used for PIN analyses [13,19], although the
rationale for their choice is not always clear. Assumptions
regarding how the graph is structured or about its size and
order may bias conclusions, leading to a model that is not
appropriate for our hypothesis, and risk falsely dismissing
findings or generating false positive conclusions [43]. In
practice, it is difficult to find a truly null model for the
generation of complex, correlated (and contingent) data
[44,45]. When generating random graphs (where the prop-
erties of the nodes and edges are important) it can be hard
to define a satisfactory parameter set that should be fixed
for comparison with observed data. In order to assess the
possible dependence between some protein characteristic
(such as GO annotations) and PPIs, or the PIN structure,
the data need to be assessed across different random
graph null models as defined in this section. Whilst these
null models can be used for any statistical test, here the
characteristic of interest in this study is the similarity of
protein phylogenetic tree topology.
A graph or interaction network, G ~ (VG , EG), has a set

of proteins vi Î VG and interactions between pairs of pro-
teins, (vi, vj) Î EG (self-interactions are not considered
here, hence i ≠ j). Let the order n be the number of pro-
teins found in VG, and the graph size m be the number of
edges found in EG. The null models generate a random
graph, H ~ (VH, EH), with the same order (in fact, the
same protein set) and size as the observed network, G.
The proteins also have a collection of biological traits, b
(vi), such as evolutionary rate, and topological traits,
j(vi), such as the degree, which may be used to generate
conditional random graphs from the observed data.
Graph rewiring [46] is used to generate random graphs

from empirical data where each rewiring maintains both
the size, n, and order, m, of the empirical graph used. An
edge, e, is rewired if it is deleted from the graph edge set,
E, and a new edge, e’, is added to the graph from the

same node set, V. A graph, H ~ (VH, EH), is a rewiring of
G ~ (VG, EG) if |EH| = |EG| and VH = VG.
Each random graph considered is a sample from a

graph ensemble (forming a particular probability distri-
bution over the space of graphs with n nodes and m
edges). Comparisons are made between the empirical
graph and those found when sampled from the graph
ensemble. Consequently, the ensemble serves as a null
model for the analyses presented here. The empirical
graph is referred to as G throughout.
2.3.1 Topological ensembles
Three different graph ensembles (shown in Figure 3) are
used that fix certain network traits of the empirical data:
random graph; node shuffle; and network shuffle. These
take account of the degree sequence, size, and order of
the empirical graph. However, these null models take no
account of any biological data or knowledge in order to
generate random graphs, solely replicating topological
traits of the empirical PINs.
Random graph A graph, H, from this ensemble is gen-
erated using the Erdös-Rényi (ER) graph model [47].
Throughout this paper an ER graph is defined as a
graph, H (n, m), with n nodes and m edges placed uni-
formly and at random across all possible edges, (vi, vj)
where i ≠ j. Accordingly, this model produces a graph,
H, of identical order, n, and size, m as the original
graph G. Biological node traits (such as sequence or
annotations) are fixed and the m edges are sampled uni-
formly without replacement.
Node shuffle A graph sampled from this graph ensemble
retains all network traits of the empirical graph, maintaining
the adjacency matrix, A. The node traits are permuted
amongst all the nodes of the graph, G. Although the gener-
ated graph, H, has identical structure to the empirical graph,
the node traits, bG(v), are randomly allocated amongst the
nodes, V. This enables assessment of whether the node
characteristics depend on the structure of the graph.
Network shuffle This graph ensemble generates graphs
that preserve network traits, using the rewiring algo-
rithm presented by [46]. The degree of each node, dG
(v), along with each node biological trait, bG(v), are
fixed, and edges are randomly distributed under these
constraints. The number of legal moves may be small
under certain conditions, primarily as the proportion of
possible edges increases. In the case of PIN data this is
not a concern in general as the graphs are sparse:

H V E v V d v d vi H i G i~ ( , ) , ( ) ( ).′ ∈ = where for each (5)

2.3.2 Biological ensembles
The following graph ensembles (shown in Figure 3) fix
both network and biological traits of the empirical data:
biological node shuffle and biological network shuffle.
The generated graphs retain some of the biological

Table 2 Number of topologies

Species Bifurcating trees Multifurcating trees Maximum score

1 1 1 -

2 1 1 -

3 3 4 2

4 15 26 4

5 105 236 7

6 945 2, 752 11

7 10, 395 39, 208 16

8 135, 135 660, 032 22

9 2, 027, 025 12, 818, 912 29

10 34, 459, 425 282, 137, 824 37

The number of rooted labelled trees for n species. This shows the how the
number of possible topologies is related to the number of shared lineages
being compared in each protein tree comparison.
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properties, such as interactions between proteins found
in the same complex or those with the same functional
GO annotations, as well as possibly the topological
properties as found for the topological ensembles.
The characteristic, b, used in each of these examples can

be any node, or edge, property. For this study, the graph
ensembles are generated for the following selection of dif-
ferent characteristics: GO slim [37] annotations for biolo-
gical process [process], cellular component [component],
and molecular function [function]; and multi-protein
complex annotations [complex] found in [38]. These dif-
ferent ensembles produce random graphs which constrain
different biological elements of the graph, allowing us to
evaluate whether these form confounding factors that may
explain the observed phylogenetic properties.
Biological node shuffle This ensemble permutes the
nodes such that each node, vi, is switched with one, vj,
sharing a particular characteristic, b(vi) = b(vj), as shown
in Figure 3(c). Each graph can be thought of as being
generated in the same means as node shuffle graphs
although there is an extra biological constraint on how
each of the proteins are permuted.
Biological network shuffle This graph ensemble is
based on the algorithm used to produce the network

shuffle graph ensemble, and shown in Figure 3(d). An
edge, eh, has a characteristic, j(eh), determined by char-
acteristics of the nodes it connects, j(eh) = j(vi, vj).
Each edge is rewired to maintain the degree of each
node, dG(v), as in network shuffle, and retains the char-
acteristic of the rewired edge, eh. So eh ® e’h if j(eh) =
j(e’h).
Graphs are sampled uniformly from each ensemble.

The similarity, Γ, score, h, and difference between the
phylogenetic profiles are measured in order to assess
differences between the putative PPIs reported in the
observed PINs - CORE, DIP, and LC - and random
graphs sampled from the random null models. For the
analyses, 1,000 graphs are sampled from each graph
ensemble.
For each graph, the topological results are only

recorded if a valid tree comparison can be made. There
are two sources of unknown data for the phylogenetic
comparisons: (i) there is no known tree data for a con-
sidered protein; or (ii) the protein trees share fewer than
3 lineages so a topological comparison is unable to be
completed. Both sources of variation in the overall num-
ber of comparisons made are recorded for each ensem-
ble to assess how they may potentially bias the results.

Figure 3 Graph ensemble null models. The graph null models are described in the four figures shown here. Each graph is generated from a
fixed empirical graph (CORE, DIP or LC) according to one of the four different algorithms. (a) and (b) permute purely network structural
information while (c) and (d) constrain the generation of random graphs also according to biological constraints (such as GO ontology
information and complex annotations). (a) Node shuffle: The labels for each node are permuted (e.g. node colour) but the topology of the
graph is fixed. (b) Network shuffle: The degree of each node, [A, B, C, D, E], is fixed along with the node characteristic, colour, whilst the edges
are randomly rewired. (c) Bipartite Node Shuffle: This permutes each node to another node, vi ® vj such that b(vi) = b(vj) for the particular
characteristic, b, under consideration. (d) Bipartite Network Shuffle: This retains the degree of each node, dG(v), and also rewires each edge, e,
to one of the available node pairs that share the same edge characteristic, j(e).
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In order to avoid biasing the results, if the trees do not
share 3 lineages they are ignored from the following
analyses, although the number of comparisons made in
each case is also recorded to assess whether it affects
the overall outcome alongside the number of lineages
compared in each analysis.

3 Results
Phylogenetic profiles are assessed for each empirical
graph and ensemble method. This is followed by an ana-
lysis of the topological similarity of interacting proteins
and finally by a comparison of the three different phylo-
genetic tree construction algorithms. The results pre-
sented in this section focus on the PROML phylogenetic
trees (as the trends for phylogenetic topology similarity
across the methods used were similar), although there is
also a comparison for the results from the three differ-
ent phylogeny techniques used. The number of trees
generated (owing to either no result from the algorithm
or ambiguous trees) for the methods are: PROML -
4,380; PARS - 3,617; and PAML - 4,260.
Our network ensembles probe different aspects of a

putative association between the PIN and phylogenetic
properties of the constituent proteins. Node shuffle graph
ensembles fix the graph structure and the phylogenetic
tree labels are permuted randomly amongst the nodes.
Network shuffle graph ensembles associate a tree phylo-
geny and degree with each node but randomise the inter-
actions. These probe the relative similarity of interacting
phylogenies in differently organized random graph.

3.1 Phylogenetic profiles
Figure 4 shows the phylogenetic profile differences found
for the sampled ensembles together with a red line show-
ing the average for the LC data. The proteins have on
average more than five identifiable orthologous proteins
across the nine study species. Across all the ensembles,
the phylogenetic profile difference is higher in general for
the graphs sampled from each ensemble than in the
empirical data. Network shuffle ensembles on average pro-
duce a closer trait to the LC graph than the node shuffle
ensembles. Similarly, the node shuffle ensembles has
higher variability than either the random graph ensembles
or the network shuffle ensembles. If the edge rewirings are
constrained by complex annotations (the [complex]
ensembles) the phylogenetic profile differences are most
similar to those found in the empirical graph.
Figure 5 compares the true number of differences for

each of the empirical graphs with the random graph
ensemble graphs. The differences observed here are
matched across the other graph ensembles and can be
seen more fully in the Additional File 1. The proportion
of interacting proteins (the red dot indicates the
observed data) are shown for each possible phylogenetic

profile (0-9). The horizontal axis shows the differences
between phylogenetic profiles. For all graph datasets,
and across all different graph ensembles (see in Addi-
tional File 1), the phylogenetic profiles with three or
fewer differences are found more often among the real
interacting pairs than in tested random graph ensem-
bles. Although the graphs are of different sizes, the PPIs
in each of them show similar phylogenetic profile differ-
ences in both the random ensembles and empirical data.
An exception to this is the DIP graph, where a higher
proportion of edges are found between proteins that
have matching phylogenetic profiles.
The absence and presence of orthologues in the phy-

logenetic profiles was also compared between interacting
proteins and those generated for random graphs. The
Jaccard distance for both the absence and presence of
orthologues is significantly higher in the empirical data
than found in the randomly generated graphs. For LC
the Jaccard distance for the presence of shared lineages
was found to be 0.615 whilst it was on average 0.0604
in the network shuffle and random graphs. The absence
of shared lineages in the true PPIs data was found also
to be significantly higher than found in the random
ensembles, thus reinforcing the results from the phylo-
genetic difference measures.

3.2 Topological similarity
Topological similarity of a pair of protein trees is mea-
sured in three ways: the proportion of matching

Figure 4 Phylogenetic profiles for each ensemble. Boxplots of
the phylogenetic profile differences for edges across the assessed
null model ensembles. The red line shows the average phylogenetic
profile difference found for edges found in the LC graph. The
observed phylogenetic difference found between PPIs in LC is
significantly less than seen in the graphs sampled from each
random null model, although the network shuffle graphs exhibit
lower differences than the random graph ensemble graphs. The
results are also shown for ensembles constrained using the GO and
complex annotations.
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topologies; the topology score, h; and the similarity
score, Γ. The similarity found in the empirical data
should be higher than that for random ensembles if
there is any evidence for co-evolutionary behaviour
among pairs of interacting proteins. Here we describe
results for the PROML phylogenetic trees as the overall
behaviour is identical for each of the tree construction
methods (PAML, PROML and PARS).
In each case, a number of protein tree comparisons

cannot be analysed as either protein does not have the
necessary orthologous information to generate an unam-
biguous phylogenetic tree. Across the random graphs
this means that a varying proportion of potential com-
parisons are missed which is in general only slightly
higher than the number of unknown comparisons for
the empirical data. A lack of phylogenetic protein tree
information results in between 10% and 25% of the
comparisons being excluded, although the network shuf-
fle graphs result in a similar number of excluded com-
parison to those seen for the empirical graph data by
construction (see Additional File 1).
The number of shared species can potentially bias

results. Although there is variation across the ensembles,
the network shuffle graphs results are not significantly
affected by this bias (see Additional File 1).

Figure 6(a) shows the proportion of matching topolo-
gies for each of the graph ensembles compared to the
proportion found for the LC graph (shown as a red
line). Once again, the node shuffle ensemble shows
higher variance of the trait. Each of the biological node
shuffle ensembles constrained by a GO category exhibits
a higher proportion of matching topologies than either
the LC or any of the network shuffle or random graph
ensembles. Indeed, the average level of topology match-
ing seen in all but the [complex] constrained ensembles
is higher than in the LC graph.
Figure 6(b) shows the topological mismatch scores

between interacting protein pairs in LC and the graph
ensembles. The topological score, which measures the aver-
age score between phylogenetic topologies, is higher for the
random graph and node shuffle ensembles than for LC
data. Thus interacting proteins have more similar trees, if
measured by the average score, than would be expected
from either the random graph or node shuffle ensembles.
However, the average mismatch score for the network shuf-
fle ensembles is even lower than seen for the LC graph. Fig-
ure 6(b), however, should be treated with caution as it is
not normalised for the effect of comparing trees on differ-
ing numbers of species (or lineages). The similarity score is
used to counter this factor, and reveals that this counter
intuitive result may solely be a consequence of the influence
of the number of lineages compared. The smaller average
score found for the network shuffle ensembles needs to be
reconciled with the slightly smaller number of shared
orthologues found in the data (see Additional File 1).
Figure 6(c) shows the same results for the similarity

measure, Γ, which takes account of the number of
lineages and the score when comparing phylogenetic
topologies. Unlike the results for the average score, all
of the network shuffle ensembles are now in agreement
with the empirical graph. Node shuffle ensembles have a
lower similarity measure than the empirical data,
although the sampled distribution of average similarities
overlaps with the empirical result.
The variance observed from the node shuffle results is

caused by the role of the highly connected proteins in
the network data. However, it should be noted that
these hubs do not have a significantly different level of
similarity to the species tree, or other protein trees than
less connected proteins (see Additional File 1). The
average number of orthologues found for the 12 most
connected proteins is marginally lower than the level for
the complete set of proteins.

3.3 Phylogenetic methods
Table 3 shows the similarity trait, Γ, for each of the
empirical graphs using trees constructed by each of
PAML, PARS and PROML. There are differences
between the trait statistics for each of phylogenetic

Figure 5 Phylogenetic profile differences. This figure presents
the phylogenetic profile differences found for the random graphs
generated based on the 3 different empirical datasets in
comparison to those found in the original graph. The red points
show the proportion found in the empirical PIN dataset, whilst the
boxplots present the data from the random graphs. The empirical
data, shown as red dots for each boxplot, are generally higher for
differences less than 4, showing that the observed PPIs are more
likely to share phylogenetic profiles than those edges found in any
of the random graph ensembles.
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construction algorithm, but the trends are similar when
comparing the traits produced by each graph ensemble
with those seen empirically. Differences between the
phylogenetic algorithms are reflected in the level of
matching topologies found in the empirical data for
each tree algorithm. For example, in the case of the
CORE data, phylogenies inferred using PAML match in
approximately 17% of comparisons; phylogenies inferred
using PROML match 42%; and phylogenies inferred
using PARS match in 57%. The contrasting results for
these phylogenetic algorithms are to a large extent
explained by the differences between the use of bifurcat-
ing and multifurcating topologies by the construction
methods and how this influences the number of possible
trees [21].
Figure 7 shows the average similarity for comparisons

made on a fixed number of orthologues for each of the
tree construction methods. Figure 7(a) shows results
obtained from PAML phylogenetic trees we see that the
similarity of phylogenetic topologies increases with the
number of shared orthologues. These similarity levels
range from 0.65 to 0.80 for the empirical PIN data. For
the other tree inference procedures (PARS and
PROML), however, we observe the opposite results that
the topology similarity decreases considerably as the
number of shared orthologous sequences increases.

4 Discussion
This paper highlights the importance of using appropri-
ate null models when testing hypotheses on large scale
graphs. The biological trait, in our case the phylogenetic
similarity of proteins, under consideration should be
tested against a variety of graph ensembles to effectively
dissociate the possible effects of topological, as well as
other possibly biological, confounding factors from the
analysis. Using different ensembles allows us to assess

Figure 6 Phylogentic topology similarity measure results. (a)
Topological matching for LC interaction graph: Boxplots for the
distribution of matching topologies found for each sampled graph
ensemble. The red line shows the result for the LC graph (also in (b)
and (c)). The [complex] constrained graphs are the only ensembles
that present fewer matching topologies than are found in the
empirical data. (b) Mismatch score using LC interaction graph:
Node shuffle and random graph ensembles exhibit higher scores
than found in the empirical data, whilst network shuffle ensembles
under any of the tested constraints exhibit a lower average score
than is found in the empirical graph. (c) Topological similarity for
LC interaction graph: The empirical data have similar similarity
values as those found for the network shuffle graphs, whilst the
similarity is significantly higher for each of these than is found in
graphs sampled from the random graph ensemble. For each plot,
the results are shown for the simple topological ensembles and also
those graph ensembles which are constrained using biological traits.
The three different plots highlight the sensitivity of the results to
the metric used, as well as the different interpretations that may be
found given different null graph models used for comparison.

Table 3 Similarity for each phylogenetic tree construction
algorithm

Tree
construction

Graph Real Similarity, Γ

Node shuffle Network shuffle

PAML CORE 0.74 0.747 [0.737,0.757] 0.742 [0.737,0.747]

DIP 0.75 0.760 [0.750,0.769] 0.743 [0.740,0.746]

LC 0.74 0.750 [0.741,0.760] 0.741 [0.739,0.743]

PROML CORE 0.84 0.848 [0.839,0.857] 0.846 [0.843,0.849]

DIP 0.84 0.841 [0.834,0.849] 0.838 [0.837,0.840]

LC 0.84 0.831 [0.822,0.839] 0.837 [0.836,0.839]

PARS CORE 0.90 0.901 [0.893,0.909] 0.899 [0.896,0.903]

DIP 0.90 0.893 [0.884,0.900] 0.893 [0.891,0.895]

LC 0.89 0.882 [0.874,0.890] 0.893 [0.891,0.895]

Average similarity, Γ, for each phylogenetic tree construction algorithm, for
the empirical graphs. The results for node shuffle and network shuffle graph
ensembles are given along with the 95% sample range for the similarity trait.
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what ‘expected by chance’ means in the network con-
text. Whereas the linkage of individual PPIs to particular
traits can be made by assessment against an ER random
graph, this is not true if the trait is believed to be linked
to the network structure or other possibly biological
covariates. The ensembles enable a more subtle view of
the connection between traits of proteins and the net-
works structures that their interactions form, allowing
us to develop tests that tell us about the significance of
observations in interactomic data.
For our particular problem at hand network shuffle

and node shuffle show contrasting results regarding the
similarity of tree topologies. Node shuffle graph results
suggest a marginally higher level of both topological
matches, and of the similarity of empirical data. In con-
trast, network shuffle graph ensembles tend to exhibit
levels of similarity that are not significantly different
from those seen in the empirical data. These results are
significantly different from those observed for random
protein pairs (shown in the ER random graph ensem-
ble). This highlights the importance of choosing an
appropriate graph ensemble when assessing traits of bio-
logical networks.
The potential role of hubs, for example those pro-

teins with a high degree, emerges from a comparison
of the network shuffle and node shuffle ensembles.
There is a far larger variability in the phylogenetic
results when sampling from a node shuffle ensemble.
This variation is primarily due to changes in the phylo-
genetic profile of the highly connected proteins. In

network shuffle the topology-degree relationship
remains fixed, and because degree-degree correlations
are low, less variability is observed in the probability of
matches of phylogenies. Furthermore, the biological
network shuffle ensemble exemplifies how biological
constraints can be used to produce graphs which clo-
sely agree with the observed phylogenetic topologies
observed in the empirical PINs (although caution
should be used to avoid overfitting).
We have shown that there is no significant evidence

for phylogenies of interacting proteins to show higher
levels of topological similarity than expected by chance
in a PIN. The ndings have been confirmed by: (i)
employing different phylogenetic inference approaches;
(ii) using a range of different PIN data sets.
The topological similarity results contrast with the

associations found between PPIs and phylogenetic pro-
files. In the case of these profiles, the linkages between
sharing orthologous proteins and the existence of an
enriched number of interactions is clear and has been
well documented. Similarly, the linkage between PPIs
and distance matrix metrics has also been used to justify
the role of co-evolution among interacting partners. The
topological similarity results here suggest perhaps that
these effects are at a global level, where groups of pro-
teins are conserved across species, rather than directly
between binding partners. The role of co-expression
may explain these affects, rather than co-evolutionary
factors which should be noticeable when measuring the
topological similarity of protein trees. Phylogenetic

Figure 7 Similarity of topologies for different tree algorithms. Average level of similarity for topology comparisons (when rewiring using
network shuffle) made for a fixed number of shared species. The average similarity for each method is different, and the trends seen in PAML
show marked difference to those methods taken from Phylip. The variance of similarities for each tree construction method increases as more
species are compared. This may potentially bias the score results for the topological comparisons, thus suggesting the need to be vigilant when
comparing graph ensemble results with empirical data. The network shuffle results exhibit a distribution of comparisons over the species similar
enough for this to not affect the overall conclusions (see Additional File 1).
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profiles and co-expression are better predictors of PPIs
than the protein phylogenetic trees.

5 Conclusion
Our overall results concerning the topology of interact-
ing proteins do not necessarily contradict previous work
regarding the co-evolution of interacting proteins
[10,16,48,49]. Measures of the evolutionary rate or func-
tional similarity are not accounted for in this analysis
and could be linked with interactions; in yeast (and also
in Caenorhabditis elegans), however, there is evidence
that such a correlation among the evolutionary rates on
interacting proteins is at best weak [15]. Several authors
have also shown that it is in fact the expression level of
a gene (or a measure that may act as a proxy for gene
expression level, such as the codon-adaptation index
[50]) which explains most of the variation in protein
evolutionary rate [13,15,42,51] and not properties related
to the topology of the interaction network. This also
appears to be independent of noise in, and incomplete-
ness of, the PIN data [5]. These results add to the belief
that the observed evolutionary linkage between PPIs is a
consequence of evolutionary rate, as opposed to shared
compensatory changes [42].
The results, however, should only be viewed as further

complementary evidence, rather than a conclusive state-
ment about the role of co-evolution between interacting
proteins. The results, as with previous studies, can only
be interpreted on the basis of the number of organisms
considered and the available interaction data assessed.
However, the results are consistent across the interac-
tomes and phylogenetic methods, and highlight how an
evolutionary signal can be very sensitive to the null
model used.
Overall, graph ensembles offer a means of generating dif-

ferent random graph structures for network analysis. Given
our general uncertainty as to the quality of protein interac-
tion data it is not surprising that different datasets (but also
different ensembles) yield different results as to how similar
phylogenies of interacting proteins are [52]. Quite gener-
ally, the types of data that we have been considering here
are such that inference will only be robust and reliable if
potentially confounding factors are accounted for. The
ensembles that we have discussed here allow us to capture
such factors; and by comparing the results from different
ensembles we may gain increased insights into biological
systems and confidence into our findings.

Additional material

Additional file 1: Supplementary Methods and Figures. PDF file
containing a detailed analysis of factors influencing comparisons of
phylogenetic profiles and phylogenies.
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