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Abstract

Background: In the study of cancer genomics, gene expression microarrays, which measure thousands of genes in
a single assay, provide abundant information for the investigation of interesting genes or biological pathways.
However, in order to analyze the large number of noisy measurements in microarrays, effective and efficient
bioinformatics techniques are needed to identify the associations between genes and relevant phenotypes.
Moreover, systematic tests are needed to validate the statistical and biological significance of those discoveries.

Results: In this paper, we develop a robust and efficient method for exploratory analysis of microarray data, which
produces a number of different orderings (rankings) of both genes and samples (reflecting correlation among
those genes and samples). The core algorithm is closely related to biclustering, and so we first compare its
performance with several existing biclustering algorithms on two real datasets - gastric cancer and lymphoma
datasets. We then show on the gastric cancer data that the sample orderings generated by our method are highly
statistically significant with respect to the histological classification of samples by using the Jonckheere trend test,
while the gene modules are biologically significant with respect to biological processes (from the Gene Ontology).

In particular, some of the gene modules associated with biclusters are closely linked to gastric cancer
tumorigenesis reported in previous literature, while others are potentially novel discoveries.

Conclusion: In conclusion, we have developed an effective and efficient method, Bi-Ordering Analysis, to detect
informative patterns in gene expression microarrays by ranking genes and samples. In addition, a number of
evaluation metrics were applied to assess both the statistical and biological significance of the resulting
bi-orderings. The methodology was validated on gastric cancer and lymphoma datasets.

1 Background
A typical aim of exploratory analysis of genomics data is
to identify potentially interesting genes and pathways
that warrant further investigation. There is a critical
need to streamline the analysis in order to support con-
tinuing advances in high throughput genomics methods
such as gene expression microarrays, which measure
thousands of genes in a single assay and are the focus of
this paper. However, such assays provide noisy and
incomplete measurements, which require sophisticated
bioinformatics techniques to identify statistically and
biologically significant associations between genes and
relevant phenotypes of interest.

Unsupervised analysis techniques cluster data without
using prior information on the labels of samples. This
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enables the discovery of novel histological subtypes.
However, a major limitation of traditional clustering
algorithms for this task is that they cluster either genes
or samples into non-overlapping groups, based on the
similarity of gene expression across all samples for gene
clustering, or all genes per sample in sample clustering.
This limits the ability to find groups of genes that are
“co-correlated” across only a subset of samples, or parti-
cipate in multiple cellular pathways. A related open
issue is how to evaluate the statistical significance of the
clusters.

In spite of such limitations, there are examples of
remarkable biologically significant discoveries. One such
case revisited in this paper is the analysis of gastric can-
cer data [1]. The original paper used hierarchical clus-
tering of both 7383 genes and 124 gastric cancer
samples (malignant and pre-malignant). By inspecting
the “heat map” they observed a number of prominent
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biclusters, which were linked to various aspects of can-
cer etiology. However, the approach [1] was heavily
dependent on manual inspection to identify the group-
ings. In particular, several sets of co-expressed genes
were not grouped together by hierarchical clustering,
and needed to be grouped manually by expert analysis.
Moreover, it is difficult to assess whether such clusters
are robust to any changes, and whether different cluster-
ing attempts converge to a stable result. Consequently,
there is a need for techniques that can guide such a pro-
cess of discovering significant and worthwhile hypoth-
eses for follow-up analysis.

Biclustering, also called co-clustering, is a promising
technique proposed for the automated discovery of highly
correlated subsets of genes across a subset of samples. The
concept of “biclustering” was first introduced by [2] and
has been the subject of several surveys [3,4]. Many techni-
ques have been used for finding biclusters with different
objective functions, such as “SAMBA” using graphic mod-
els [5], biclustering by Gibbs sampling [6], the Order-
Preserving Submatrix algorithm (OPSM [7]), biclustering
using maximum-similarity between genes [8], the Iterative
Signature Algorithm (ISA [9]), and biclustering using
linear geometry [10]. Recently, several studies have applied
biclustering to more specific bioinformatics areas, such as
local multiple sequence alignment of RNA [11] and
e-CCC-Biclustering for gene expression time-series data
[12]. Several of these representative biclustering methods
will be used as a basis for comparison in this paper.

This paper proposes a technique for exploratory
biclustering analysis, which combines biclustering with
an evaluation of the statistical significance and biological
relevance of such biclusters. There are four main contri-
butions that we make in this paper. First, we introduce
a novel algorithm, called bi-ordering, which is in some
respects a member of the family of biclustering techni-
ques. This algorithm is benchmarked against several
relevant biclustering algorithms in the literature
[2,5,6,9]. Second, we extend an existing statistic based
on the hyper-geometric distribution to a generalized sta-
tistic for evaluating the saturation of phenotypes in
biclusters, called the Multiple-Class-Saturation (MCS)
metric. In addition, we apply the Jonckheere trend test
[13] to evaluate the significance of the correlation
between ordered samples and clinical annotations.
Third, we assess the stability of the observed results by
assessing the size of their “basin of attraction” as fol-
lows. In our experiments, random initializations of the
algorithm yield many unique biclusters, which are then
grouped into a manageable number of families of very
similar outcomes (called a “super-bicluster”) by a
secondary clustering of the biclusters. The size of these
super-biclusters provides a measure of bicluster “stabi-
lity”. We find that our technique is able to find a small
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set of highly stable super-biclusters, which correspond
to distinct histopathological types in an existing gastric
cancer dataset [1]. We have also applied our approach
to analyze a lymphoma dataset [14]. Fourth, we demon-
strate that the discovered super-biclusters have asso-
ciated Gene Ontology (GO) terms with very significant
p-values, which can provide a basis for the biological
interpretation of the gene modules.

In Section 2, we introduce our core algorithm BOA, as
well as the statistics for its evaluation. In Section 3, we
validate the BOA algorithm on the gastric cancer and
lymphoma datasets and compare the results to other
algorithms. The biological interpretations of the results
from the gastric cancer datasets are discussed in Section
4, 5 and the Additional file 1. Finally, we conclude the
paper in Section 6.

2 Methods

In this section, we introduce a protocol for identifying
and characterizing modules of genes and orderings of
samples that exhibit high statistical, biological and clini-
cal significance. Our protocol, named Bi-ordering
Exploratory Analysis (BEA), comprises six main stages
as described below.

Bi-ordering Exploratory Analysis
Input: A gene expression data matrix [x4]ng x ng for ng
genes for ng samples.

1. Generate biclusters with ordered genes and sam-
ples using BOA algorithm outlined below.
2. Merge similar biclusters into “super-biclusters” to
identify robust modules of co-expressed genes.
3. Annotate biclusters with histological and biologi-
cal attributes to support their interpretation.
4. Generate figures of merit (i.e., p-values) for each
bicluster:
(a) Over-representation of histological categories;
(b) Concordance of sample orderings with
various phenotype gradients;
(c) Gene Ontology annotations.
5. Evaluate biological significance of results.

Now we briefly elaborate on selected key stages of the
above protocol.

2.1 Bi-ordering Analysis

In this section, we describe Bi-ordering Analysis and its
details.

2.1.1 Algorithm

The term “biclustering”, introduced by Cheng and
Church [2] refers to the identification of a sub-matrix
with “significantly homogeneous entries”. In this section
we introduce a novel algorithm called Bi-ordering
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Analysis (BOA), which is pivotal in the generation of
our results. We now introduce our BOA algorithm. For
the sake of clarity, we define an averaging operation as
follows. For a vector s; and a set of indices I with finite
cardinality (0 < |I| < + ) we introduce the following
notation for the average:

<5i>ie1 :Zsi”“-

iel

Algorithm 1 Bi-Ordering Analysis (BOA)

Input: ng x ng gene expression data matrix [xg]; two
cut-off thresholds 6 and 85 for selecting genes and
samples, respectively.

1. Normalize data: first, for each gene across all sam-
ples, normalize to median = 0 and std = 1, then
repeat this for each sample across all genes.
2. Initialization: Select a subset of samples & = S €
{1, ey ns}
3. Repeat the Steps a-d below until convergence (i.e.,
G and S stabilise):
(a) Update gene scores f(g) < (¥g5)se s for g =
1, R (Y

(b) Select genes: G« {8 f(&)-(f(8)),_, ., >0c/IST},
(

c) Update sample scores /(s) <= (Xg)ge g for S =
1, vy Hg,

(d) Select samples: S« {sih(s)=(h(s)) . >6s/\ICT},

Output: The gene scores f{g), sample scores /(s), and a
bicluster B = (G, S), which is determined by applying the
cut-off thresholds 6 and 65 to the scores f{g) and A(s),
respectively.

According to the iterative process of step 3 in the
BOA algorithm, we aim to select a submatrix with
coherently high gene expression levels across selected
samples. In particular, we aim to detect differentially
expressed genes between phenotypes. Consequently, it is
important to normalize the data in step 1, otherwise,
the genes with high expression levels across most sam-
ples will dominate the selection procedure. The above
algorithm is similar to ISA [9], which is discussed in
more detail in Section 3.2.

2.1.2 Variants of BOA
Note that two further variants of BOA are possible:

1. Under-expressed biclusters - This variant finds
significantly down-regulated genes by selecting genes
and samples with flg) and /(s) less than a threshold
in steps 3.b and 3.d, respectively.

2. Fixed-size biclusters - We could also select G
and S of fixed size rather than using the cut-off

Page 3 of 10

thresholds in each iteration. The attraction is that
the algorithm is guaranteed to converge, which in
practice may not always hold for the previous two
options. The formal proof of the convergence for
this variant is included in the Additional file 1.
2.1.3 Ordering scores
An important ability of the BOA algorithm is to assign
an ordering score /(s) to samples and f(g) to genes in a
bicluster. The sample score k(s) orders all samples
according to the average expression level across a subset
of genes in the current bicluster, while the gene score f
(g) orders all genes according to a subset of samples.
The sample score /(s) relates a bicluster to the clinical
annotations of samples, especially for multi-class attri-
butes, such as the cancer progression stage, or continu-
ous attributes, such as the survival time. These are
discussed in detail in Section 2.3.

2.2 Super-biclustering (SBC)

Super-biclustering is an important feature of our techni-
que, in terms of improving the robustness and stability of
the results. For every individual bicluster, the ultimate
output of gene score f(g) and sample score k(s) are
uniquely determined by the selection of the initial subset
of samples S. This is because every selection in Step 3 of
Algorithm 1 is deterministic for a given pair of thresholds
(6, Os). Thus, different initializations may result in dif-
ferent biclusters, which are local optima after a few itera-
tions. In order to cover more potential biclusters, we run
BOA with 1000 different initial subsets of samples. In
every independent initialization, each sample is drawn
into the initial subset randomly with probability of 0.2.
Some of the 1000 generated biclusters are identical, while
others may be very similar to each other but not exactly
the same due to local optima. In order to identify robust
and distinct biclusters, we then apply a hierarchical clus-
tering algorithm to group similar biclusters into super-
biclusters (SBC). We use the Jaccard coefficient on gene
sets as a similarity measure between two biclusters. For
example, given two biclusters By = (G, S1) and B, = (Go,
S,), the similarity between them is:

|G1nGy |

sim(B;, B,) = |G1UG2 |

1)

The similarity measure could also be defined on sam-
ples, though here we focus on genes, which are the
dominant and far more complex dimension to handle in
gene expression microarray datasets. Based on the simi-
larity measure in Equation 1, a hierarchy of unique
biclusters is constructed. We then use a similarity
threshold of 0.5 to extract a few top groups of biclus-
ters, which are super-biclusters, from this hierarchy. For
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convenience of evaluation, a typical bicluster is selected
as a prototype in each resulting SBC. Without loss of
generality, we choose the bicluster that covers the most
genes in its SBC as the prototype, and so any further
numerical evaluation is based on these prototypes when
we refer to a SBC.

2.3 Figures of merit
In order to evaluate the statistical and biological signifi-
cance of the resulting biclusters, we employ three statis-
tical methods and their corresponding p-values.
2.3.1 Saturation metric of samples
The homogeneity of phenotypes of samples in a biclus-
ter can be evaluated if we are given a prior classification
of each sample (e.g., its cancer subtype) as the label. Ide-
ally, each bicluster should be enriched with samples in
one or a few more similar classes, e.g., normal or tumor
samples. For the purpose of quantification, we use the
p-value of the hypergeometric distribution to evaluate
the purity of biclusters according to the phenotypes of
samples. Previously [5], a measure of homogeneity using
the hypergeometric distribution was applied to the sin-
gle most abundant class within a bicluster. However, if
some genes are co-expressed across multiple classes, cal-
culating p-values on a single class is not an adequate
representation of accuracy. To address this limitation,
we extend this measure to a more generalized form
where the significance is calculated for a group of
classes to determine the dominant class(es). We refer to
the original statistic used in [5] and our generalized sta-
tistic as Single-Class Saturation (SCS) and Multiple-
Class Saturation (MCS) metrics, respectively. The calcu-
lation of MCS p-values based on the hypergeometric
distribution is given in Equation 2 below.

Given a classification of samples with g classes {Cj, ..., C/}
and a bicluster B = (G, S), the p-value with respect to a

group of r classes {C i G } is computed by:

m Y ng—m
min(m,|S]) x |S|—x

Prcs(B) = Z ng
H

N

(2
where

U {s; class(s) = C}|,
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are the numbers of samples in the dataset and in the
bicluster B annotated with any class in {Cil e },
respectively. This quantity calculates the probability of
observing k or more samples classified in {Ci1 Gy }

in a bicluster B.

In our evaluation, we generate the full set of combina-
tions of all sample classes from {Cj, .., C;} and compute
Pucs for each bicluster and each combination, so that
we could discover any potential associations between
gene sets and a group of phenotypes. Finally, we select
the subset of classes that corresponds to the most signif-
icant p-value for each bicluster in the evaluation in Sec-
tion 3. Note that the SCS is a special case of the MCS.
We compute a p-value with respect to each individual
class, and then select the single class that corresponds
to the best p-value for each bicluster.

2.3.2 Jonckheere’s trend test

Another method to evaluate the significance of a biclus-
ter is to compare the ordering of all samples /(s) gener-
ated by BOA with any relevant ordering y(s) of all
samples based on their biological annotations, e.g., the
progression stage of the cancer in the sample. We can
test the agreement of samples ordered according to /(s)
with this progression score y(s). We use Jonckheere’s
test statistic [13]:

U=|{(s,s');h(s)<h(s')andy(s)<y(s')}| (3)

for this purpose.

For a random scoring /(s) (the null hypothesis), this
random variable U has an approximately normal distribu-
tion. For example, consider that we have an annotation
scoring y(s) of samples with respect to g sample classes
{Cy, ..., Cg}, which can be numerically ranked, e.g.,

y({s\se Cl})<y({s‘se Cz})<---<y({s‘se C,,}) (4)

Let N; (1 < i < q) denote the number of samples in
class C;, and N denote the total number of samples. The
approximate normal distribution of U determined by
the random scoring /(s) and the annotation scoring y(s)
has the mean:

D NN /2 (5)
1<i<j<q

and the variance

[N2(2N +3) - 2 NZ(2N; +3)]/ 72 ©)

1<i<q

from which the p-values can be estimated.
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2.3.3 Gene Ontology Annotations

Given that each gene’s expression in a bicluster is highly
similar with respect to other genes in the bicluster, it is
expected that the collection of genes as a whole are likely
to be involved in some related biological processes. In
order to determine this, the structured vocabulary of the
Gene Ontology (GO) [15] is used to help uncover the
biological processes represented by each of the biclusters.
As each gene can be annotated with one or more terms
within the GO, we can determine which GO terms are
statistically over-represented within a group of genes. We
use an existing tool GOstat [16] to determine the statisti-
cally over-represented terms within each bicluster for the
biological process branch of the GO.

2.4 Efficiency

One of the advantages of the BOA algorithm is its effi-
ciency. The time complexity in each iteration is () (ng +
ng), since only averaging operations for computing the
gene score flg) and sample score /(s) are required. Prac-
tically, the number of iterations for generating a single
bicluster is usually no more than 10, and the number of
initializations is 1000 in our experiments.

3 Results

In this section, we analyze the performance of our algo-
rithm on a real gene expression dataset, namely the gas-
tric cancer dataset in [1]. The main reason for this
choice is the availability of local expertise in the biology
of this disease. We compare the performance of our
algorithm in terms of SCS and MCS in Section 2.3 to
the results obtained from the algorithms in [2,5,6,9] by
using the parameter settings recommended in those
papers, including the normalization method specified in
each algorithm, or by observing the best results obtained
under different parameter settings. The evaluation using
Jonckheere’s test, the Gene Ontology and the biological
relevance of the results for gastric cancer are discussed
in detail in Section 4. In addition, we also apply BOA to
another lymphoma dataset for validation [14].

3.1 Results of BOA on Gastric Cancer dataset

After applying gene filtering as described in [1], we
have ng = 7383 gene expressions evaluated for ng =
124 human tissue samples. Excluding two singletons,
there are six different phenotypes in the data, of which
three are subtypes of gastric cancer: 35 diffuse (DGC),
22 intestinal (IGC), 7 mixed (MGC); and the other
three phenotypes are pre-malignant conditions: 26
chronic gastritis (CQ), 22 intestinal metaplasia (IM)
and 10 normal, e.g., non-inflamed mucosa tissue
removed during surgery for the gastric cancer. Now we
briefly discuss the algorithmic aspects and setup of the
experiment.

Page 5 of 10

First, we generated a set of 1000 initializations, which
were 1000 subsets of samples selected by the method
described in Section 2.2. The actual number of initializ-
ing samples for gastric cancer data ranged from 14 to
41 across 1000 subsets. As described in Section 2.2,
each sample is randomly selected with a probability of
0.2 for inclusion in the initial subset of samples. Note
that other selection probabilities of 0.4, 0.6 and 0.8 have
been tested, but the results were largely insensitive to
changes in this parameter.

Note that in the BOA algorithm, there are other alter-
native normalization methods that can be used, i.e.,
using mean = 0 instead of median = 0 for centering the
genes and samples. Here, we followed the normalization
method used in [1] for the sake of a fair comparison
with their manual analysis. In addition, we have found
that there is very little numerical difference between
normalizing by median = 0 and normalizing by mean =
0 on the dataset we have studied.

Second, we applied BOA to the gastric cancer data
using 11 different pairs of thresholds: (6g, 6s5) = (5.0,
3.0), (4.0, 4.0), (5.0, 4.0), (5.5, 4.0), (6.0, 4.0), (5.0, 4.5),
(5.5, 4.5), (5.0, 5.0), (5.5, 5.0), (6.0, 5.0), (5.5, 5.5), which
used the same set of initializations.

These threshold settings were limited to this range
since they produced biclusters of moderate size. For all
biclusters across the 11 pairs, the minimum and maxi-
mum number of genes were 21 and 816, respectively.
We have also tried several other groups of thresholds
on the dataset, but the generated biclusters are not very
informative if the thresholds are too large or too small.

For the resulting biclusters with each setting, we
found that the minimal p-values ranged between 4.3 x
10" and 1.6 x 10 for the SCS metric (no major differ-
ence was observed for SCS with 9 of the 11 threshold
settings achieving the minimum p-value of 4.3 x 10°'9),
and between 3.4 x 10?7 and 4.0 x 10™'* for the MCS
metric. For further analysis we chose a mid-range pair
0c = 5 and 65 = 4.5 for which, additionally, all 1000
initializations of BOA converged. Under this pair of
thresholds, the algorithm converged to 49 biclusters,
which were further grouped into 8 super-biclusters (see
Table 1), and a prototype bicluster was chosen for each
super-bicluster as described in Section 2.2.

To show the significance of the resulting biclusters we
focus on the most stable super-bicluster generated for
the gastric data, labeled SBC7 in Table 1. Its prototype
is shown in Figure 1. The BOA algorithm converged to
this super-bicluster 359 times out of 1000 initializations
and its prototype 229 times out of 1000. This bicluster
contains 515 genes that are prominently over-expressed
in most pre-malignant samples and are under-expressed
in most malignant samples. Numerically, it results in
pscs = 4.32 x 107'° with respect to the SCS metric
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Table 1 Super-biclusters in gastric cancer dataset
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#Converging P-values Most significant biological process
SBC SBC Prototype MCS Malignancy Score GO
SBC1 1 6 94 x 10* 18%x 107" 51 % 107 epidermis development
SBC2 188 7 10x 10 7.1 x 107 lipid metabolic process
SBC3 2 1 15x%10° 55 x 108 32 %103 immune system process
SBC4 % 2 18x 10" 20x10°2 immune system process
SBCS 15 15 1.1%x 1078 7.7 x 102 18x10™ cell cycle process
SBC6 328 11 30107 49 % 10°® 18 x 102 multicellular organismal process
SBC7 359 229 40 %10 54 % 1022 32 % 10% gen. of precursor metabolic & energy
SBC8 1 1 30 x 107 52 % 108 2.2 % 107 lipid metabolic process

Numerical characterisations and biological relevance of the eight super-biclusters generated by BOA on the gastric cancer data. In the second column of the
table, the numbers of biclusters that converged to a particular super-bicluster are given, while the third column is the number of identical biclusters converging
to the prototype of that super-bicluster. The columns of “MCS”, “Malignancy Score” and “GO” contain the p-values calculated with respect to the prototype of
each super-bicluster in terms of the three statistics described in Section 2.3. Note that the negative sign, -, in the Malignancy Score for SBC7 and SBC8 indicates

the significance of agreement with the reverse order.

(dominant class is CG) and a pycs = 4.03 x 10™* with
respect to the MCS metric (dominant classes are Nor-
mal, CG and IM).

However, there are two limitations of calculating SCS
or MCS. First, these measures cannot deal with the case
of continuous annotations of samples. Second, the sig-
nificance of SCS and MCS are affected by the choice of
cut-off threshold on samples, especially when the sample
orderings k(s) change smoothly. Thus, we also used
Jonckheere’s test to overcome these limitations. We first
allocated a “Malignancy Score” ¥(s) to each sample s fol-
lowing the expert advice: y(s) = 1 for normal, 2 for CG,
3 for IM and finally 4 for any gastric cancer (DGC, IGC
or MGC sample). We then tested the significance of the
agreement of the samples ordered according to the /(s)
score generated by the BOA algorithm with this pro-
gression y(s). For the prototype of SBC7, the malignancy
scores show an increasing trend from normal (y(s) = 1)
to malignant samples (y(s) = 4) along the ascending
ordered gene expression levels, which results in a direc-
tional p-value of 5.35 x 1022,

For every bicluster, we used the GOstat program [16]
to obtain significantly over-represented GO terms to
investigate the associations between the terms and phe-
notypes. The GOstat program assesses the enrichment of
GO terms within a group of genes by computing p-values
from the x> distribution. The p-values were corrected by
the process of controlling the False Discovery Rate [17]
in our experiment. As an example, several of the most
significant GO terms of SBC7 are shown in Table 2.

More biological details of the gene modules and eva-
luation statistics for different SBCs are discussed in the
next section.

3.2 Comparison with other algorithms

As a basis for comparison with our BOA algorithm, we
have also tested several existing biclustering algorithms,
namely, Cheng and Church’s algorithm [2], SAMBA [5],
biclustering by Gibbs sampling [6] and the ISA algo-
rithm [9], which is closest to our algorithm. We have
used publicly available implementations of these algo-
rithms in our evaluation, i.e., SAMBA is tested using
Expander [18], Gibbs sampling has been implemented
by ourselves, and the biclustering toolbox BicAT [19] is
used for the other two algorithms. We compare the
results of BOA with four other algorithms in terms of
the SCS and MCS metrics as shown in Figure 2. In
these figures, we plot the number of biclusters (vertical
axis) whose SCS or MCS p-values are less than a given
value on the horizontal axis, indicating the ability of
each algorithm to find significant biclusters in terms of
the SCS and MCS metrics. However, most algorithms
usually generate redundant biclusters to different
extents, i.e., slightly different biclusters due to local
optima, and so comparing the redundant biclusters is
not a fair evaluation. To eliminate the impact of redun-
dancy, we applied the same super-biclustering process
described in Section 2.2 to the resulting biclusters in
each algorithm, and the results are shown as the lines
with circle markers in the same figure. Note that the
Gibbs algorithm [6] has the same biclusters and super-
biclusters due to their strategy. SAMBA and Cheng &
Church’s algorithm still yield a large number of insignif-
icant super-biclusters so they are not included. Gener-
ally, the BOA algorithm produced the most significant
biclusters in terms of the p-values of both the SCS and
MCS metrics.
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Figure 1 Heat map of super-bicluster 7. Heat map for the prototype of the most prominent super-bicluster, SBC7, generated by the BOA
algorithm for the gastric cancer data. The vertical axis shows the 515 most significant genes ordered by f(g) in Algorithm 1, and cut by 65 = 5.0,
while the horizontal axis shows all samples ordered by h(s) and cut by 85 = 4.5. The yellow vertical line in the middle of figure indicates the

boundary between the samples in the bicluster (left-side) and others (right-side). The bicluster samples are enriched with the CG subtype with a
p-value of 432 x 107% in terms of the SCS metric or enriched with a combination of {normal, CG, IM} subtypes with a p-value of 4.03 x 10 in

terms of the MCS metric. Moreover, we observe a strong gradation from least malignant samples (normal and CG), through an intermediate
phenotype IM, to the malignant samples (combined intestinal, diffuse and mixed gastric cancers). Two phenotypes, squamous and
adenosquamous, with only one sample are annotated with black and white, respectively, but are not shown on the legend. The probability of
obtaining such or better ordering by random chance was estimated to have a p-value of 535 x 10?2 in terms of Jonckheere’s test.

Cheng & Church’s method was chosen as a comparison
because it is similar to our BOA method in two aspects.
First, they both aim to identify “constant biclusters” [3].
Second, they all use an iterative process to refine a biclus-
ter. However, the BOA algorithm has the following
advantages that differ from Cheng & Church’s method.
First, in every step of the iterative process, BOA ranks all
the genes and samples based on the current subset of
samples and genes, so that the converged biclusters are
local optima solutions that imply the relevance between
genes and samples. The relation between genes and sam-
ples is a desirable property in biology, especially when
studying the continuous annotations of samples. Second,
the super-biclustering is also an important part of our
framework, which identifies similar biclusters and then

Table 2 Over-represented GO terms in gastric cancer dataset

creates representative prototypes of biclusters, so that
more meaningful biclusters could be found. In addition,
to make a fair comparison, we also applied Cheng &
Church’s method to the gastric cancer dataset that has
been normalized by the procedure described in the BOA
method. The resulting biclusters of the two methods
were evaluated by the saturation metrics and reported in
the Additional file 1.

The BOA algorithm is very similar to ISA. However,
the main objective of ISA is discerning “co-regulated”
gene modules, while the association with phenotype
classes (conditions) is not important, whereas it is of
prime interest for our medical application. The main for-
mal differences resulting in the different performance
are: (i) ISA starts with an initialisation of a subset of

ID P-value Biological process
GO:0006091 324 x 10 generation of precursor metabolites and energy
GO:0006119 368 x 1078 oxidative phosphorylation
GO:0006118 348 x 102 electron transport
GO:0042773 812 x 1077 oxidative phosphorylation#ATP synthesis coupled electron transport
GO:0042775 812x 10" organelle ATP synthesis coupled electron transport

The five most significantly over-represented GO terms associated with the genes of the prototype of SBC7.

The results are generated from GOstat [16].
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genes; (ii) the two sided test is used for the selection of
samples; (iii) samples are weighted, with possibly negative
weights, so different conditions, say with up-regulated
and down-regulated genes, can be joined in the same
bicluster. Consequently, ISA aims at generating “constant
column” biclusters while BOA’s objective is a “constant”
bicluster [3].

Figure 2 shows that BOA generates more significant
biclusters in terms of SCS and MCS.

Our evaluation of GO annotations for both ISA [9] and
biclustering by Gibbs sampling [6] show that they are cap-
able of generating biclusters of significance comparable to
BOA (details of values are not shown). These algorithms
generated 6 and 5 SBCs, respectively, with similar gene
sets to the SBCs of BOA. For example, the GO annota-
tions “generation of precursor metabolites and energy”
and “oxidative phosphorylation” significantly associated
with SBC7 of BOA whose p-values are 3 x 102 and 4 x
107'® (in Table 1) are also found by the ISA algorithm
with p-values of 3 x 10°® and 4 x 10® and Gibbs algorithm
with p-values 1 x 10°° and 5 x 10, Similarly, the “multi-
cellular organismal process” and “multicellular organismal
development” annotations (significant for diffuse-type gas-
tric cancer) in SBC6 of BOA, were also found by the ISA
and Gibbs algorithms. However, we have observed that
the BOA algorithm usually has better performance than
either ISA or Gibbs in terms of Jonckheere’s test, in parti-
cular, in the case of the evaluation of the “Malignancy
Score”.

3.3 Validation on lymphoma dataset

To further validate the performance in terms of SCS
and MCS, we applied BOA to a lymphoma dataset [14],
and compared the result to the benchmark results of
the other four algorithms. Similar figures of the SCS
and MCS p-values are drawn and show in the

Additional file 1. Again, the BOA algorithm generated
very significant results in terms of identifying pathologi-
cal categories (See Figure 3 for details).

4 Biological Analysis of Gastric Cancer
In this section, we focus on validating the biological sig-
nificance of our findings for the gastric cancer dataset.

4.1 Gene modules compared with previous study

We first compare the gene modules of the prototypes of
the super-biclusters with those reported in a previous
study [1]. In that study, hierarchical clustering was
applied to the gastric cancer dataset (cDNA platform)
and several regions of genes related to different cancer
types or pre-malignant states were annotated (labeled A -
K in Figures 1 &2[1]. To validate the biological functions
of our biclusters, we determined the intersection between
the genes in these identified regions and the genes
appearing in the prototypes of the eight super-biclusters
(SBC1 - SBC8) discussed in Section 3.1. The results are
shown in Table 3. Note that the two largest super-biclus-
ters (SBC6 and SBC7) were a close match for the two
most prominent gene clusters annotated as regions B &
K [1]. Moreover, the super-bicluster SBC2 linked two
separated but related biclusters in regions E & F [1],
while the regions D1 to D3 that needed to be manually
grouped in the hierarchical clustering [1] were automati-
cally grouped by our method in SBC5. These unique
biclusters confirm the homogeneous functions of the dis-
joint gene sets generated by hierarchical clustering.

4.2 Biological relevance for gastric cancer

In Table 3 we then considered the significance of these
super-biclusters in terms of the three types of figures of
merit discussed in Section 2.3, namely, the SCS and
MSC p-values, the p-value of the over-represented GO
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Figure 3 Saturation metrics for lymphoma dataset. Lymphoma dataset benchmark results for five biclustering algorithms. The experimental
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annotations, and the p-value of the Jonckheere test on
the order of the progression of the cancer in the sam-
ples. We have discussed the assignment of malignancy
scores y(s) and tested the significance of the agreement
between y(s) and sample orderings /(s) in Section 3.1.
Table 1 shows the numerical results of these statistics.
The heat map of SBC7 (Figure 1) shows that the order-
ing induced by the bicluster has a clear negative correla-
tion with the malignancy score of the samples. The /(s)
for SBC5 and SBC7 and to a lesser extent SBC3 are very
significantly correlated with y(s). More biological rele-
vance is discussed in the Discussion section.

5 Discussion

Based on the results of our experiments, we now con-
sider the biological significance of our findings. The
generated results including the GO and clinical correla-
tion were analysed by expert biologists and clinicians.
We quote them to some extent as a proof that the for-
mal data processing protocols as discussed here can lead
to the generation of significant biological hypotheses
warranting follow-up wet lab experiments. The BOA
algorithm has shed new light on preexisting themes in
gastric cancer etiology. The resulting bi-orderings repre-
sent successive steps in cancer progression and distinct

Table 3 Comparison with previous literature

histopathological types of the disease. Specifically, SBC1
represents epithelial morphology, typical to squamous
samples; SBC2 and SBC8 are typical intestinal lipid
metabolism signatures, observed in intestinal metaplasia
pre-malignant samples; SBC3 and SBC4 represent a
novel split of the inflammatory signature that in [1]
were merged as one signature; SBC5 represents the pro-
liferation signature described in [1] for intestinal type
gastric cancer; SBC6 reflects the extracellular matrix
deposition typical to diffuse type cancer, and elevated in
all cancer samples compared to pre-malignant samples;
SBC7 represents the metabolic stress observed in
chronic gastritis samples, possibly due to elevated H.
Pylori infection. There are also other observations which
are potentially novel discoveries. They are available in
the Additional file 1.

6 Conclusion

In this paper we have presented a novel method of bi-
ordering genes and samples from microarray data,
together with two statistical techniques for evaluating
the significance of the generated groupings and order-
ings of multiple histological samples. In comparison to
several existing algorithms in the literature, our method
is able to generate highly robust and statistically

Region in [1] SBC1 SBC2 SBC3 SBC4 SBC5 SBC6 SBC7 SBC8

Symbol Annotation No. Genes 41 217 194 158 227 409 515 146
B Mitochondrial 665 0 0 0 0 0 1 416 9
D1-D3 Proliferation 201 0 0 0 0 76 0 0 0
E Intestinal 294 1 81 0 0 0 0 1 44

F Intestinal 157 0 112 0 0 7 1 0 27
G Squamous 37 25 0 0 0 0 0 0 0

H Inflamation 330 7 0 117 135 9 7 0 30
K Extra cellular matrix 877 3 0 67 0 74 392 1 0

Overlapping genes between prototypes of super-biclusters and functional regions in [1]. In the second row we show the number of genes in the SBC prototype.
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significant gene modules with respect to sample histolo-
gical annotations on a gastric cancer dataset. The results
of our analysis closely match reported theories of gastric
cancer tumorgenesis, and have helped to identify pro-
mising hypotheses for further investigation in cancer
research. We also show that other biclustering algo-
rithms can also be utilized as a basis of exploratory
bi-ordering analysis of genomic data.

Additional material

Additional file 1: Supplement. The Supplement contains the proof of
convergence in a variant of BOA algorithm (See 2 for details), and the

biological analysis of potential novel observations in the gastric cancer
dataset discovered by our method.

Additional file 2: algorithm implementation. The file of “algorithms.

Zip" contains the Matlab source code files (m) implementing the BOA
algorithm.
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