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Abstract

Background: High-throughput technologies have led to a new era of proteomics. Although protein microarray
experiments are becoming more common place there are a variety of experimental and statistical issues that have
yet to be addressed, and that will carry over to new high-throughput technologies unless they are investigated.
One of the largest of these challenges is the selection of functionally consistent proteins.

Results: We present a novel semi-nonparametric mixture model for classifying proteins as consistent or
inconsistent while controlling the false discovery rate and the false non-discovery rate. The performance of the
proposed approach is compared to current methods via simulation under a variety of experimental conditions.

Conclusions: We provide a statistical method for selecting functionally consistent proteins in the context of
protein microarray experiments, but the proposed semi-nonparametric mixture model method can certainly be
generalized to solve other mixture data problems. The main advantage of this approach is that it provides the
posterior probability of consistency for each protein.

Background
Over the last decade or longer, microarray technology
has been used for measuring gene expression and has
greatly impacted biomarker discovery [1], transcription
factor identification [2], the assessment of gene interac-
tions [3], and the detection of biological pathways [4].
Despite the massive application of microarrays to tran-
scriptome applications there are limitations to the extent
of the conclusions that can be made. Messenger RNA
(mRNA) is the intermediate product of genes, with pro-
teins being the final products and the key factors of
metabolism. Although the levels of mRNA and protein
for a gene are related they are not always highly corre-
lated, which can be due to many reasons, e.g., transla-
tion rate, protein stability, and post-translational
modification, etc. [5]. Given that the motivation and
goal of many experiments is to understand not only the
function of genes, but the network of genes that encode
proteins, the abundance of proteins themselves are of
increasing interest. Toward this end, microarray tech-
nology when adapted to proteins, are known as protein
microarrays, and have been developed and widely used

to assess the abundance of proteins [6-12]. The similari-
ties between microarray technology as applied to gene
expression [13], and as applied to protein abundance,
are the same in that improved accuracy and precision,
as well as design issues and normalization techniques
for protein microarrays have been established [14,15].
Screening and identifying proteins as potential medical

diagnostics and disease classification biomarkers is the
main motivation of many protein microarray experi-
ments [16-21]. The precursor to any successful screen-
ing application, and an essential issue that must be
resolved to ensure that the accurate protein abundance
measurements can be obtained by protein microarrays,
is the consistency of a protein to report hybridization
abundance. The protein itself is the probe on the array,
and since proteins have a complex three dimensional
structure, the structure itself, as well as the orientation
of a protein, need to be retained. Toward this end, it is
highly unlikely that every protein will be functional
since different proteins often require different environ-
ment conditions for maintaining structures, and are
typically much less stable than DNA. If the three dimen-
sional nature of the structure is lost, or the required
functional portion of the protein is not available to bind
its target protein (i.e., the sample), the target protein
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abundance measurement will be much smaller than it
should be, or missed all together. Proteins whose struc-
ture or function are not maintained when attached to
the array as probes are called inconsistent proteins, and
if used provide inflated biomarker error rates (i.e., false
positive rate and false negative rate). Alternatively, pro-
teins that retain their structure and function are called
consistent proteins and are desirable as probes on the
array, and ultimately potential biomarkers. As such the
selection of proteins that maintain functional consis-
tency across experiments is a major and necessary
requirement in the design and analysis of protein micro-
array experiments [17].
Certainly, high-throughput chemical validation of pro-

tein consistency is possible, but it is expensive and time
consuming. Toward this end it is possible to statistically
estimate protein consistency. In its simplest form,
Pearson’s correlation coefficient has been employed as a
consistency measure in an antibody microarray study by
Miller et al. [17], but it only measures the linearity of
repeated measurements, and therefore is limited in its
usefulness. A concordance correlation coefficient that is
able to measure the consistency of repeated measure-
ments was proposed by Lin [22], and later expanded to a
total deviation index (TDI) [23], which provides a bound-
ary within which a certain required percentage of differ-
ences between paired observations is obtained while
controlling the error rate. As described by Lin [24], TDI
and the concordance correlation coefficient provide the
same information, but from different perspectives, and
thus share their limitations. Namely, both the concor-
dance correlation coefficient and TDI only demonstrate
good asymptotic properties under the assumption of nor-
mality; a reality that is often questionable in application.
Furthermore, the comparability of concordance correla-
tion coefficients across proteins requires the ranges of
the abundance measurements of proteins to be similar,
which is not practical in large scale experiments [25]. To
address the challenges and issues that are associated with
identifying functionally consistent proteins, we propose a
new statistic based on variance components from an ana-
lysis of variance (ANOVA) model. We rely on a mixture
model to achieve this goal. Applications of mixture mod-
els in biology have proven to be excellent for separating
data into the correct number of classes. For example,
Efron et al. [26] proposed a two-component mixture
model for testing differential expression. In this applica-
tion the distributions of the t-statistics from both differ-
entially expressed genes and non-differentially expressed
genes were estimated by a nonparametric method, but
the tail probabilities were not able to be estimated accu-
rately. Toward this end the accuracy of estimating the
tail probability was improved by using a two-component
mixture model Pan et al. [27] where a finite normal

mixture was assumed for each component. For microar-
ray data it certainly is possible to simulate test statistics
under the null hypothesis (i.e., a single component) using
permutation theory since the treatment conditions for
testing differences are known. However, for protein array
data the first challenge is to identify proteins that are
consistent, and then work only with these data. In other
words, we are focusing on separating proteins into incon-
sistent and consistent classes, and then using only the
informative proteins (i.e., consistent proteins) to address
the biological question(s). To achieve this we propose a
novel two-component semi-nonparametric mixture
model. Simulations demonstrate the performance of the
proposed approach and provide food for thought when
designing future protein microarray experiments. We
also apply the proposed approach to real data for the
purpose of demonstrating its usefulness.

Results and Discussion
Simulations were conducted for the purpose of provid-
ing insight into the performance and value of the
proposed semi-nonparametric approach. Data were
simulated from known consistency classifications. Data
were analysed with the proposed approach and the
number of times proteins are correctly classified is
recorded. From these simulation results, false discovery
rate, as well as false non-discovery rate were calculated
and are discussed.

A power study
Simulations were designed to study the statistical power
of the approach under different sample sizes and differ-
ent underlying two-component mixture distributions.
Data were simulated directly from nine unique two-
component semi-nonparametric mixture distributions
with specified parameter values (Table 1). The tuning
parameter K took on values 0, 1, or 2 for each semi-
nonparametric density in each mixture. Sample sizes are
50, 100, 300, or 500. The proportions of the first mix-
ture component with smaller mean, l0, are 0.20, 0.50, or
0.80. The distance between the two mixture components
are 1 or 2, where the distance is defined as

D =
−
+

 
 
1 2

1 2
, (1)

and μ1 and μ2 represent the means of two compo-
nents respectively, while s1 and s2 represent the stan-
dard deviations of two components, respectively. Under
each combination of model settings, 1000 data sets were
generated.
For each simulated data scenario, a two-component

mixture model was fit to the data. The Expectation-
maximization (EM) quasi-Newton algorithm was
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employed to estimate the model parameters. Model
selection criteria Akaike’s Information Criterion (AIC)
[28], Schwartz Bayesian Information Criterion (BIC) [29]
and Hannan-Quinn Criterion (HQ) [30] were used to
select the best model. A likelihood ratio test (19; see
Methods) was employed to determine whether the mix-
ture distribution was identifiable as two-components
(18). A bootstrap method approach approximated the
null distribution of the likelihood ratio test statistics,
and provided a significance threshold for the likelihood
ratio test statistic (see Methods). Power was calculated
by estimating the proportion of correctly rejected
hypotheses for each of 1000 data sets. Power compari-
sons for all parameter settings using BIC model selec-
tion criteria are provided in Figures 1. The general
trend across all three model selection criteria is that
well separated mixture distributions (D = 2) outperform
mixtures that are not well identified (D = 1). When the
mixtures are well defined, there is obvious increased
power for situations where the mixing proportion (l0)
of the functionally consistent component of the mixture
distribution is 50% or greater. Recall, when the tuning
parameters K1 and K2 are both zero the semi-nonpara-
metric densities in the mixture distribution are both
standard normal densities.
As expected, higher power is associated with larger

sample size. Dramatically higher power is achieved
when the distance between the two components is

increased from 1 to 2 simply because the null hypothesis
(18) is easier to reject when the mixture components are
well separated. Furthermore, AIC tends to choose a lar-
ger model that has a larger likelihood ratio test statistic
(19) when compared to the smaller model chosen by
BIC or HQ [31], therefore the use of AIC yields higher
power than BIC or HQ.

Simulated Data Scenario
The performance of the proposed mixture model with
semi-nonparametric densities is evaluated for selecting
functionally consistent proteins in a simulation setting
based on a real experiment. Since we are interested in
understanding the performance of the proposed
approach it is necessary to rely on simulated data, rather
than actual data since the truth for real data is
unknown. Protein microarray data were simulated based
on the data scenario described in Zhou et al. [32]. Spe-
cifically, there are three groups of patients with different
stages of disease, and one group of healthy patients.
Each group consists of 10 patients (40 patients total).
For each patient, hybridization abundance was measured
on 300 proteins. Each of the 300 proteins was repre-
sented as a probe on the array. Onboard probe (techni-
cal) replication allowed each protein to be represented 6
times on the array. Forty samples were individually
mixed with a reference sample, hybridized to an array,
and the entire experiment was repeated twice. Protein
microarray data were simulated as follows

log G Sj k j k j2( ) ( ) = + + , (2)

where μjk represents hybridization abundance of indi-
vidual or patient k in group j, μ represents the overall
mean abundance, Gj represents the fixed effect of group
j, Sk(j) represents the random effect of patient k in group
j following a normal distribution with mean 0 and var-

iance  Sj
2 , and

y

log

C G S

ijkl jk ijk ijkl

jk ijk ijkl

j

= + +

= − + +

= + +



  

 

log2 2( ) ( ..)

kk j ijk ijkl( ) ,+ + 

(3)

where C log
G j k jj k= −

+∑
2

2

40

S ( ), , i = 1,2, j = 1,2,3,4,

k = 1,2, ..., 10, l = 1,2, ..., 6. yijkl represents the lth log
signal ratio of patient k to the reference sample in
group j for experiment i, θjk represents the mean log
signal ratio of the patient k sample to the reference in
group j, .. represents the average of μjk’s over j and k,

δijk represents the random error of experiment i for

Table 1 Nine different simulation scenarios

Component 1 Component 2

model distance �11 �12 µ1 s1 �21 �22 µ2 s2
1 D = 1 π/2 π/2 12 2 π/2 π/2 17 3

D = 2 π/2 π/2 12 2 π/2 π/2 24 4

2 D = 1 π/2 π/2 12 2 2.17 π/2 19.4 3

D = 2 π/2 π/2 12 2 2.17 π/2 26.7 4

3 D = 1 π/2 π/2 12 2 2 2.75 18 2

D = 2 π/2 π/2 12 2 2 2.75 30.3 4

4 D = 1 0.97 π/2 9.8 2.3 π/2 π/2 17 3

D = 2 0.97 π/2 9.8 2.3 π/2 π/2 24 4

5 D = 1 0.97 π/2 10 2 2.17 π/2 18.15 2.5

D = 2 0.97 π/2 10 2 2.17 π/2 26.15 4

6 D = 1 0.97 π/2 9.8 2.3 2 2.75 19.8 2.5

D = 2 0.97 π/2 9.8 2.3 2 2.75 31.3 4

7 D = 1 4.1 0.9 9.7 1.8 π/2 π/2 17 3

D = 2 4.1 0.9 9.7 1.8 π/2 π/2 24 4

8 D = 1 4.1 0.9 9.7 1.8 2.17 π/2 20.5 3.5

D = 2 4.1 0.9 9.7 1.8 2.17 π/2 28.5 4.6

9 D = 1 4.1 0.9 10 2 2 2.75 19.8 2.5

D = 2 4.1 0.9 10 2 2 2.75 31.3 4

Each simulation model is based on a two-component semi-nonparametric
(SNP) mixture distribution that has eight parameters: �11, �12, μ1, s1, �21, �22,
μ2, s2. The distance D of two components is 1 or 2.
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Figure 1 Power results for nine simulation settings. Schwartz Bayesian Information Criterion (BIC) provides the model selection
criterion. Data were simulated under nine semi-nonparametric (SNP) mixture distributions with the tuning parameter K taking values 0, 1, or 2
for each SNP density. Sample sizes are 50, 100, 300, or 500. l0 is 0.2, 0.5, or 0.8. The distance between the means of the component distributions
is D and has values of 1 or 2. Power was calculated as the proportion of correctly rejected hypothesis for 1000 simulated data sets. Solid curves
represent l0 = 0.20 and D = 1(○) or D = 2(●). Dashed curves represent l0 = 0.50 and D = 1(○) or D = 2(●). Dotted curves represent l0 = 0.80
and D = 1(○) or D = 2(●).
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patient k in group j, and �ijkl represents the lth random
error within experiment i for patient k in group j.
Assume that δijk is from a normal distribution with

mean zero and variance 
2 , �ijkl is from a normal dis-

tribution with mean zero and variance  e
2 .

The model parameter settings for the simulation
were taken from the aforementioned Zhou et al. anti-

body microarray data [32], such that the ′G js were

sampled from uniform distribution U[-1, 1],  Sj
2 =

(0.4v)2, where v were sampled from U[0.5, 2] for dif-

ferent j, 
2 = 0.22, and  e

2 = 0.152. The hybridization

abundance data for 300 functionally consistent pro-
teins on each array were simulated from model (2)
and (3) (see Methods). Fifty percent of these simulated
proteins were randomly chosen to be functionally
inconsistent proteins by adding a random between-
array deviation with mean 0 and standard deviation
drawn from U [0.05, 0.5], as well as a random within-
array deviation with mean 0 and standard deviation
taken from U[0.1, 0.4], to a randomly chosen number
of separate arrays. Protein classification resulted from
estimating the variance components in the ANOVA
model (4; see Methods), and modelling the between
and within-array variance component statistic with a
semi-nonparametric mixture model. The main advan-
tage of the proposed mixture model approach is that
it provides the posterior probability of consistency for
each protein which in turn establishes the classifica-
tion rule, as well as estimates the respective error
rates.
One thousand data simulations were performed under

the same simulation setting, and for each the sum of the
between- and within-array variation (see Methods) pro-
vides the statistic that is ultimately modelled and used
for classifying each of the 300 proteins by fitting to the
semi-nonparametric mixture model (5). Posterior prob-
abilities defined in Equation (21) and Equation (22)
were computed, and then used to calculate the esti-
mated false discovery rate (FDR) in Equation (24), and
the estimated false non-discovery rate (FNR) in Equa-
tion (25). Since these are simulated data for which we
know the true classification, the true FDR and FNR
were calculated and compared to the respective esti-
mated values from the simulated data analyses. The esti-
mated and true FDR and FNR were averaged over 1000
simulations, respectively. The average FDR (Figure 2)
and FNR (Figure 3) were plotted against the number of
inconsistent proteins. The conservative nature of this
approach is illustrated in the downward bias of the FDR
estimates and the corresponding upward bias of the
FNR estimates.

We compare the proposed semi-nonparametric
approach to the work of Miller et al. [17] who selected
functionally consistent proteins using an arbitrary cutoff
value for Pearson’s correlation coefficient. It is impor-
tant to realize that their cutoff value is not statistically
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Figure 2 Comparison of false discovery rates (FDR) using
simulated data based on 40 patients and 6 onboard probe
replicates. False discovery rates are averaged over 1000 simulations.
Solid curves are the true false discovery rates based on the
between- and within-array variance component (VC) statistic, short-
dashed curves are the true false discovery rates based on Pearson’s
correlation coefficient (PCC), and long-dashed curves are the
estimated false discovery rates based on the proposed semi-
nonparametric (SNP) mixture model method.
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Figure 3 Comparison of false non-discovery rates (FNR) for the
simulated data with 40 patients and 6 onboard probe
replicates. False non-discovery rates are averaged over 1000
simulations. Solid curves are the true false non-discovery rates based
on the between- and within-array variance component (VC) statistic,
short-dashed curves are the true false non-discovery rates based on
Pearson’s correlation coefficient (PCC), and long-dashed curves are
the estimated false non-discovery rates based on the proposed
semi-nonparametric (SNP) mixture model method.
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justified, nor does it provide error rate control. We cal-
culated Pearson’s correlation coefficients (PCC) for each
of the 1000 simulated data sets, and reported in the
average FDR and FNR results in Figures 2 and 3, respec-
tively. Not surprisingly, larger true error rates are
experienced for the Pearson’s correlation coefficient
when compared to the variance component (VC) statis-
tic that is based on the between- and within-array varia-
tion. Essentially, the variation in the random error(s)
captures the difference between consistent and inconsis-
tent proteins allowing the variance estimate based on
between- and within-array variation to provide informa-
tion about protein consistency. Based on this rationale,
the misclassification error rates of the proposed
approach are expected to be smaller than the Pearson’s
correlation coefficient. As can be seen for Pearson’s cor-
relation coefficient, when the number of inconsistent
proteins is 160, the false discovery rate is 0.310 (Figure
2) and the false non-discovery rate is 0.283 (Figure 3).
By comparison, based on the between- and within-array
variation statistics the false discovery rate is 0.083 and
the false non-discovery rate is 0.024. The same phenom-
ena occur at any other number of inconsistent proteins
(Figures 2 - 3).

Biological and technical replication
We explored the influence of the number of biological
replicates (or, total patient number) and technical repli-
cates (or, onboard per protein probe replicate) on the
proposed semi-nonparmetric mixture model approach
for selecting functionally consistent proteins using two
different simulation settings. Data were simulated from
model (2) and (3) (see Methods). The first simulation
focused on the number of biological replicates or
patients (2 to 60) while fixing the number of onboard
probe replicates representing each protein at 6. Six
onboard replicates is a relatively large number and is in
keeping with many of the current protein microarray
investigations. The classification error rate was com-
puted by minimizing (26; see Methods) for each number
of replicates (Figure 4) under consideration, and it can
be seen that rate drops off quickly as the number of
replicates increases from 6 to 50. The second simulation
evaluated the number of onboard per protein probe
replicates while fixing the number of biological repli-
cates (or patients) at 40. Figure 5 illustrates the classifi-
cation error rates dropping as the number of onboard
replicates increases. Clearly, the largest decrease is most
dramatic in the range from 2 to 4.

A case study
We applied our method to data from an antibody
microarray experiment from Zhou et al. [32]. Two-color
rolling-circle amplification (RCA) was used to assess

thirty five antibody proteins from duplicate sets of
twenty four serum samples using antibody microarrays
prepared on nitrocellulose. The twenty four serum sam-
ples consist of six liver cancer patients, six pre-cirrhotic
patients, six cirrhotic, and six normals. Each antibody
has 5 replicates on the array.
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Figure 4 Minimum classification error rate for increasing
numbers of biological replicates (i.e., increasing patient
number). Minimum classification error rate was computed for each
number of replicates ranging from 2 to 60 for a fixed number (6) of
protein probes. Larger numbers of replicates/patients achieve
greater classification results.
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Figure 5 Minimum classification error rate for increasing
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In the analysis, one antibody was removed due to no
signal. The ANOVA model (4) was employed to calcu-
late the total variation due to random error. The range
of the consistency statistics is shown in a histogram
(Figure 6), from which we can see there are two clusters.
To test whether the two components of the mixture
model (i.e., consistent and inconsistent proteins) are
separable we calculated the likelihood ratio test (19) and
found it to be 13.65, for which significance was deter-
mined by comparing with a critical value under the null
hypothesis. To do that, we bootstrapped the null
hypothesis likelihood ratio test statistics and obtained a
p-value of 0.022 for the likelihood ratio test statistics
that corresponds to the value 13.65, therefore we
rejected the null hypothesis and concluded that the con-
sistent and inconsistent proteins are separable. Both
components, as determined by the BIC criterion, under
the alternative hypothesis have K = 0, and have the

model parameter estimate ^
0 = 0.092, ^

0 = 0.037, ^
1

= 0.267, ^
1 = 0.089 and

^

0 = 0.588. Because the sam-

ple size (number of proteins) is small, model selection
tends to choose simpler models where K = 0. We illus-
trate the complex densities where K = 2 for both com-
ponents in Figure 6. In order to determine the optimal
number of functionally consistent proteins, we estimated
the FDR (24) and FNR (25) and obtained the error rate
(26) by using a 2:1 ratio for the cost of FDR and FNR.
Figure 7 shows that the minimum error rate occurs

when there are 13 inconsistent proteins and 21 consis-
tent proteins. In Zhou et al. [32], Pearson’s correlation
coefficient was calculated for each protein to evaluate
measurement reproducibility. Unfortunately, Pearson’s
correlation coefficient does not provide a classification
of consistent and inconsistent proteins, so it is not pos-
sible to compare the results of our approach with the
published results from Zhou et al. [32].

Discussion
The challenge of selecting and employing functionally
consistent proteins for protein microarray experiments
is complicated by the three-dimensional structure of the
protein itself. Specifically, the proteins that are spotted
on to the array as probes (during the fabrication of the
array) need to maintain functional consistency for each
sample hybridized to the array, as well as across experi-
ments. Identifying and employing functionally consistent
proteins continues to be a major and necessary concern
in both the design and analysis of protein microarray
experiments. To address this concern, a novel statistical
approach based on modelling the between- and within-
array variation, using a semi-nonparametric mixture
model, is presented for the purpose of discriminating
functionally consistent proteins. Of course, once func-
tionally consistent proteins have been identified and the
array fabricated, it is then necessary to develop addi-
tional statistical methods that can detect proteins of dif-
fering abundance.
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�

�

�

�

�

�

�

�

�

�

�

�
� � �

�
�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

Number of inconsistent proteins

E
rr

or
 ra

te
Figure 7 Error rate for claiming the number of inconsistent
proteins. The estimated classification error rate plotted against each
number of potential inconsistent proteins. The estimated FDR (24)
and FNR (25) was calculated using a 2:1 ratio for the cost of FDR
and FNR. The minimum error rate occurs when 13 proteins are
found as inconsistent while 21 protein are consistent.

Yu and Doerge BMC Bioinformatics 2010, 11:486
http://www.biomedcentral.com/1471-2105/11/486

Page 7 of 12



After classifying proteins as consistent and inconsis-
tent proteins, the abundance data from functionally con-
sistent proteins can be used for differential protein
abundance/expression analysis. The semi-nonparametric
mixture model that was initially proposed to select func-
tionally consistent proteins (5) can also be adapted for
detecting differentially expressed proteins. Specifically,
one component of the mixture identifies the non-differ-
entially expressed proteins, while the other component
acknowledges the differentially expressed proteins. The
semi-nonparametric mixture model lies between para-
metric and nonparametric approaches since it does not
put distributional assumption on the data themselves,
but on the test statistics. The semi-nonparametric mix-
ture model as applied to differential expression analysis
was investigated and shows great performance [33].
The proposed semi-nonparametric mixture model is a

novel and broadly applicable approach in the mixture
model literature. For applications to either identifying
functionally consistent proteins, or testing for differen-
tial protein abundance between samples, only two-
component mixture models are employed. The exten-
sion of the semi-nonparametric mixture model to a
multiple-component and multivariate mixture model
has potential to address high-dimensional problems for
the purpose of classification, and it has potential to
work for a variety of data problems since it provides the
flexibility necessary for model fitting.

Conclusions
A novel semi-nonparametric mixture model is pro-
posed for the purpose of selecting functionally consis-
tent proteins that can be used for protein microarray
experiments. The proposed approach is able to attach
a posterior probability of being inconsistent to each
protein, from which false discovery and false non-dis-
covery rates can be estimated. We validated the perfor-
mance of our method through simulations.
Additionally, the characteristics of the semi-nonpara-
metric mixture model were studied by a power analy-
sis. Our novel method provides an improvement in the
accuracy of proteins that are selected as probes on a
protein microarray, as well as an alternative approach
to studying a variety of additional mixture data
problems.

Methods
ANOVA model
Consider a repeated protein microarray experiment.
There are m proteins (probes) spotted on n arrays.
These n arrays are used to hybridize material for n test
samples from J different patient groups. The same
amount of a reference sample is mixed with each test
sample, and each mixture is hybridized on one of n

arrays. The background corrected abundance ratios of
sample to reference are obtained for each probe on each
array and properly normalized. There are several unique
normalization methods proposed for protein microarray
data, and the comparison of them are presented by
Hamelinck [14].
An analysis of variance (ANOVA) model can be used

to partition the sources of variation of the normalized
abundance data. The ANOVA model for each protein is

Y T Sijkl j k j ijk ijkl= + + + + ( ) , (4)

where Yijkl represents the protein abundance ratio
between sample and reference of replicate l for sample k
within group j in experiment i, μ represents the overall
mean of the expression ratios, Tj represents the fixed
effects of group j with constraint ∑j Tj = 0, Sk(j) repre-
sents the random effects of sample k within group j

with mean 0 and variance  Sj
2 , δijk represents the nor-

mally distributed random between-experiment effect of
experiment i for sample k in group j with mean 0 and

variance 
2 , �ijkl represents the normally distributed

random error with mean 0 and variance  
2 .

The total of the between-array variation 
2
and the

within-array variation  
2 represents the variation due

to random error. Inconsistent proteins inflate both the
between-array and within-array variation. By least-
squares estimation of the ANOVA model (4), the esti-

mation of  
2 2+  is obtained for each protein and

used for classification via a novel semi-nonparametic
mixture model approach.

Semi-nonparametric mixture model

The total of the between-array variation, 
2 , and the

within-array variation,  
2 , represents the variation due

to random error in the ANOVA model (4) and can be
estimated for each protein. To select functionally consis-
tent proteins, we assume that all spotted proteins on the
arrays represent both functionally consistent and func-
tionally inconsistent proteins with certain proportions
that are not too small to be negligible. By modelling the

collection of consistency statistics ( 
2 2^ ^
+  ) from each

protein, using a mixture distribution, it is possible to
estimate the consistent or inconsistent status for every
protein that is represented on the array. Biologically and
technically, consistent proteins are very reliable and are
able to generate reproducible measurements between
experiments. Because the proposed consistency statistic
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captures the differences in both consistent and inconsis-
tent proteins, it should be smaller for consistent pro-
teins simply because they have less variation (i.e., are
reliable and reproducible) than the inconsistent proteins.
Furthermore, statistically, when fitting a two-component
mixture model and estimating two components simulta-
neously, the components have to be identifiable. There-
fore, we assume that the mean of the statistics for
consistent proteins is smaller than the mean of the sta-
tistics for inconsistent proteins, and that the statistics
from the same class will be aggregated. For this applica-
tion, defining a selection criterion is equivalent to find-
ing the classification rule between two classes.
A mixture model with semi-nonparametric densities is

proposed, and the Expectation-maximization (EM)
quasi-Newton algorithm [34,35] is employed to estimate
the parameters. Inferences are then drawn from the esti-
mated mixture model.
Consider the generalized setting where z1, z2, ..., zm

represent m consistency statistics ( 
2 2^ ^
+ 

), and f(z|θ)

represents their density function. Under the assumption
of a two-component mixture, the density f(z|θ) is equal
to a weighted sum as follows

f z f z f z( | , , , ) ( | ) ( | )       0 1 0 1 0 0 0 1 1 1= + , (5)

where θ0 and θ1 are the parameters for two densities,

f0(z|θ0) is the density of the ′zis that are the statistics

for functionally consistent proteins, f1(z|θ1) is the density

of the ′zis that are the statistics for functionally incon-

sistent proteins, l0 is the proportion of the functionally
consistent proteins, l1 is the proportion of the function-
ally inconsistent proteins, and the sum of l0 and l1 is 1.
For a mixture model in (5), an order between the means
of the two components is assumed. Specifically, let μ0
and μ1 represents the means of two components respec-
tively, and assume μ0 ≤ μ1.
We assume that the density f0(z|θ0) and f1(z|θ1) belong to

a class of semi-nonparametric (SNP) density used by Gal-
lant and Nychka [36]. This smooth class of densities can be
represented by a truncated Hermite series expansion, and
contain densities that can be skewed, thin or heavy tailed,
and multi-modal. The density is represented by

f z a
z ui
vi vi

z ui
vi

i i j

j

K j

( | ) , = −⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

−⎛

⎝
⎜

⎞

⎠
⎟

=
∑

0

2

1 (6)

where i = 0, 1, K represents a tuning parameter that is
nonnegative, �(·) represents a standard normal density.
In order to have fi(z|θi) as a density, a restriction is

imposed

E a
z ui
vi

j

j

K j

=
∑ −⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

=
0

2

1, (7)

where z is a normally distributed random variable.
When K = 0, a0 has to be 1 so that fi(z|θi) is exactly the
standard normal density. Fortunately, there exists a
transformation of coefficients to satisfy the above
restriction when K is larger than 0. For K = 1, the trans-
formation is represented by

a sin

a cos
0

1

=
=

( )

( ).




,
(8)

In this case, θi = (�, ui, vi), where i = 0, 1. For K = 2,
the transformation is denoted by

a sin
cos cos

a s sin

a
cos cos

co

0 1

1 1 2

2

1 2
2

1

= −

=

=

( )
( ) ( )

,

( ) ( ),

( )

  

 
 (( )

.
2

2

(9)

Here θi = (�1, �2, ui, vi), where i = 0, 1.
The latent variable Ri takes value 0 if protein i is func-

tionally consistent, or 1 otherwise. The likelihood of the
complete data (Z, R) is

L f z f zi
R

i

m

i
Ri i= −

=
∏[ ( | )] ( | )] .   0 0 0

1

1

1 1 1[ (10)

The log-likelihood is then obtained as follows

logL R log R log f z

R log R logf

i i i

i

m

i i

= − + −

+ +
=
∑[( ) ( ) ( | )

(

1 10 0 0

1

1 1

 

 zzi | )].1

(11)

Based on the log-likelihood (11), maximization techni-
ques can be employed to find the estimates of model para-
meters, and then classification methods can be
implemented based on the estimates of the mixture model.

EM-algorithm
To estimate the parameters in the log likelihood function
(11)the EM-algorithm [34] is employed. There are two
steps in the EM-algorithm. In the E-step, the conditional
expectation given the data is calculated for missing values Ri

E R P R z

f zi
f zi f zi

i i i( ) ( | )

( | )
( | ) ( | )

.

= =

=
+

1

1 1 1
0 0 0 1 1 1

 
   

(12)
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After substituting in the expectations of missing
values, the log likelihood in (11) is maximized (the
M-step) by a gradient algorithm that is accelerated by a
quasi-Newton method [35]. Given initial values of the
parameters, the EM-algorithm iterates between the
E-step and the M-step until a convergence criterion is
met or until a maximum iteration number is reached.
In the M-step at the (n + 1)th iteration, the two parts

in the log-likelihood function can be represented by

Q R log R log f z

Q

n
i i

i

n

0 0 0 0 0 0

1

1 1 1

1 1( | ) [( ) ( ) ( | )]

( |

   

 

= − + −
=
∑   ,

nn
i i

i

n

R log R log f z) [ ( | )]= +
=
∑   1 1 1

1

,

(13)

where 0
n and 1

n are the estimated parameters in nth

step. The EM-gradient algorithm [35] updates the para-
meters as follows,

     

 

0
1

0
2

0 0 0 0

1 1
0 0 0

1
1

1
2

n n n n n n n

n n

d Q B d Q

d Q

+ −

+

= − −( )
= −

( | ) ( | ),

11 1 1 1

1 1
1 1 1( | ) ( | )   n n n n nB d Q−( )−

,
(14)

where d1 represents the first partial derivatives with
respect to the parameters, and d2 represents the second

partial derivatives with respect to the parameters. Bn
0

and Bn
1 are updated in each iteration by applying Davi-

don’s [37] update

B B a c ci
n

i
n

i
n

i
n

i
n= + ′−1 ( ) , (15)

where i = 0, 1, constant ai
n and vector ci

n are defined

as

a
gi
n Bi

n si
n si

n

c g B s

i
n

i
n

i
n

i
n

i
n

=
− − ′

= − −

1
1

1

( )
,

,

(16)

with

s

g d Q d Q

i
n

i
n

i
n

i
n

i
n

i
n

i
n

i
n

= −

= −

−

− − −

 

   

1

1 1 1 1 1

,

( | ) ( | ).
(17)

Determining the number of mixture components
Before applying the two-component mixture model to
classify proteins (as consistent or inconsistent), we need
to test that the number of components is compatible

with the two component mixture model, and that the
components can be identified.
Let g denote the number of mixture components. The

hypothesis to test is

H g H g0 1 2: . : .= =vs  (18)

Ledwina [38] introduced the idea of a data-driven test
for Neyman’s smooth test of fit. Here the idea is gener-
alized to the likelihood ratio test of mixture compo-
nents. The likelihood ratio test statistic is defined as

− = −2 2 0log log
L

L
 






, (19)

where  0 and   represent the estimated parameters

under the null and alternative hypothesis, respectively.

 0 and   are obtained by choosing the best model

via model selection when the two-component mixture
model is fit to the data. A bootstrap method is per-
formed to approximate the null distribution of -2logl
[39], and to provide a significance threshold for the like-
lihood ratio test statistic. Specifically, when estimating
the null distribution of the likelihood ratio test statistics,
we first bootstrap 500 data sets from the estimated dis-
tribution under the null hypothesis, and then perform a
likelihood ratio test (19) for each simulated data set.
If the test statistic is significant, the two-component

mixture model is suitable to fit the data in order to
select functionally consistent proteins. Failure to reject
the null hypothesis (18) indicates that consistent and
inconsistent proteins are not separable, or that there is
only one type of protein on the array. For this situation,
specific chemical validation techniques have to be
employed in order to provide additional consistency
information.

Model selection
For the density in Equation (6), the tuning parameter K
can be set equal to 0, 1, or 2. To balance the size of
parameters and the suitability of the model fit, informa-
tion criteria are applied to choose the mixture represen-
tation that fits the data best. Akaike’s Information
Criterion (AIC) [28], Schwartz Bayesian Information
Criterion (BIC) [29] and Hannan-Quinn Criterion (HQ)
[30] are applied, and they all share a penalized log-likeli-
hood in the form of

− +2logL C N p( ) , (20)

where logL is the log-likelihood, p is the number of
free parameters in the model, and C(N) is a function of
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sample size N. AIC requires C(N) equals constant 2, BIC
takes C(N) = logN, and HQ has C(N) = 2loglogN.

Classification rule and error rate control
Given the estimation of the semi-nonparametric mixture
model (5) parameters the posterior probability of pro-
tein i being functionally inconsistent is calculated by

P R z
f zi

f zi f zi
i i( | )

( | )

( | ) ( | )
= =

+
1 1 1 1

0 0 1 1 10

 
   

 
    , (21)

where,     
0 1 0 0, ( | )f zi , and f zi


1 1( | ) are the esti-

mates of l0, l1, f0(zi|θ0), and f1(zi|θ1), respectively. The
posterior probability of protein i being functionally con-
sistent is then obtained by

P R z P R zi i i i( | ) ( | ).= = − =0 1 1 (22)

The classification rule that specifies protein i as func-
tionally inconsistent protein is defined as

P R z ci i( | ) *= ≥1 , (23)

where c* is the critical value. The selection of the criti-
cal value c* is determined by evaluating the estimated
false discovery rate (FDR) in Equation (27) and the esti-
mated false non-discovery rate (FNR) in Equation (28).
As in Newton et al. [40], FDR is estimated by

FDR
P R z

i

m

i i i

i
i

m
 =

=
=

=

∑
∑

1

1

0( | )
.




(24)

Similarly, FNR is estimated by

FNR
P R z

i

m

i i i

i
i

m
 =

= −

−
=

=

∑
∑

1

1

1 1

1

( | )( )

( )
.




(25)

The indicator δi is used for declaring protein i as
functionally inconsistent protein by the classification
rule (23) for the specific critical value c*. For any speci-
fic protein microarray experiment, the misclassification
penalty can be specified. The critical value is obtained
by minimizing the following error:

 FDR
d

m
FNR

m d

m
 + − −

( )1 , (26)

where g Î [0, 1] is the penalty for false positive, (1 - g)
is the penalty for false negative, and d is the number of
declared inconsistent proteins by the critical value c*.

Classification error rates
Suppose there are m proteins (of which m0 proteins are
truly consistent) that need to be simultaneously classi-
fied as consistent and inconsistent (Table 2). Let R (an
observable variable) denote the number of classified
inconsistent proteins, while U, V , S, T are unobservable
variables. Similar to the false discovery rate (FDR) [41]
and false non-discovery rate [42] proposed for multiple
testing problems, the misallocation error rates: false dis-
covery rate (FDR) and false non-discovery rate (FNR)
are defined as follows. False discovery rate [41], the
expected proportion of falsely classified inconsistent
proteins among all classified inconsistent proteins, can
be represented by

E Q E
V

R
R P R( ) ( | ) ( ).= > >0 0 (27)

False non-discovery rate [42], the proportion of falsely
classified consistent proteins among all classified consis-
tent proteins, can be represented by

E N E
T

m R
m R P m R( ) ( | ) ( ).=

−
− > − >0 0 (28)
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Table 2 Classification outcomes: consistent and
inconsistent proteins

Classified as
consistent

Classified as
inconsistent

Total

Consistent U V m0

Inconsistent T S m - m0

Total m - R R m

The total number of proteins is denoted by m. m0 is the number of consistent
proteins. R is the total number of classified inconsistent proteins. U, V, T, S are
the corresponding number of classification results.
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