
RESEARCH ARTICLE Open Access

ModuleOrganizer: detecting modules in families
of transposable elements
Sebastien Tempel1, Christine Rousseau2, Fariza Tahi1, Jacques Nicolas3*

Abstract

Background: Most known eukaryotic genomes contain mobile copied elements called transposable elements. In
some species, these elements account for the majority of the genome sequence. They have been subject to many
mutations and other genomic events (copies, deletions, captures) during transposition. The identification of these
transformations remains a difficult issue. The study of families of transposable elements is generally founded on a
multiple alignment of their sequences, a critical step that is adapted to transposons containing mostly localized
nucleotide mutations. Many transposons that have lost their protein-coding capacity have undergone more
complex rearrangements, needing the development of more complex methods in order to characterize the
architecture of sequence variations.

Results: In this study, we introduce the concept of a transposable element module, a flexible motif present in at
least two sequences of a family of transposable elements and built on a succession of maximal repeats. The paper
proposes an assembly method working on a set of exact maximal repeats of a set of sequences to create such
modules. It results in a graphical view of sequences segmented into modules, a representation that allows a
flexible analysis of the transformations that have occurred between them. We have chosen as a demonstration
data set in depth analysis of the transposable element Foldback in Drosophila melanogaster. Comparison with
multiple alignment methods shows that our method is more sensitive for highly variable sequences. The study of
this family and the two other families AtREP21 and SIDER2 reveals new copies of very different sizes and various
combinations of modules which show the potential of our method.

Conclusions: ModuleOrganizer is available on the Genouest bioinformatics center at http://moduleorganizer.
genouest.org.

Background
A number of studies have described the search of
repeated elements in a genome. However, except for
phylogeny, few studies systematically analyze the rela-
tionships and variations between the copies of a given
family of repeats.
TEs (Transposable elements) are present in nearly all

genomes that have been studied to date and in some
cases represent most of the genome [1]. These transpo-
sable elements move or are copied from one genomic
location to another [2]. TEs are characterized and classi-
fied on the basis of terminal or subterminal remarkable
structures or of their protein-coding capacity. TEs
that encode the proteins involved in the amplification

mechanism are called autonomous. Two types of ampli-
fication mechanisms define two classes of transposable
elements. Class I elements, or retrotransposons, move
via an RNA intermediate. Class II elements, or DNA
transposons, seem to move via “cut-and-paste” mechan-
isms where the DNA element itself is the mobile inter-
mediate [2].
The transposable elements have an important role in

the evolution of eukaryotic genomes through their
transposition mechanism [2,3] but also by their evolu-
tion/domestication [4-6]. Many recent studies clarify the
diverse role of transposable elements in the evolution of
their host genome: creation of NAIP protein isoforms
and promoter by the insertion of L1 and Alu elements [3],
plant light-sensing dependency on the presence
of FHY1, FHL FHY3 and FAR1 that are related to
MULE transposases [5], exaptation of the transposon

* Correspondence: jacques.nicolas@irisa.fr
3IRISA-INRIA, Campus de Beaulieu, bât 12, 35042 Rennes cedex, France
Full list of author information is available at the end of the article

Tempel et al. BMC Bioinformatics 2010, 11:474
http://www.biomedcentral.com/1471-2105/11/474

© 2010 Tempel et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://moduleorganizer.genouest.org
http://moduleorganizer.genouest.org
mailto:jacques.nicolas@irisa.fr
http://creativecommons.org/licenses/by/2.0

CHARLIE10 in the mammalian zinc finger 452 gene
[7] and creation of new host gene by capture of trans-
posable element domains [4,6].
Many families of both classes do not show any coding

capacity and are called non-autonomous transposable
elements. They have cumulated so many mutations,
insertions or deletions that these TEs are generally
solely defined by their extremities [8,9]. Currently, most
studies do not attempt to characterize and compare the
internal sequences occurring between such extremities.
A few methods [10-13] propose to segment sequences
into conserved segments that we call modules, starting
from a multiple alignment of these sequences.
Multiple alignments that find the boundaries of

these segments in highly variable sequences like non-
autonomous transposable elements may be hard to
obtain. Moreover, multiple alignments lack to find
duplication and inversion in sequences that are frequent
in non-autonomous TEs (Figure 1).
In the present study, we propose a model and develop

pattern matching and classification tools that allow
identification, characterization and graphical representa-
tion of the combinations of modules that make up each
sequence of a given family. We applied it to the study of
a family of non-autonomous TEs of class II, called Fold-
back4 [14], in the whole genome of Drosophila melano-
gaster. This family has been chosen as an illustrative
model of the complex internal organization of non-
autonomous transposons, displaying a wide range of
possible variations and a palindromic structure at
the extremities of its sequences. We have also tested
the method on other transposon families, namely
AtREP21 (class II) [13] and SIDER2 (class I) [15], which
confirm the interest of the tool we propose for the
study of highly variable sequences.

Methods
Our method represents a given family of TE sequences
as an assembly of elementary blocks called modules. We
propose an associated tool, ModuleOrganizer, assuming
that these sequences have been selected on the basis of

local characteristic features (for instance in a database
such as Repbase [16]) and providing a global high level
characterization of them facilitating the study of their
variations. The section starts with a precise definition of
properties that are suitable to delimit modules. We then
describe in detail the method we propose for module
identification.
Overall, it is based on the search and assembly of

“maximal repeat” common to several sequences.
A word w is a maximal repeat (MR) in a non-empty set
of sequences S = {S1, ..., Sn} if, and only if, there are Si,
Sj Î S (not necessarily distinct) and letters a, b, c, d,
with a ≠ b and c ≠ d, such that awc is a substring of
Sj and bwd is a substring of Sj (where $ is a letter
not occurring in any sequence). In order to compute all
these MR, the sequences of the family are indexed via a
generalized suffix tree [17-19]. Our algorithm recursively
associates maximal repeats of a same sequence into
modules under restrictions corresponding to their defi-
nition, such as their size, the number of sequences sup-
porting their presence and the content of the sequence
between two MR. Two final steps allow drawing an
overall representation of the family: sequences are classi-
fied with respect to the presence or the absence of mod-
ules and a visualization tool yields an overall graphical
view of the sequences.

Defining modules in transposable elements
In theory all sequences of a given family of transposable
elements are identical copies of an ancestor sequence.
In practice an amount of variation is observed in TE
copies, in connection with the age of the copies and the
mutation rate. There are several kinds of TE that exhibit
a reorganization of internal sequences including inser-
tions and deletions of large sequences: the Miniature
Inverted-repeat Transposable Elements (MITEs) [2,9],
the Mu-related bacterial transposons [20,21] and the
Helitron superfamily [22] that integrate blocks of geno-
mic material into their variable sequence [21,23,24] and
the Short Interspersed DEgenerated Retroposons 2
(SIDER2) [15].

Figure 1 Multiple alignment of duplicated modules. Sequences A, B and C have duplicated blocks of nucleotides. These duplications evolved
by mutation and the second duplication -1”- has reversed in the sequence C. Whatever the parameters, multiple alignment of the three
sequences identifies the duplicated blocks as different modules.

Tempel et al. BMC Bioinformatics 2010, 11:474
http://www.biomedcentral.com/1471-2105/11/474

Page 2 of 14

Non-autonomous transposable elements (TEs that lost
their protein-coding elements), like MITEs, which repre-
sent for some sequences the main source of copies, are
often subject to deletions [25]. In such a case, it
becomes difficult to reconstruct the autonomous ele-
ment from the set of non-autonomous sequences [26].
We have studied as a test case the MITE family Fold-
back4 [14] and in accordance with previous studies of
non-autonomous TEs [27,28], it clearly exhibits varia-
tions conserved across several sequences that could be
largely explained by biological events such as insertions/
deletions of mobile DNA or of host sequences [23,26].
In order to automatically retrace the main events that
occurred, we have systematically exploited the fact that
MITEs and other non-autonomous transposable ele-
ments present consensus patterns in their different
copies [2,25]. For example, the MITE mPing, Foldback4
or AtREP21 share consensus extremities in all their
copies simply because they are necessary for transposi-
tion [13,14,25]. The importance of host sequence acqui-
sition mechanisms by TEs is well known in plants [29]
and leads to detectable repeated blocks in copies sepa-
rated by small non-consensus nucleotidic regions.
We propose a definition of module for this type of

repeated blocks that introduces cautiously these separat-
ing nucleotides. Basically, a module is an assembly of
flexible repeats. Each flexible repeat is a maximal repeat
combination that occurs several times in sequences
where MR are separated by a variable number of
nucleotides. This class of repeats can be related to the
class of structured repeats introduced by M.F. Sagot [30]
but introduces new interesting variations that will be
discussed in the Results and discussion section under
paragraph Structured versus flexible repeats. Flexibility
is founded on two simple criteria that delimit the possi-
ble spacers between consecutive repeats by fixing a rea-
sonable level of similarity between instances of the same
flexible repeat. Flexibility cannot be greater than the
parts it links.
• Flexible repeats: Let S = {S1, ..., Sn} be a set of

sequences. Let |w| denote the length of word w and e
(w1, w2) denote the edit distance between words w1 and w2.
A flexible repeat is inductively defined as follows:

1. Each maximal repeat is a flexible repeat
2. If A and B are flexible repeats and there exist a
support subset of sequences T Î S of cardinality at
least 2, and words AixiBi in each sequence Si of T
satisfying the following constraints:

(a) Ai and Bi are occurrences of A and B in
sequence Si
(b) Length condition: |xi| ≤ max(|Ai|, |Bi|)
(c) Distance condition: e(xi, xj) ≤ min(|Ai|, |Aj|,
|Bi|, |Bj|) for all pairs Si, Sj in T

then (A, B) is a flexible repeat with occurrences
AixiBi.

The definition recursively accepts chains of maximal
repeats separated by variable constrained spacers. The
length condition applies on spacers in each sequence
individually whereas the distance condition requires a
similarity level between all spacers globally. From this
general notion of flexible repeat, one can define modules
as a selection of flexible repeats that get a sufficient sup-
port in the set of sequences, that do not overlap and
cover as much as possible of this set. More formally:
• Modules: Given parameters MinSizeModule and

MinSequences, a module M in a set of sequences S =
{S1, ..., Sn} is a flexible repeat satisfying the following
constraints:

1. Size condition: Each occurrence of M has length
at least MinSizeModule.
2. Support condition: M is present in a support sub-
set of cardinality at least MinSequences of S.

An admissible set of modules M = {M1, ..., Mm} in a
set of sequences S = {S1, ..., Sn} is a set of modules such
that:

1. Partition condition: For two different indices i and
j, Mi and Mj do not overlap. Moreover, no other
flexible repeat contains a module Mi.
2. Maximality condition: No other flexible repeat ful-
filling the previous three conditions (size, support
and partition) could be added to M.

Such a definition aims at selecting globally a set of
modules that must cover a largest subset of a set of
sequences. Once admissibility has been reached, there
remains some range of variation to build a set of mod-
ules from a set of sequences. We propose an iterative
strategy based on a preliminary search for seeds at the
core of the largest flexible repeats.

An assembly algorithm for the creation of modules
Targeted modules have sizes greater than MinSizeMo-
dule and are present in at least MinSequences sequences.
All admissible modules are based on an assembly of
maximal repeats. In an initial step, our algorithm will
thus build the set of all MRs present in at least MinSe-
quences sequences. This may be achieved in linear time
with respect to the cumulated length of the sequences,
using a generalized suffix tree [19]. These exact maximal
repeats can be considered as seeds which are extended
to the left or to the right depending on the admissibility
of the extension. This method of seed extension is simi-
lar to the method used in Blast [31].

Tempel et al. BMC Bioinformatics 2010, 11:474
http://www.biomedcentral.com/1471-2105/11/474

Page 3 of 14

The construction of modules is detailed in Algorithm 1.
Its basic data structure is a list L of MR sorted by
decreasing size, then by number of occurrences. Each
maximal repeat is associated with the sorted list of its
occurrences in increasing position. Initially, L contains
the whole set of MRs present in at least MinSequences
sequences and it is updated after the construction of
each module (line 8 and 11 in Algorithm 1).
Algorithm 1
1. BuildModules(L, MinSequences, MinSizeModule)
2. REQUIRE: Sorted list L of possible MR (size m,

decreasing order)
3. REQUIRE: Minimal Number of covered sequences

MinSequences
4. i ¬ 1; PairOk ¬ FALSE
5. COMMENT: Looking for a a pair of MR (Seed,

Next) in decreasing order of size in L
6. WHILE (i <m and not PairOk)
7. Seed ¬ L[i]
8. (Next, PairOk) ¬ BuildPair(L, Seed, i+1, MinSeq)
9. i ¬ i + 1
10. IF (PairOk)
11. Discard the paired occurrences A of Seed from L
12. COMMENT: Try to enlarge the current flexible

repeat to the left or to the right by a new maximal
repeat
13. WHILE (PairOk)
14. Depending on the observed occurrences of the

flexible repeat, replace Seed by SeedXNext or NextXSeed

15. Discard the paired occurrences B of Next from L
16. PairOk ¬ FALSE
17. (Next, PairOk) ¬ BuildPair(L, Seed, 1, MinSeq)
18. IF (size(Seed) ≥ MinSizeModule)
19. Seed and its occurences as a new module
20. ELSE ∅
For each module, the algorithm considers the largest

remaining MRs as seed candidates and looks iteratively
and greedily at flexible repeats that can be built from
such seeds. At line 8 of Algorithm 1, a flexible repeat
made of a flexible repeat Seed and a maximal repeat Next
has been discovered and will serve as a new seed for the
search of larger flexible repeats (line 10). Once it is not
possible to extend it any more (line 14), the last condition
to be checked is the size of the obtained module.
The search for maximal repeats to be associated with

seeds in flexible repeats is described in Algorithm 2.
Associations are represented as AxB or BxA, where A is
the largest part and B is the smallest part of flexible
repeats. This convention explains the simplified tests for
flexible repeat length and distance in Algorithm 2. The
spacer x can be an empty sequence (Figure 2). The first
condition of flexible repeats is checked in line 5 and the
second in line 11 (Algorithm 2). The test in line 11 also
checks if there is at least one association in each of Min-
Sequences sequences, the first condition for a flexible
repeat to be retained as a potential module. In building
flexible repeats, the algorithm chooses the largest maxi-
mal repeat B that has the most associations with A.

Figure 2 Examples of association of maximal repeats (MR). The MRs A and B are surrounded by rectangles. The spacer sequence between
two MRs is denoted x or y and is underlined. Modules, created by the assembly of A, B and x or y, are surrounded by large rectangles. Case a) is
the most simple case of association of maximal repeats A and B: the distance between them is always smaller than the size of the smallest MR
B and they can be safely associated. Case b) shows that two occurrences of MR can be separated by any sequence, including the empty one. In
case c), the distance between occurrences of A and B is equal to the size of the largest maximal repeat and spacers have to be checked for their
similarity. The edit distance between sequences x and y equals 2, a value smaller than the sizes of A and B, and a module can be built. In case
d), the size of x and y equals 4 as in case c), but x is at edit distance 4 from y, which is greater than 3, the size of B. The association of MRs
A and B do not form a module in this case.

Tempel et al. BMC Bioinformatics 2010, 11:474
http://www.biomedcentral.com/1471-2105/11/474

Page 4 of 14

Algorithm 2
1. REQUIRE: BuildPair(L, Seed, Start, MinSequences)
2. REQUIRE: Sorted list L of possible MR (size m)
3. REQUIRE: A flexible repeat Seed and a starting

index Start for the search in L
4. REQUIRE: Minimal Number of covered sequences

MinSequences
5. j ¬ Start; PairOk ¬ FALSE
6. WHILE (j≤m and not PairOk)
7. Next ¬ L[j]; Pairs ¬ Ø
8. FOR (all occurrences A of Seed)
9. Search for the occurrences B of Next such that

AxB (orientation = “+”) or BxA (orientation = “-”) is a
subword of the sequence and x has size at most the size
of A
10. IF (B exists)
11. Pairs ¬ Pairs ∪ {(x, b, orientation)} COM-

MENT: b is the size of B
12. COMMENT: Build the graph GB of occurrences

at a suitable edit distance in Pairs
13. FOR (all pairs of occurrences ((x, bx), (y, by)) in

Pairs in each orientation
14. IF (the edit distance e(x, y) ≤ min(bx, by))
15. Create an edge in GB between vertex (x, bx)

and vertex (y, by)
16. IF (there exists a clique containing at least Min-

Sequences sequences in G)
17. PairOk ¬ TRUE
18. j ¬ j + 1
19. RETURN (Next, PairOk)
The worst case complexity of Algorithm 2 is o(n3),

where n is the cumulated size of sequences: it is based
on a loop on possible maximal repeats (o(n)) including
a loop on possible matching occurrences (o(n) since list
of occurrences of A and B can be searched in parallel),
the production of a graph of similar occurrences (o(n2))
and a search of a clique of size at least MinSequences in
this graph (we use a heuristic search here, keeping only
vertices that are connected to at least MinSequences
nodes associated to different sequences and using an
iterative choice of vertices with highest output degree in
the remaining graph. The complexity of this step is thus
o(n)). Note that the last step offers no guarantee to
always find the clique if it exists. Algorithm 1 is also
based on a loop on possible maximal repeats (o(n))
including calls to Algorithm 2. The total worst case
complexity is thus o(n4). The main data structure are
the list L of occurrences of maximal repeats and the
graph G, requiring o(n2) space. In practice, the algo-
rithm is very fast (less than a minute) on typical trans-
posable elements families (e.g. 15 sequences of length
2000 nt). The tool we propose allows in fact a more
flexible method of association of A and B. The size of
spacer x has to be smaller than a percentage of the size

of A (|x| ≤ |A| * percentage). By default, the percentage
value is 100% and corresponds to the criterion we have
defined. With a lower percentage, it is possible to be
more restrictive on the spacer size.

Detection of all modules in sequences
After the creation of a module, the list L of maximal
repeats must be pruned of any occurrence that overlaps
occurrences of this module in order to fulfill condition
3 of the definition of modules (partition condition). The
algorithm stops the search for modules present in Min-
Sequences sequences when the procedure BuildModules
returns an empty set.
At the beginning MinSequences is set to the number

of sequences present in the input file. After the algo-
rithm has found all modules of size bigger than MinSi-
zeModule in MinSequences sequences, the main loop
searches for modules in MinSequences = MinSequences - 1
sequences until MinSequences = 1.

Palindromic modules and truncated modules
Transposable elements have two characteristics that are
not taken into account by our module definition. First,
elements may be copied in the direct or reverse direc-
tion. This leads to frequent palindromic motifs that
have to be recovered in the context of flexible repeats.
Second, elements may be truncated due to large dele-
tions or a high number of mutations. Some partial flex-
ible motifs may remain interesting to identify for a
complete analysis of the transposon structure.
Our tool proposes the identification of reverse mod-

ules on the basis of the exact MR they contain. In prac-
tice, all MRs are searched both on the direct and on the
reverse strand and are consequently labeled. A reverse
module has the same composition as the module it is
derived from, replacing its MR by the corresponding
reverse MR. Once a module has been determined, the
presence of its reverse module is systematically looked
for in the sequences. The presence of a module in its
direct or reverse form is counted whatever its direction.
This way, the requested number of supporting sequences
MinSequences may be attained by a combination of
both directions.
Truncated modules may exist with a conservation

level that is very low, one or several MRs being dis-
carded from the original copy. It is difficult to define an
absolute conservation threshold that would decide if a
given degenerated combination of MR remains or not a
truncated version of a module or if it must be consid-
ered as a new entity. Modules are often composed in
practice by a main founding MR surrounded by several
smaller MRs at some distance. We have chosen to
require that the largest MR remains present in a trun-
cated version of a module, a simple constraint that

Tempel et al. BMC Bioinformatics 2010, 11:474
http://www.biomedcentral.com/1471-2105/11/474

Page 5 of 14

ensures at least a core identity with the full module.
Unlike the previous case, truncated modules are consid-
ered only if the full module exists in the set of sequences.
They are added during a second step, once all complete
modules have been identified.

Clustering of sequences
After the module detection stage, assume m different
modules have been obtained in n sequences. The next
step of ModuleOrganizer is to build a hierarchical clus-
tering of sequences (a tree) conducted on the basis of
module similarity. This way, the evolution of sequences
in the family can be traced back by comparing sequences
in decreasing order of similarity of their modular profiles.
Basically, each sequence is represented by a vector of
values on a set of attributes (variables), one numerical
attribute per module that is a counter of its occurrences.
If the user does not select the search for reverse or trun-
cated modules, the software creates thus an incidence
matrix of dimensions m × n.
If reverse modules are allowed, more attributes are

necessary to finely describe the evolution of sequences.
For each module we create three attributes: one count-
ing the number of direct occurrences (direct orienta-
tion), one counting the reverse occurrences, and a last
counter for occurrences of the module (either normal
or reverse occurrence). The third attribute allows
to measure the convergent evolution of palindromic
structures like Inverted Terminal Repeats [32]. Indeed,
the transposase of autonomous elements recognizes
specific palindromic structure at their extremities [2].

The mutation of one extremity decreases strongly their
transposition. A double mutation in both extremities
may restore the palindromic structure and transposi-
tion. This has been observed for instance within families
of mariner-like elements [33]. The incidence matrix has
size 3m × n with the reverse option.
The presence of truncated occurrences of modules

slightly extends the meaning of the attributes we have just
defined. These occurrences correspond to small fragments
of entire modules, and are composed of a selection of the
module MR. While full module occurrences contain 100%
of the cumulated size of MR, truncated occurrences con-
tain a lower percentage of this total size reflecting the
deleted fraction of a module MR: a complete direct or
reverse occurrence will contribute for 1 and a truncated
occurrence will have a strictly smaller positive contribu-
tion. For instance in Figure 3, the module M2 has one
complete occurrence in sequence A and B and one trun-
cated occurrence that contributes at level 0.5.
Sequences are clustered using a standard Hierarchical

Agglomerative Clustering (HAC) algorithm, using the
Ward criterion [34]. Ward’s criterion states that merging
HAC clusters should be focused on minimizing the
increase of variance induced by the added interclass var-
iance. Basically, it is an error sum-of-squares criterion. In
the first step, the loss of inertia in aggregating sequence

pair x and y Δ = −()∈∑(,)x y
n

x yi ii attributes
1
2

2
is com-

puted between each possible pair, where xi (yi) corre-
sponds to the value of attribute i in sequence x (y) and n is
the number of sequences. Starting from clusters reduced

Figure 3 Module organization of sequences A, B and C and associated incidence matrix used for the classification. Modules marked
with triangles correspond to reverse modules and crossed modules correspond to truncated modules. Three attributes are associated with each
module, Mi, rMi and Mi|rMi, corresponding to direct, reverse and total occurrences. Truncated modules have 50% of the MR total size conserved.

Tempel et al. BMC Bioinformatics 2010, 11:474
http://www.biomedcentral.com/1471-2105/11/474

Page 6 of 14

to a single sequence with weight 1/n, the pair of
clusters minimizing Δ is replaced by its union and the
values of the weight and Δ for this new cluster is
updated (weights are additive and if x, y and z are
three clusters with weight nx, ny and nz, then

Δ Δ(,) (() (,) () (,) (,)))x y z
n n n

n n x z n n y z n x y
x y z

x z y z z∪ = + + + Δ + + − Δ1 .

The algorithm iterates until all sequences are in the same
cluster.

Results and Discussion
Implementation
The module detection program (all its functions) and
the classification program are written in the C language.
The software produces one to three output files. The
first file is the only mandatory output file. It

corresponds to the list of sequences with their composi-
tion in modules. It uses the same output format as
DomainOrganizer [13]. The second file corresponds to
the classification of sequences and is written in Newick
format. The third file is the output graph written in
SVG (Scalar Vector Graphics) format (Figure 4). In this
file, the sequence module contents are displayed
together with their classification tree. A specific texture
is associated to each domain and specific markers are
used for reverse (triangle) or truncated (crossed boxes)
modules.
ModuleOrganizer is relatively fast. The next two sec-

tions give results on three transposable element families:
AtREP21, SIDER2 and Foldback4, for a total of 27000,
8000 and 30000 nucleotides respectively. On a PC run-
ning with an Intel Core2 Duo 2.2 GHz and 4 Go Ram,

Figure 4 Module organization of the AtREP21 family. The 48 sequences of AtREP21 are composed of 47 modules. The only parameter used
is MinSizeModule = 18. The sequences are classified according to their module composition and the tree appears as displayed by
ModuleOrganizer. We just added colors to the hierarchical tree in order to highlight the clusters.

Tempel et al. BMC Bioinformatics 2010, 11:474
http://www.biomedcentral.com/1471-2105/11/474

Page 7 of 14

these results have been obtained in 15.7 s, 1.8 s and 27.7
s respectively.
ModuleOrganizer allows users to tune a few para-

meters with respect to their application:

• The first parameter is the minimal size MinSize-
Module of admissible modules. We assume that in
most cases the user has some knowledge of the
sequences in the input file so that the user can fix
or adjust iteratively the value of MinSizeModule. By
default, ModuleOrganizer proposes to set MinSize-
Module to the minimal value of x such that it exists
a word of size x that is not present in the sequences.
• The second parameter Maxratio is the percentage
that can be used in the length condition of flexible
repeats (the length condition of flexible repeats
writes |xi| ≤ |Ai| * Maxratio if Ai is assumed to be
larger than Bi), e.g. Maxratio = 100 corresponds to
spacers between elements A and B of flexible repeats
possibly reaching the size of A. The selection of
modules is a trade-off between size and similarity.
Lower values of Maxratio allows to move this trade-
off to smaller sizes of modules and more similar
occurrences (see end of section “An assembly algo-
rithm for the creation of modules”).
• The third parameter is the minimal number of
sequences that must support the presence of mod-
ules. Our algorithm searches modules in MinSe-
quences sequences. By default, MinSequences will
get all values in the range from the number of
sequences up to 1 sequence.
• The last parameter allows the search for palindro-
mic and/or truncated modules (see section “Palin-
dromic modules and truncated modules”).

Module organization of AtREP21 and SIDER2
AtREP21 is a family of non-autonomous Helitron trans-
posable elements present in Arabidopsis thaliana [13].
We used ModuleOrganizer on the 48 elements of this
family, setting just the MinSizeModule parameter to 18
instead of the default value 8 that would result in a too
detailed view. No palindromic modules exist in this
family [13] and it is not necessary to use this optional
search. There are 47 modules that characterize the whole
family (Figure 4). The module number 1 and 10 corre-
spond respectively to the left and right extremities of
AtREP21. The comparison of results between Domai-
nOrganizer [13] and ModuleOrganizer shows a similar
module organization. For example, the AtREP21 ele-
ments number 5, 12, 19, 25, 34 belong to the same clus-
ter (red group in [13] and Figure 4). The sequences of
AtREP21-24 and AtREP21-41 are clustered by Modu-
leOrganizer in a specific group that corresponds to the

insertion of a long transposable element. This is the sole
minor difference between results provided by the two
methods. For this family, the main difference lies rather
in the execution time: more than 4 hours for DomainOr-
ganizer and less than one minute for ModuleOrganizer.
SIDER2 is a family of Short Interspersed DEgenerated

Retroposons that Smith et al. found in three Leishmania
genomes [15]. We selected 13 of the 1021 SIDER2 they
reported. We set the parameter MinSizeModule to its
default value 8 and the parameter Maxratio to 75, a value
that generates a more detailed segmentation with more
similar module occurrences than the default value 100.
This allowed to better recover crossing effects that we
wanted to show. The Figure 5 shows SIDER2 sequences
are clustered into four groups: A, B, C and D (indepen-
dently of the value of Maxratio). Group A is mainly com-
posed by the modules 19, 42, 29, 26, 20, 13, 39, 1 and 41
(5’-3’ order). The larger modules of SIDER2 sequences of
group C are modules (5’-3’ order) 26, 46, 6, 16, 29, 4,
17, 61, 1, 8, 14, 28, 18, 62, 15 and 27. In the SIDER2
sequences of group D, modules 29, 55 have been deleted
and modules 13 and 61 have been substitued by 8 and 63
respectively. Group B presents a clear combination/
exchange of modules with the other groups: the modules
9, 6, 25 and 22 come from the C/D groups and the mod-
ule 20 from group A. Moreover, Figure 5 shows some
conserved modules that would be impossible to observe
with multiple alignment: some modules cross themselves
in SIDER2 sequences. For example, module 1 is present
in all sequences: in group B it lies between modules 9
and 3 and the module 26, but in group C it lies between
module 26 and the modules 9 and 3.

Organization of modules in Foldback4
We have chosen the family of non-autonomous TEs
Foldback4 (FB4) known to be present in the D. melano-
gaster genome [14] in order to propose a more complete
comparative analysis of a TE family with several avail-
able softwares.
Ten Foldback4 sequences have been identified and

numbered with respect to their order of occurrence on
the direct strand. These elements range from 627 bp to
2266 bp. We used STAN (Suffix Tree Analyser) [35] to
find the sequences from the genome and FGENESH
software [36] to verify that sequences do not contain
ORFs and are thus non autonomous elements. MinSize-
Module was set to 18 bp and we have used the optional
search for palindromes and truncated modules in
sequences. The module-identification algorithm discov-
ered 11 modules (Figure 6).
The palindromic structures of the Foldback4 family

have been recovered and are described by domain num-
bers 1-3 and 6. Except for Foldback sequences number
2 and 7, which present a deletion of modules 2, and 2-3

Tempel et al. BMC Bioinformatics 2010, 11:474
http://www.biomedcentral.com/1471-2105/11/474

Page 8 of 14

respectively, termini palindromes of this family measure
more than 400 bp and represent the most important
part of their sequences (Figure 6). The Foldback4 family
shows a significant variation in internal sequences
resulting from insertions, deletions or substitutions of
domains. The visualization shows that Foldback4 is
mainly divided into two groups of sequences.
The first group (color blue in Figure 6) contains Fold-

back4 sequences number 1, 4, 5 and 9. This group is

mainly composed of the combination of modules num-
ber 1-5, 7, 9-10 and their reverse complement. The
most notable variation between them comes from the
number of repetitions of modules 4 and 5 that represent
the central part of these sequences. The sequence FB4_4
does not contain any repetition and FB4_9 contains
three consecutive repetitions of modules 4 and 5.
The second group (color red) contains Foldback4

sequences number 2-3, 7-8, 10-11. It is mainly

Figure 5 Module organization of the SIDER2 family. The 13 sequences of SIDER2 are composed of 58 modules. The parameters used are
MinSizeModule = 10 and Maxratio = 75. The value of this last parameter allows to create smaller and more similar modules than by default. We
added colors and letters to the hierarchical tree produced by ModuleOrganizer that highlight the clusters. We also switched the clusters to show
the crossing modules.

Tempel et al. BMC Bioinformatics 2010, 11:474
http://www.biomedcentral.com/1471-2105/11/474

Page 9 of 14

characterized by the deletion of modules: no sequence
of this group does contain modules 8-10 in its middle
part. The module 2 that belongs to the left side of the
palindromic structure is deleted in sequences 7 and 2.
The sequence 7 contains only the module 1 in the right
part of the palindrome and the module 2 is deleted in
the right part of the palindrome of sequence 2.
Recovering the module architecture in the Foldback4

sequences establishes a probable scenario for the evolution
of this family. Note that we do not propose here a com-
plete phylogenetic analysis of the family that would be
beyond the scope of this paper. Our purpose is just to
illustrate the kind of hypotheses that can be elaborated
from such characterizations. Like MITE elements, non-
autonomous families generally derive from autonomous
elements that are subject to deletion events [9]. After such
deletions, the amplification of TE can create tandem
repeats of minisatellites inserted into the non-coding
sequence [2]. For the Foldback4 family, we assume similar
deletions and mutations have created these non-autono-
mous elements from autonomous elements and that in a
second step some internal duplications have occurred. If it
is the case, the oldest sequence (the closest from the
autonomous) contains the highest number of modules
together with the lowest number of duplications. The
sequence FB4_4 corresponds to these criteria: it contains
both all modules and the least number of repeated mod-
ules. We then assume the evolution of this family mainly
comes from the duplication or the deletion of modules.
From this sequence FB4_4 other sequences have evolved
by the amplification of left internal modules 4 and 5 (Fig-
ure 6). The sequences 5 and 9 seem older than the other
sequences because they did not evolve after these amplifi-
cations. From these sequences, the amplification of the
right modules led to the sequence 1. The other sequences
then evolved from this point by the deletion of the central

modules. We assume that sequences 3 and 8 have been
created from sequence 1 by the deletion of one block of
consecutive modules (just one deletion event).
Our method highlights the complexity and variance of

the sequence structure between members of a given family
of TEs. These differences, which may result in a certain
level of disconnection between TE repetition and module
repetition within a genome, are usually not observable by
standard sequence analysis tools on DNA such as BLAST,
or specialized software programs for the analysis of TEs
(Recon [37], RepeatScout [12], Vista [10] or GATA [11]).

Structured versus flexible repeats
The idea of looking for a series of words placed at con-
strained distances on genomic sequences is not new.
The class of structured repeats has been introduced in
[30] in order to formalize the type of sequences involved
in regulation (binding sites). Basically, a structured
repeat is define as an ordered collection of several sim-
ple motifs (the boxes) interleaved by bounded gaps.
Spaced dyads are probably the simplest notion of struc-

tured motif and have been proposed by J. van Helden & al
[38]. A spaced dyad is made of two boxes, two words at a
fixed distance. The more general notion of structured
motif as it is used for instance in Risotto [39] allows varia-
tions in the size of single motifs (specified minimal and
maximal length for each), in the content of single motifs
(specified maximal error rate for each) and variation in the
size of gaps (specified minimal and maximal distance
between each pair of consecutive box). The number of
motifs is fixed and the search for structured motifs uses a
quorum corresponding to our parameter MinSequences.
Numerous authors have applied structured motifs in

the framework of pattern matching (motifs are given)
and this differs significantly from the pattern discovery
task we are considering in this paper where the

Figure 6 Module organization of the Foldback4 family. The ten sequences of Foldback4 are composed of eleven modules. To obtain this
result, MinSizeModule has been set to 18 and truncated, and reverse modules have been looked for. We added colors to the hierarchical tree
produced by ModuleOrganizer that highlight the clusters.

Tempel et al. BMC Bioinformatics 2010, 11:474
http://www.biomedcentral.com/1471-2105/11/474

Page 10 of 14

combinatory of possible arrangements has to be carefully
controlled. The language A of ANREP [40] is one of the
early successful proposition in this respect, already distin-
guishing simple motifs (including the possibility to man-
age matching costs) from network patterns that allow
gaps and disjunctions. Advanced algorithms have been
designed since and a few papers have presented experi-
ments on the analysis of transposable elements [41-43].
Flexible repeats introduce a few specific characteristics

with respect to structured repeats. First flexible repeats
are not vectors of fixed size: flexible repeats may have a
variable number of boxes and they are included in an
embedding structure that is not a simple linear ordering.
Second, the possible variations are strictly confined in the
gap part (x part in flexible repeats). Boxes are words
(maximal repeats) that have to match exactly in the
sequence. The restriction to MR provides a representa-
tive basis of all words that has a linear size with respect
to the cumulated length of the sequences. Note that
there is no restriction on the length of these words and
in practice all short words including single nucleotides
are maximal repeats. Structured repeats present a two
level view of sets of sequences, a level of similar regions
shared by a sufficient subset of these sequences and a
level of assembly with completely specific regions that
are solely represented by their length. We have adopted a
different view where only the regions exactly shared by a
sufficient subset of sequences are retained and where the
assembly process results from a cautious iterative aggre-
gation of these regions on the basis of similar inter-
regions. Regions that are completely specific to particular
sequences are not associated with a module and are thus
characterized negatively by the absence of modules.
To sum up, the standard approach for the segmentation

of biological sequences in relevant modules is the pattern
matching approach, where one is looking for common
words within a certain admissible rate of errors. The issue
described in this paper in rather an aggregation approach:
starting from solid anchor boxes (the MR), we establish
reasonable criteria to put them in a same class, in a user-
understandable way. This is why we use the length of
these anchors in our criteria. Dropping the first condition
on length in the definition of flexible repeats results in
uncontrolled aggregations: it leads to a single module
spanning the whole sequences for the family Foldback4
for instance. Looking for AxB with the number of allowed
errors made proportional to |x| in the second condition
instead of min(|A|, |B|) cannot be retained because among
possible A and B are single nucleotide sequences and this
would results in simply looking for all common approxi-
mate words on the set of sequences, a hard problem that
has not been answered satisfactorily so far, as it appears in
the following discussion comparing results of available
tools. To the contrary, the principle “flexibility cannot be

greater than the parts it links” offers a neat basis of aggre-
gation that can be practically finely tuned by using para-
meter Maxratio.

Comparison with other programs
Studies on non-autonomous transposable elements are
rare because the main method of studying the evolution of
these elements is based on their alignment with other
known elements. Since non-autonomous elements are
generally highly variable, including numerous insertions,
deletions, and repetitions, previously cited methods fail to
find a good organization of the non-autonomous elements.
We have tested four recent softwares that combine multi-
ple alignment and graphical tools on the Foldback4 family,
trying each time to retrieve direct or reverse copied mod-
ules: VISTA [10], GATA [11], GraphDNA [44], Recon [37]
and DomainOrganizer [13]. Graphical results of these
software are provided in the additional files.
The first software, VISTA http://genome.lbl.gov/vista/

index.shtml [10], requires entering sequences separately
and choosing a type of alignment. The user cannot set
the value of multiple alignment parameters and one of
the sequence must be set as a reference. In our case, the
user has to check n results where n is the number of
sequences. Moreover, as VISTA does not display the
reference sequence, it is impossible to obtain a complete
view of all sequences. We provide in Additional file 1
the graph resulting from the selection of F4_1 as the
reference sequence. The graph shows that, except for
FB4_7, both extremities are conserved in all Foldback4
sequences and that some parts of the internal sequence
are conserved. We obtained similar results with the other
FB4 sequences as reference. VISTA does not provide the
palindromic structure of Foldback that is important to
understand the evolution of these sequences. Moreover,
the VISTA interface does not allow to change the para-
meters of the matching region (the minimum size is 100
bp and the minimum percentage of similarity is 70%) and
the complexity and the structures of Foldback4 internal
sequences vanish completely.
GATA http://gata.sourceforge.net [11] contains two

different softwares: GATAliner and GATAPlotter [11].
GATAliner uses Blast2seq [45] to create the alignment.
Beside standard parameters of BLAST, such as the seed
size and the mismatch cost, it offers a specific parameter
on the minimal size of alignments that corresponds to
MinSizeModule in our algorithm. GATAPlotter is
an interactive graphical tool that shows the alignment
of a reference sequence (like VISTA) against another
sequence. GATAPlotter has lots of rendering options
and provides also two interesting options for the analy-
sis of the dataset: annotation of aligned sequences and
matching regions displayed by percentage of similarity.
Additional file 2 assembles all multiple alignments with

Tempel et al. BMC Bioinformatics 2010, 11:474
http://www.biomedcentral.com/1471-2105/11/474

Page 11 of 14

http://genome.lbl.gov/vista/index.shtml
http://genome.lbl.gov/vista/index.shtml
http://gata.sourceforge.net

a fixed threshold of 50% similarity to the reference
sequence. The first sequence of each alignment corre-
sponds to the reference sequence. On the contrary of
VISTA but like our algorithm, GATA shows these
sequences contain a large palindromic structure at the
extremities. Except the FB4_4 and FB4_9, all other
sequences have a mismatch region in the center of their
sequences. The main limitation of GATA is the number
of sequences the user can study. The user must open n2

windows for n sequences to get a global view of them.
For Foldback4 sequences we needed to open 100 differ-
ent alignments. In practice, studies with more than 5
sequences become tedious.
GraphDNA http://athena.bioc.uvic.ca/tools/GraphDNA

[44] uses fixed parameters for the multiple alignment.
GraphDNA provides many views of the alignment such
as ‘Purine Skew’, ‘AT Skew’ and ‘DNA Walker’. These
views show the skew of nucleotide combination at a
given position, calculated on a window of user-defined
size. DNA Walker is a graphical view of the four
nucleotide skews along the dataset sequence. We chose
the ‘Purine Skew’ view for the analysis of our dataset
(Additional file 3). GraphDNA provides in this case a
global view of similar nucleotide composition regions
that fit well with the conserved blocks observed by
using a multiple alignment procedure. Contrary to the
two previous softwares, no reference sequence is needed
and all sequences are displayed within a single view. We
assumed that similar or parallel curves denote similar
sequence fragments. The graph shows that all left extre-
mities of sequences, except FB4_1 and FB4_2, start at
the same point, and are similar (Additional file 3). After
about 200 common bp, the sequences start to take dif-
ferent skews (directions), and after 300 bp, sequences
completely diverge. The right extremities are parallel
and present the same skew pattern. This suggests that
right extremities are similar too but give no details on
the internal part.
Recon http://selab.janelia.org/recon.html [37] is a Perl

script using BLAST results [31] as input. The software
aggregates the different fragments of BLAST hits in one
long aligned region. Users cannot tune the parameters
of Recon. On our dataset, the software chose Foldback4
number 11 as the reference sequence.
Two results of Recon are presented: the final result

with all similar parts assembled in blocks after the com-
plete execution of Recon algorithm, and an intermediate
state given by Recon that corresponds to the similar
parts identified by BLAST and sorted by Recon. The
Additional file 4 displays the final result using Modu-
leOrganizer textures. It shows 11 modules that often
cover a large part of the sequence. These large modules
do not show palindromic structures and differ for each
sequence. However, the module number 2 is overlapped

by modules 3 and 8 in FB4_1 and FB4_5 respectively.
Because we needed details on the composition of each
sequence, we had to use the intermediate results pro-
posed by Recon, which contained the unclustered frag-
ments. First, we removed the fragments shorter than
MinSizeModule (i.e. 18 bp), we labeled the fragments of
each Foldback TE in agreement with fragments in the
reference sequence and we sorted the fragment by
increasing positions. Finally, we renamed modules hav-
ing the same coordinates in Foldback sequences but not
in the reference sequences and we also associate manu-
ally modules with different names that have similar
coordinates in the reference sequence. The Additional
file 5 shows the fragments detected by Recon. The
Recon modules (Rmodules) 1, 30, 117, 165, 174 and 182
show the relative similarity of left extremities. Right
extremities are similar too and share common Rmodules
with left extremities, suggesting they could be complemen-
tary sequences. It is extremely difficult to point at similari-
ties or structures in the internal part of sequences with
the overlapping fragments, especially in the FoldBack4
sequence 11 that contains all Rmodules. For example,
only FB4_5 exibits some repeated Rmodules in its
internal sequence.
DomainOrganizer [13] fails to give a result with the

Foldback4 sequences. During the crucial and costly step
of domain optimization, too many candidate domains are
generated and the program is unable to find out a possi-
ble cover of sequences with domains (unpublished data).
GATA [11] is the only tested software that showed the

palindromic structure. All other softwares failed to show
the real structure of extremities and the module evolu-
tion of Folback4 sequences. Especially the internal part
of sequences remained ‘black boxes’ in all these tools.
Except for DomainOrganizer where we were forced to
use the AtREP21 family for the comparison, we sum-
marize in Table 1 the range of application of each soft-
ware extracted from our study on Foldback4.

Table 1 Summary structures detected with softwares

Duplication Palindrome Truncated Reference
Sequence

ModuleOrganizer X X X

DomainOrganizer X

VISTA X

GATA X X

GraphDNA

Recon x x X

The table summarizes the different structural modules that can be detected
by the different tested softwares. The last column indicates if the software
needs a reference sequence or not. Big crosses in cells indicate the software
displays the corresponding type of structure, small ones mean the structure
could be deduced from the results.

Tempel et al. BMC Bioinformatics 2010, 11:474
http://www.biomedcentral.com/1471-2105/11/474

Page 12 of 14

http://athena.bioc.uvic.ca/tools/GraphDNA
http://selab.janelia.org/recon.html

Conclusions
Our analysis provides structural results on the internal
organization of a family of DNA sequences. It can
describe the differences between family members in
terms of module content and highlights the evolution of
the host genome with respect to these components.
Such a structural and descriptive abstract view should
ease the analysis of TE-genome relationships and give
some support for studies on transposition mechanisms.
Our method needs very few parameters. The most

crucial one is MinSizeModule and tuning this parameter
with several tries is generally sufficient to get desired
results. If the size of minimal domains is too small, the
number of domains may simply be too large to give an
interesting abstraction of the sequence. On the other
hand, if the size of domains is too large, the number of
domains may be too restricted to formulate a relevant
biological interpretation.
Of course, ModuleOrganizer might be applied in prin-

ciple to any set of nucleic sequences sharing some simila-
rities and for which a multiple alignment fails to
correctly retrieve the architecture of conserved blocks in
the sequences. The study of families of transposons is a
natural setting for this tool but application on other types
of sequences might help to explore other sequences at
the desired level of abstraction.

Additional material

Additional file 1: Visualization of Foldback4 family with VISTA. We
chose FB4_1 as reference sequence. The bright red zones correspond to
high similarity regions and the white zones correspond to low similarity
region. The alignment criteria of VISTA are fixed in the software.

Additional file 2: Visualization of Foldback4 family with GATA. The
reference sequence is FB4_1. The black and gray rectangles correspond
to regions matched in the same direction and the red and bright red
ones correspond to regions matched in reverse direction. The brighter
the region, the more the similarity decreases.

Additional file 3: Visualization of Foldback4 family with GraphDNA.
Each line corresponds to a different sequence of FoldBack4. All
sequences start at the same coordinate. The sequence FB4_1 is the
reference sequence.

Additional file 4: Visualization of Foldback4 family with Recon. As in
the results displayed by ModuleOrganizer, each module has its own
texture with graphDNA. The result corresponds to the final output of
Recon: all similar parts have been associated in regard to the Recon
results.

Additional file 5: Visualization of Foldback4 family using
intermediate results of Recon. As in the results displayed by
ModuleOrganizer, each module has its own texture with graphDNA. The
intermediate results correspond to the enumeration of all similar parts
recognized by BLAST comparisons.

Acknowledgements
We thank the reviewers for their helpful remarks that allow to improve the
initial version of this paper. The necessary computing environment has been
provided by the bioinformatics resource center from Biogenouest http://
genouest.org. Thank you to Olivier Sallou for making the code available on

the platform within the Mobyle environment and Jackie Bynoe for help in
proofreading. This work has been supported by a grant from the French
Agence Nationale de la Recherche (Modulome project).

Author details
1IBISC, Tour Evry 2, 523, place des terrasses del’agora, 91000 Evry, France.
2INP-ENSAT, Avenue de l’agrobiopole 31326 Castanet tolosan, France. 3IRISA-
INRIA, Campus de Beaulieu, bât 12, 35042 Rennes cedex, France.

Authors’ contributions
ST has produced all the necessary code with the help of CR and made the
experiments. JN supervised the study and proposed the model. JN and ST
wrote the initial version of the paper. CR and FT have checked and
improved the writing of the paper. All authors read and approved the final
manuscript.

Received: 23 April 2010 Accepted: 22 September 2010
Published: 22 September 2010

References
1. Kidwell MG, Lisch DR: Perspective: transposable elements and host

genome evolution. Trends Ecol Evol 2001, 15:95-99.
2. Craig NL, Craigie R, Gellert M, Lambowitz A: Mobile DNA II Washington DC:

American Society for Microbiology Press 2002.
3. Romanish MT, Nakamura H, Lai CB, Wang Y, L MD: A novel protein isoform

of the multicopy human NAIP gene derives from intragenic Alu SINE
promoters. PLoS One 2009, 4:e5761.

4. Cordaux R, Udit S, Batzer MA, Feschotte C: Birth of a chimeric primate
gene by capture of the transposase gene from a mobile element. Proc
Natl Acad Sci USA 2006, 103:8101-6.

5. Feschotte C, Pritham E J: DNA transposons and the evolution of
eukaryotic genomes. Annu Rev Genet 2007, 41:331-68.

6. Quesneville H, Nouaud D, Anxolabehere D: Recurrent recruitment of the
THAP DNA-binding domain and molecular domestication of the P-
transposable element. Mol Biol Evol 2005, 22:741-6.

7. Almeida LM, Silva IT, Silva WAJ, Castro JP, Riggs PK, Carareto CM, E AM: The
contribution of transposable elements to Bos taurus gene structure.
Gene 2007, 390:180-9.

8. Wessler SR, Bureau TE, White SE: LTR-retrotransposons and MITEs:
important players in the evolution of plant genomes. Genet Dev 1995,
5:814-821.

9. Feschotte C, Mouches C: Evidence that a family of miniature inverted-
repeat transposable elements (MITEs) from the Arabidopsis thaliana
genome has arisen from a pogo-like DNA transposon. Mol Biol Evol 2000,
17:730-737.

10. Brudno M, Poliakov A, Minovitsky S, Ratnere I, Dubchak I: Multiple whole
genome alignments and novel biomedical applications at the VISTA
portal. Nucleic Acids Res 2007, 35:W669-W674.

11. Nix DA, Eisen MB: GATA: a graphic alignment tool for comparative
sequence analysis. BMC Bioinformatics 2005, 6:9.

12. Price AL, Jones NC, Pevzner PA: De novo identification of repeat families
in large genomes. Bioinformatics 2005, , Suppl 1: i351-i358.

13. Tempel S, Giraud M, Lavenier D, Lerman IC, Valin AS, Couée I, Amrani AE,
Nicolas J: Domain organization within repeated DNA sequences:
application to the study of a family of transposable elements.
Bioinformatics 2006, 22:1948-54.

14. Potter SS: DNA sequence of a foldback transposable element in
Drosophilia. Nature 1982, 297:201-204.

15. Smith M, Bringaud F, Papadopoulou B: Organization and evolution of two
SIDER retroposon subfamilies and their impact on the Leishmania
genome. BMC Genomics 2009, 10:240.

16. Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J:
Repbase Update, a database of eukaryotic repetitive elements. Cytogentic
and Genome Research 2005, 110:462-467.

17. Ukkonen E: On-line construction of suffix-trees. Algorithmica 1995,
14:249-260.

18. Bieganski P, Riedl J, Carlis J, Retzel E: Generalized Suffix Trees for
Biological Sequence Data. Biotechnology Computing, Proceedings of the
Twenty-Seventh Hawaii International Conference 1994, 35-44.

19. Gusfield D: Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology Cambridge University Press 1997, ISBN 0-521-58519-8.

Tempel et al. BMC Bioinformatics 2010, 11:474
http://www.biomedcentral.com/1471-2105/11/474

Page 13 of 14

http://www.biomedcentral.com/content/supplementary/1471-2105-11-474-S1.PNG
http://www.biomedcentral.com/content/supplementary/1471-2105-11-474-S2.PNG
http://www.biomedcentral.com/content/supplementary/1471-2105-11-474-S3.PNG
http://www.biomedcentral.com/content/supplementary/1471-2105-11-474-S4.PNG
http://www.biomedcentral.com/content/supplementary/1471-2105-11-474-S5.PNG
http://genouest.org
http://genouest.org
http://www.ncbi.nlm.nih.gov/pubmed/19488400?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19488400?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19488400?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16672366?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16672366?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18076328?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18076328?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15574804?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15574804?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15574804?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17157447?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17157447?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10779533?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10779533?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10779533?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17488840?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17488840?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17488840?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15655071?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15655071?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15961478?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15961478?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16809391?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16809391?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6176872?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6176872?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19463167?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19463167?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19463167?dopt=Abstract

20. Choi KH, Kim KJ: Applications of transposon-based gene delivery system
in bacteria. J Microbiol Biotechnol 2009, 19:217-28.

21. Parks AR, Peters JE: Tn7 elements: engendering diversity from
chromosomes to episomes. Plasmid 2009, 61:1-14.

22. Kapitonov V, Jurka J: Helitrons on a roll: eukaryotic rolling-circle
transposons. Trends Genet 2007, 23:521-9.

23. Hanada K, Vallejo V, Nobuta K, Slotkin RK, Lisch D, Meyers BC, Shiu SH,
Jiang N: The functional role of pack-MULEs in rice inferred from
purifying selection and expression profile. Plant Cell 2009, 21:25-38.

24. Yang L, Bennetzen JL: Distribution, diversity, evolution, and survival of
Helitrons in the maize genome. Proc Natl Acad Sci USA 2009, 106:19922-7.

25. Yang G, Zhang F, Hancock CN, R WS: Transposition of the rice miniature
inverted repeat transposable element mPing in Arabidopsis thaliana.
Proc Natl Acad Sci USA 2007, 104:10962-10967.

26. Yang G, Nagel DH, Feschotte C, N HC, Wessler SR: Tuned for transposition:
molecular determinants underlying the hyperactivity of a Stowaway
MITE. Science 2009, 325:1391-4.

27. Casals F, Cáceres M, Maanfrin MH, Gonázales J, Ruiz A: Molecular
characterization and chromosomal distribution of Galileo, Kepler and
Newton, three folback transposable element in Drosophila buzzati
species complex. Genetics 2005, 169:2047-2059.

28. Windsor AJ, Wadell CS: FARE, a new family of foldback transposons in
Arabidopsis. Genetics 2000, 156:1983-1995.

29. Dooner HK, Weil CF: Give-and-take: interactions between DNA transposons
and their host plant genomes. Curr Opin Genet Dev 2007, 17:486-92.

30. Marsan L, Sagot MF: Algorithms for Extracting Structured Motifs Using a
Suffix Tree with an Application to Promoter and Regulatory Site
Consensus Identification. Journal of Computational Biology 2000, 7(3-
4):345-362.

31. Altschul SF, Madden TL, Schaeffer AA, Zhang J, Zhang Z, Miller W,
Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res 1997, 25:3389-3402.

32. Ivics Z, Kaufman CD, Zayed H, Miskey C, Walisko O, Izsvá ZK: The Sleeping
Beauty Transposable Element: Evolution, Regulation and Genetic
Applications. Curr Issues Mol Biol 2004, 6:43-56.

33. Bigot Y, Brillet B, Augé-Gouillou C: Conservation of Palindromic and Mirror
Motifs within Inverted Terminal Repeats of mariner-like Elements. J Mol
Biol 2005, 351:108-16.

34. Ward JH: Hierarchical Grouping to Optimize an Objective Function.
Journal of the American Statistical Association 1963, 58:236-244.

35. Nicolas J, Durand P, Ranchy G, Tempel S, Valin AS: Suffix-tree analyser
(STAN): looking for nucleotidic and peptidic patterns in chromosomes.
Bioinformatics 2005, 21:4408-4410.

36. FGENESH software. [http://www.softberry.com/berry.phtml].
37. Bao Z, Eddy SR: Automated de novo identification of repeat sequence

families in sequenced genomes. Genome Res 2002, 12:1269-1276.
38. Helden Jv, Rios AF, Collado-Vides J: Discovering regulatory elements in

non-coding sequences by analysis of spaced dyads. Nucl Acids Res 2000,
28(8):1808-1818.

39. Pisanti N, Carvalho A, Marsan L, Sagot MF: RISOTTO: Fast Extraction of
Motifs with Mismatches. In LATIN, Lecture Notes in Computer Science. Edited
by: Correa JR, Hevia A, Kiwi MA. Springer; 2006:3887:757-768.

40. Mehldau G, Myers G: A system for pattern matching applications on
biosequences. Computer Applications in the Biosciences (Bioinformatics)
1993, 9(3):299-314.

41. Morgante M, Policriti A, Vitacolonna N, Zuccolo A: Structured Motifs
Search. Journal of Computational Biology 2005, 12(8):1065-1082.

42. Zhang Y, Zaki M: SMOTIF: efficient structured pattern and profile motif
search. Algorithms for Molecular Biology 2006, 1:22.

43. Halachev M, Shiri N: Fast Structured Motif Search in DNA Sequences.
Bioinformatics Research and Development, 2nd Int. Conference, BIRD 2008,
Vienna, Austria, July 7-9, 2008 Communications in Computer and
Information Science, Springer 2008, 13:58-73.

44. Thomas JM, Horspool D, Brown B, Tcherepanov V, Upton C: GraphDNA: a
Java program for graphical display of DNA composition analyses. BMC
Bioinformatics 2007, 8:21.

45. Tatusova TA, Madden TL: BLAST 2 Sequences, a new tool for comparing
protein and nucleotide sequences. FEMS Microbiol Lett 1999, 174:247-250.

doi:10.1186/1471-2105-11-474
Cite this article as: Tempel et al.: ModuleOrganizer: detecting modules
in families of transposable elements. BMC Bioinformatics 2010 11:474.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Tempel et al. BMC Bioinformatics 2010, 11:474
http://www.biomedcentral.com/1471-2105/11/474

Page 14 of 14

http://www.ncbi.nlm.nih.gov/pubmed/19349746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19349746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18951916?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18951916?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17850916?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17850916?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19136648?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19136648?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19926865?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19926865?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17578919?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17578919?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19745152?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19745152?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19745152?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15695364?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15695364?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15695364?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15695364?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11102389?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11102389?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17919898?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17919898?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11108467?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11108467?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11108467?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14632258?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14632258?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14632258?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15946679?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15946679?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16223791?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16223791?dopt=Abstract
http://www.softberry.com/berry.phtml
http://www.ncbi.nlm.nih.gov/pubmed/12176934?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12176934?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10734201?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10734201?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16241898?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16241898?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17118189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17118189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17244370?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17244370?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10339815?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10339815?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Defining modules in transposable elements
	An assembly algorithm for the creation of modules
	Algorithm 1
	Algorithm 2

	Detection of all modules in sequences
	Palindromic modules and truncated modules
	Clustering of sequences

	Results and Discussion
	Implementation
	Module organization of AtREP21 and SIDER2
	Organization of modules in Foldback4
	Structured versus flexible repeats
	Comparison with other programs

	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	References

