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Abstract

Background: Before conducting a microarray experiment, one important issue that needs to be determined is the
number of arrays required in order to have adequate power to identify differentially expressed genes. This paper
discusses some crucial issues in the problem formulation, parameter specifications, and approaches that are
commonly proposed for sample size estimation in microarray experiments. Common methods for sample size
estimation are formulated as the minimum sample size necessary to achieve a specified sensitivity (proportion of
detected truly differentially expressed genes) on average at a specified false discovery rate (FDR) level and specified
expected proportion (ir;) of the true differentially expression genes in the array. Unfortunately, the probability of
detecting the specified sensitivity in such a formulation can be low. We formulate the sample size problem as the
number of arrays needed to achieve a specified sensitivity with 95% probability at the specified significance level. A
permutation method using a small pilot dataset to estimate sample size is proposed. This method accounts for
correlation and effect size heterogeneity among genes.

Results: A sample size estimate based on the common formulation, to achieve the desired sensitivity on average,
can be calculated using a univariate method without taking the correlation among genes into consideration. This
formulation of sample size problem is inadequate because the probability of detecting the specified sensitivity can
be lower than 50%. On the other hand, the needed sample size calculated by the proposed permutation method
will ensure detecting at least the desired sensitivity with 95% probability. The method is shown to perform well for
a real example dataset using a small pilot dataset with 4-6 samples per group.

Conclusions: We recommend that the sample size problem should be formulated to detect a specified proportion
of differentially expressed genes with 95% probability. This formulation ensures finding the desired proportion of
true positives with high probability. The proposed permutation method takes the correlation structure and effect

size heterogeneity into consideration and works well using only a small pilot dataset.

Background

DNA microarray technology provides tools for studying
the expression profiles of hundreds or thousands of dis-
tinct genes simultaneously. A fundamental goal in
microarray studies is to identify a subset of genes that
are differentially expressed under experimental condi-
tions of interest. Before conducting a microarray experi-
ment, one important issue that needs to be determined
is the number of arrays (replicates) required in order to
have adequate power to identify differentially expressed
genes.
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Many sample size estimation methods have been
developed for various Type I error specifications, such
as family-wise error rate (FWE) [1-3], false discovery
rate (FDR) [4-8], and the number of false positives [7,9].
The sample size for a microarray study is commonly
calculated as the number of arrays needed to achieve
the specified power on average (e.g., [3-6,9,10]). The
power, the proportion of truly differentially expressed
genes expected to be detected, is known as the sensitiv-
ity. With the sample size estimate that is calculated to
achieve a specified sensitivity on average, the proportion
of truly differentially expressed genes detected would
frequently be less than the average. Consequently, the
sample size calculated tends to give an over-optimistic
outcome. Alternatively, Wang and Chen [2], Tsai et al.
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[7] and Shao and Tseng [8] proposed an alternative for-
mulation: the sample size is calculated to ensure detect-
ing at least the specified sensitivity level with a specified
probability. This will be referred to as the (confidence)
probability formulation.

When the sample size problem is formulated to
achieve the specified sensitivity on average, we will
show that the needed sample size can be simply calcu-
lated using the univariate sample size formula without
considering dependency among genes. On the other
hand, if the problem is formulated to achieve a speci-
fied sensitivity with a specified probability, then it
requires estimating a percentile of the distribution of
sensitivity. In this case, the dependency among genes
needs to be taken into consideration. Tsai et al. [7]
presented an approach for controlling the comparison-
wise error rate (CWER) under the model of indepen-
dent or equi-correlated normal distribution with a con-
stant power for all genes. Shao and Tseng [8] proposed
a model-free procedure to estimate a general correla-
tion matrix under the normal distribution. They used a
dataset of 72 samples to illustrate an estimation of the
correlation matrix. However, the size of pilot data is
often small, 10 or fewer per group, and the estimated
variances of the true positives are often negative (zero)
resulting in poor estimate of sample size in our simu-
lation study. Tibshirani [10] proposed a permutation
method to estimate the FDR and average sensitivity for
assessing a specific sample size. Tibshirani’'s method
requires only a small number of pilot datasets and is
completely model-free in the sense that no assump-
tions on the distribution, effect sizes, and correlations
of the test statistics are required. However, the stan-
dard deviation estimate (standard error) of a test statis-
tic depends on the sample size. A test statistic from a
small sample size will have a larger variation than that
from a larger sample size. Since the sample size of a
pilot dataset is often small, the cutoff level based on a
small pilot dataset often exceeds the true cutoff for
needed samples and results in over-estimation of the
needed sample size.

This paper presents an overview of the power and
parameter specifications, and proposes a permutation
procedure for sample size determination under the
probability formulation ([2,7,8]). The approach of Tib-
shirani [10] is improved to attain a more correct permu-
tation distribution by incorporation of an adjustment
factor. The proposed method uses a small pilot dataset
of 4 to 6 samples per group; the method requires fewer
samples than the Tibshirani [10] method when the sam-
ple size for the pilot dataset is small relative to the
needed sample size. When the sample size for the pilot
dataset is large, the proposed method and the Tibshirani
[10] method are equivalent.

Page 2 of 9

Methods

Let m denote the number of genes studied in an array
of which m, and m,; are the numbers of non-differen-
tially and differentially expressed genes, respectively.
Given the significance level o (per comparison-wise
error rate), the results of m tests can be summarized as
a 2 x 2 table (Table 1).

Vim, is the proportion of genes not differentially
expressed that are declared significant, its expectation is
the per comparison-wise error rate E(V)/mg = a. V/R is
the proportion of declared significant genes among the
total number of significances declared that are, in fact,
not differentially expressed. Its expectation is the false
discovery rate E(V/R) = g, given R > 0. U/m; is the pro-
portion of truly differentially expressed genes that are
correctly declared. In a diagnosis problem, this propor-
tion is often referred as the true positive rate, or the
sensitivity. By taking expectation, we have the “average
sensitivity”, E(U)/m;, denoted by A.

Sample Size Estimation

In sample size estimation, m, m;, and the (standardized)
effect size & = (dy,..., 9,,1) for the differentially expressed
genes are pre-specified by the investigator. Estimation of
sample size needed to achieve the specified sensitivity
Ao, on average, is straightforward. Since m; and A, are
pre-specified, given a FDR level g* the corresponding
significance level for per comparison-wise error rate o
can easily be calculated. Setting o = [m; Ao g*]/[mo (1-
q*)], the FDR will be controlled at g* for sufficiently
large m; and my,.

If 6, = 09 is constant for all i, then the comparison-
wise power (1 - ) of the univariate test is the same and
exactly equal to A¢. Given o, Jdp, and (1 - B) = Ao, the
sample size can be based on the univariate sample size
calculation and is given as

n* =2ty +15)° /85 )
where ¢, and tg are the percentiles of a ¢-distribution.

If §;/s are different, then B, = t* (ta/2 —\n* 51‘2 /2)

Table 1 Four possible outcomes when testing m
hypotheses.

True State of Declared Declared Not Total
Nature significant significant
Null 1% S mo
Alternative U T m
Total R m-R m

V is the number of true null hypotheses that are falsely rejected;

U is the number of true alternative hypotheses that are correctly rejected;
S is the number of true null hypotheses that are correctly not rejected;

T is the number of alternative hypotheses that incorrectly not rejected;

R is the total number of null hypotheses rejected among the m tests.
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from Equation (1). The sample size n* can be calculated
from the following equation

Mg — 2"; (1-B,)=0. 2)

The needed sample size is n = Tn*1, where [n*1 is the
smallest integer greater than or equal to #*. Given the
sample size n as calculated, the outcome of a univariate
test on a truly differentially expressed gene can be mod-
eled by a Bernoulli random variable with the success prob-
ability at least (1 - f3;) since n = n*. The expected number
of true detections is at least m1; Ao, regardless of the corre-
lation structure among genes and hence the desired sensi-
tivity can be achieved on average. Most sample size
estimation methods are either based on this approach or
extensions [3-6,9-11]. However, the sample size calculated
under this formulation is inadequate; a simple demonstra-
tion under an independent model is shown below.

Given m, ; (= m,/m), a constant effect size J; = dy, g*,
Ao, and the calculated sample size # (based on Equation 1),
under the independent model, the total number of truly
differentially expressed genes detected U/ is a binomial ran-
dom variable with success probability (1 - §) (= A, since n
> n*). The probability ¢, of identifying at least A, fraction
of m; differentially expressed genes can be calculated as
the sum of the binomial probabilities [2,7]:

@0 =PU[my 22)= Z “(Zillil)!(l—ﬁ)]ﬁ"’l” (3)

I=[my A,

The method of using Equation (1) to estimate sample
size is referred to as the univariate method. Column 3-5
of Table 2 show the estimated sample size n, the aver-
age sensitivity A and the probability ¢ at Ao = 0.6, 0.7,
0.8, 0.9. The parameters used in the calculation are: m =
2,000, 1, = 5%, 10%, 20%, d9 = 2 and g* = 0.05. It can
be seen that the probability ¢;o can be less than 60%.
That is, using this formulation to calculate needed
arrays may result in that an experiment will have the
sensitivity less than the specified 1, level with more
than 40% probability.

Alternatively, Wang and Chen [2] formulated the pro-
blem as: the number of arrays needed to achieve the
specified sensitivity 4  with a probability ¢ ;4. In this
formulation both A ; and @ »¢ need to be specified and
not necessarily equal. The ¢ »0 is set at 95% since it is
consistent with the common statistical practice of using
the 95% confidence probability. Under this formulation,
for specified A ( the needed number of arrays is calcu-
lated so that the average sensitivity is greater than A4 ¢
and the 5™ percentile, A 5, of the distribution of the sen-
sitivity U/m, is greater than A
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Table 2 Average formulation versus 95% probability
formulation under the independent model.?

Average formulation:
Univariate method

95% probability formulation:
Binomial method

m Ao n® A Pro n‘ A Pro
5%  60% 9 0.70 0.985 9 0.70 0.985
70% 9 0.70 0.576 10 0.81 0.997
80% 10 0.81 0.681 11 0.88 0.993
90% 12 092 0.866 13 0.95 0.992
10%  60% 8 0.70 0.999 8 0.70 0.999
70% 8 0.71 0.687 9 0.82 1.000
80% 9 0.82 0.841 10 0.89 1.000
90% " 093 0977 11 093 0977
20%  60% 7 0.72 1.000 7 0.72 1.000
70% 7 0.74 0975 7 0.74 0975
80% 8 0.85 0.99 8 0.85 0.996
90% 9 091 0.792 10 0.95 1.000

a. Estimated sample size n, average sensitivity A and probability ¢, for the
specified sensitivity 1o = 60%, 70%, 80%, 90%, under the independent model.
The parameters used in the calculation were: m = 2,000, m; = 5%, 10%, 20%,
Jo = 2 and g* = 0.05.

b. Sample size n is computed by the univariate method from Equation (1) to
achieve sensitivity A, on average.

c. Sample size n is calculated using Tsai et al. [7] method to ensure the
probability ¢, of detecting at least A, fraction of differentially expressed
genes is at least 95%.

EU)/m; 22y, and ¢, = P(U [ m; 2 Ay) =2 P(U [ my = A5) = 95%.

In the independent and constant effect size model, Tsai
et al. [7] used Equations (1) and (3) to estimate the needed
sample size which is referred to as the Binomial method.
Columns 6-8 of Table 2 show the estimated sample size 7,
the average sensitivity A, and the probability ¢, for A4 =
0.6, 0.7, 0.8, 0.9. The probabilities in Column 8 are all
higher than 95% due to # > n*. The procedure will ensure
detecting the specified proportion of differentially
expressed genes with at least 95% probability.

In Table 2, the theoretical results indicate that the two
methods give quite close sample size estimates. The dif-
ference of the estimates reflects the difference of the
two formulations; when J, = 2, the difference is up to 1.
For a given sensitivity, the needed sample size increases
as the effect size Jy decreasing, and the difference of the
two formulations in the estimates is larger. We calcu-
lated the sample sizes using the same parameters as
Table 2 for dy = 1. The sample size differences increase
at about four times those of Table 2 (data not shown).

Permutation Method for Sample Size Estimation

Tibshirani [10] proposed a permutation method to
account for both dependency and unequal effect sizes
among genes using a pilot dataset for assessing sample
size. This method is applied here to estimate the
required sample size. Because the sample size of the
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pilot data is typically smaller than the needed sample
size, the null distributions generated from the pilot data
have more variations; simply using the null distributions
generated from a small pilot dataset can overestimate
the needed sample size. A procedure modified from the
Tibshirani [10] method with adequate adjustment for
sample size estimation is proposed below.

For simplicity, assume an equal sample size in each
group, denoted as n = ny = ;. Start with some pilot data
with at least 4 samples per group, denoted as ng, and #,,,
for the control and treatment group, respectively. For
specified m, m,, 6 = (01, .., 0,,1), ¢*, and Ao, the algorithm
for a two sample ¢-test is described as follows.

Algorithm: Sample Size Estimation (See additional file
1 for a software application)

1. Set o = [m; Aoq*]/[mo(1 - g*)], use the method of
Tsai et al. [7] (Column 6 of Table 2) to find the
needed sample size as the initial sample size 7.

2. Compute the adjustment factor f = f; f, where

"Op +n1p
nop +n1p -2’

n +n

"01())2% ,and fg , is
the p™ percentile of a ¢-distribution with df degrees
of freedom.

. Generate the b-th permutation samples.

4. Compute the ¢-statistics and sample standard devia-
tions for the permutation samples for all genes.

5. Multiply each ¢-statistic by the factor f and add

w

6
151 Ino+1/ng to a set of randomly selected m; t-

statistic of differentially expressed genes to generate
the permutation ¢-statistics s, = {Sop, 815}, Where sg,
is the set for the non-differentially expressed genes,
and s, is the set for the differential expressed
genes such that so, = fto, and sy, = ft1, +

5
G1p1/no+1/ny ’ where £y, and £, are the vectors

of the ¢-statistic, d is a vector of the effect size and
G, is the vector of the sample standard deviation.

6. Store the permutation statistics s,

7. Repeat 3-6 for all possible permutations, b = 1, 2, ...,
N, where N = (ngp+n,;,) Crgp

8. Construct the null distribution by pooling all per-
mutation statistics from the set of non-differentially
expressed genes Sy = {801, S02, ---» Son}. Find the
100x(a/2)™ and 100x(1 - o/2)™ percentiles as the
critical values.

9. Compute the number of significances for the true
positives u,, for each statistic in s7, for each permu-
tation sample b = 1, 2, ..., N.

10. Order uy, Uy, ..., ux, and find the 5 percentile,

denoted by u*.
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11. Compare u* to my Ag. If u* > mAq, stop and
report n as the sample size estimate; otherwise,
increase #n by 1 and go to 2.

In the proposed algorithm, the permutation ¢-statistics
of non-differentially expressed genes from all possible
permutations were pooled to estimate the null distribu-
tion of the test statistics (Step 8). The number of true
positives (1) was estimated for each permutation sam-
ple (Step 9) since the set of differentially expressed
genes in each permutation sample were known. The
distribution of the number of true positives U and its
5™ percentile u* were estimated (Step 10). To reduce
the excess variation of the permutation distribution, the
proposed method includes the adjustment factor: f =
fifs- The adjustment factor consists of two scale factors:
f1 and f;. The first factor, fi, accounts for differential
sample sizes between the pilot study and the planned
study and the second scale factor, f5, uses the maximum
likelihood estimate of the ¢-statistic [12]. When the
sample size of pilot data is large, both factors f; and f,
converge to 1 and the proposed and the Tibshirani [10]
methods are equivalent. (Note that Tibshirani’s method
was proposed based on the average formulation.) Since
the permutation technique is used to estimate the criti-
cal value and the distribution of the sensitivity, no
assumptions on the distribution of the ¢-statistic and
the dependency among the statistics are made. Further-
more, the proposed method does not need to estimate
the covariance matrix among all genes which can result
in computation difficulty when the sample size of the
pilot dataset is small.

Results

Two simulation analyses were conducted to evaluate
the two formulations of sample size estimation
described above. The first analysis evaluated the two
formulations under the independent and constant
effect size model. The theoretical results for the two
formulations are shown in Table 2. The simulation
analysis provides an empirical validation. The second
analysis evaluated the four methods under a correlated
model: 1) the univariate method (e.g., Jung [4]); 2) the
Shao and Tseng [8] model-free method, 3) the Tibshir-
ani [10] permutation method; and 4) the proposed per-
mutation method. The univariate method is designed
for the average formulation, while the three other
methods are considered with 95% probability with a
use of a pilot dataset. The same model parameters in
Table 2 were used in the evaluation. The Type I error
rate was based on setting the FDR at g* = 0.05. Note
that there are many multiple testing FDR procedures
with different strategies. For example, the Storey’s FDR
procedure [13] involved an estimation of the number
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of non-differentially expressed genes m,. However, to
minimize the confounding effect brought by the varia-
tion in estimating m,, we simply used the true my in
our simulation analysis. Sample sizes were calculated
for the given parameter values. The empirical estimates
of the FDR, average sensitivity A and the probability
@0 were then calculated and evaluated. Using the true
mg provides a direct validation of the proposed proce-
dure with control of the FDR.

The purpose of the first simulation study was to vali-
date the theoretical results of the sample size, sensitivity,
and 95% probability for the two methods shown in
Table 2 under the independent model. We generated
1,000 simulation samples with sample sizes per group
from the Column 3 or Column 6 of Table 2. For the
null model, my = m x (1 - m;) genes were generated
from the independent standard normal N(0,1); for the
alternative model, m; = m x m; genes were generated
based on independent normal N(J,, 1). For each simula-
tion sample set, the ¢-statistics and the correspondent
p-values were computed, and the numbers of false posi-
tives and true positives at the FDR level g* = 0.05 were
recorded. The empirical estimates of the FDR, average
sensitivity A and probability ¢;, were then calculated.
The estimate of ¢,, was the proportion of times out of
the 1,000 simulations that the number of true positives
was not less than m; x A

Table 3 shows the empirical results for the two meth-
ods. The empirical FDR appears close to the nominal
levels in both approaches. For the univariate method,
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the empirical average sensitivity A’s are all at or above
the desired levels, except for 7; = 0.05 and 1y = 70%.
The probability ¢, is less than 50%, for 7; = 0.05 and
Ao = 70%. For the binomial method, the empirical aver-
age sensitivities A’s are all greater than the specified
levels. Most of probabilities ¢,¢’s exceed 95% except for
m = 0.05, 1g = 60%, 7; = 0.10, 15 = 90% and ; = 0.20,
Ao = 70%. The empirical results of Table 3 are generally
consistent with the theoretical values shown in Table 2.
That is, the sample size calculated using the univariate
method generally will achieve the specified sensitivity on
average; however, the probability to achieve the specified
sensitivity can be lower than 50%.

For comparison purposes, the mean and standard
deviation of the sample size estimates from the pro-
posed permutation method using a pilot dataset of
group size 4 are also provided in the last column of
Table 3. The pilot data were randomly generated from
the normal distribution in each simulation. The pro-
posed method tends to over-estimate the needed sample
size by up to five arrays.

The second analysis was to evaluate the four meth-
ods, the univariate method (Jung [4]), Shao and Tseng
[8], Tibshirani [10], and proposed permutation meth-
ods, under a correlated model using the well known
colon cancer dataset [14]. The colon cancer dataset
[14] consists of 22 normal and 40 colon tumor tissue
samples with 2,000 genes. The analysis consisted of
two steps. The first step evaluated the sample size esti-

mates obtained by the three 95% probability

Table 3 The validation of the theoretical results from Table 2.7

Average formulation

95% probability formulation

Univariate method

Binomial method Permutation

m Ao n’ q A Pro n° q A Pro n’
5% 60% 9 0.0505 0.69 0937 9 0.0505 0.69 0937 11.3(0.453)
70% 0.0505 0.69 0497 10 0.0502 0.80 0.983 12.5(0.507)
80% 10 0.0502 0.80 0.506 Il 0.0494 0.87 0.961 14.2(0.485)
90% 12 0.0492 091 0.730 13 0.0484 095 0.965 17.1(0.568)
10% 60% 8 0.0490 0.71 0.997 8 0.0490 0.71 0.997 9.8(0.361)
70% 8 0.0490 0.71 0.589 9 0.0506 0.81 1.000 10.8(0.368)
80% 9 0.0506 0.81 0.688 10 0.0503 0.88 0.999 12.1(0.291)
90% 11 0.0497 093 0.921 Inl 0.0497 093 0.921 14.6(0.491)
20% 60% 7 0.0498 0.73 1.000 7 0.0498 0.73 1.000 8.0(0.089)
70% 7 0.0498 073 0.901 7 0.0498 0.73 0.901 9.0(0.045)
80% 8 0.0491 084 0.966 8 0.0491 0.84 0.966 10.1(0.224)
90% 9 0.0501 0.90 0.627 10 0.0497 0.94 0.999 12.2(0.384)

a. Empirical estimates of FDR g, average sensitivity A, and probability ¢,, of the univariate method for the average formulation and of the binomial method for
the 95% probability formulation. The parameters used in the calculation were: m = 2,000, Jp = 2, and g* = 0.05.

b. Sample size n is computed by the univariate method from Equation (1) to achieve sensitivity A, on average.

c. Sample size n is calculated using Tsai et al. [7] method to ensure sensitivity Ao with 95% probability.

d. Sample size n (standard deviation) is calculated using the proposed permutation method to ensure sensitivity 1o with 95% probability with pilot study of

group size 4 under the independent model.
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formulation methods based on a pilot dataset of sam-
ple size 4 and 6 per group. The second step compared
the sample sizes estimated by the proposed method
from the first step with the estimates from the univari-
ate method.

In the first step, 4 samples from the colon dataset
were randomly selected without replacement from each
group to form a pilot dataset. The algorithm described
above was used to estimate the sample size for the pro-
posed method and the Tibshirani [10] method. For
example, for m; = 5%, ¢* = 0.05 and 4y = 90%, the initial
sample size was n = 13 (Column 6 of Table 2) and « =
0.00249. A constant effect size J; = dy = 2 was consid-
ered. For the proposed permutation method, the initial
adjustment factors for f were f; = 0.6777 and f, =

8/ 6 = 1.155, while no adjustment was taken for the

Tibshirani [10] method. For the Shao and Tseng [8]
model-free method, a correlation matrix of ¢-statistics
was estimated by using all possible permutation datasets
from the pilot dataset. However, the Shao and Tseng [8]
model-free method was found to have computational
difficulty in most cases. Details are given later.

The procedure was repeated 1,000 times to select dif-
ferent pilot datasets of size 4 from each group to
account for the variation of pilot dataset. The means
and standard deviations of the sample size estimates
from the Tibshirani [10] and proposed methods were
calculated and are shown in Columns 4 and 5 of
Table 4. The univariate method is considered as the
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standard method, and the estimates are listed in Col-
umn 3. The needed sample size estimated from either
the Tibshirani [10] or the proposed method is greater
than that from the univariate method in each case. The
difference between the univariate method and the pro-
posed method is less than 5 arrays per group in each
case. The mean and standard deviation estimates from
the Tibshirani [10] method are much larger than the
estimates from the proposed method. The difference
increases as A, increases or m; decreases. Note that,
under the independent model, the sample size and stan-
dard deviation estimates from the proposed method are
smaller (Table 3).

The procedure was repeated with 6 samples for the
initial pilot dataset. The estimates are shown in Col-
umns 6 and 7. The proposed procedure gives consis-
tent results from the two pilot sample sizes; however,
the results from the Tibshirani [10] method differ sub-
stantially. The Tibshirani approach does not adequately
take the pilot sample size into consideration. When the
pilot sample size is much smaller than the needed
sample size, the overestimation of the sample size by
Tibshirani [10] method becomes severe. As the pilot
study size getting closer to the needed sample size, the
Tibshirani [10] and the proposed methods will give
similar results.

In our simulations, the Algorithm B in Shao and
Tseng [8] couldn’t successfully produce solutions for the
pilot data of group size 4 in all 1,000 replications. When
the group size increases to 6, the algorithm works only

Table 4 Sample size estimates (standard deviations) for the proposed method and the Tibshirani [10] permutation

method under a correlated model with effect size 2.?

Pilot study of group size 4

Pilot study of group Entire data of size 62

size 6

m Ao nP n® n¢ n® n n®
5% 60% 9 12.2(2.931) 20.2(6.529) 12.7(2.193) 14.9(3.347) 9.5
70% 9 3.1(2.848) 21.6(6.209) 13.4(2.330) 15.9(3.504) 103
80% 0 3(3.017) 23.6(6.399) 4.4(2.335) 17.2(3.547) 15
90% 2 16.3(2.997) 27.1(6.303) 6.1(2.365) 19.5(3.559) 13.7

10% 60% 10.9(2.409) 15.7(4.664) 11.5(2.015) 12.5(2.828) 8.1
70% 8 11.8(2.544) 16.8(4.858) 2.1(2.096) 13.4(2.971) 838

80% 9 13.0(2.601) 18.6(4.809) 13.0(2.033) 14.4(2.852) 9.8
90% M 4.7(2.944) 21.5(5.250) 4.6(2.275) 16.4(3.099) 118

20% 60% 7 9.8(2.184) 12.2(3.608) 10.3(1.832) 10.4(2.390) 6.7
70% 7 10.4(2.236) 12.8(3.675) 10.7(1.899) 10.9(2.446) 7.3

80% 8 11.4(2414) 14.2(3.709) 11.6(1.995) 11.9(2.506) 82

90% 9 3.1(2515) 16.5(3.902) 13.0(2.074) 13.6(2.603) 99

a. The sample size estimates are based on 1,000 repetitions using the colon tumor data [14] with 4 and 6 samples from each group as pilot dataset. The

parameters used in the calculation were: m = 2,000, o = 2 and g* = 0.05.
b. The univariate method.

c. The proposed permutation method

d. The Tibshirani [10] permutation method.

e. The Shao and Tseng [8] model-free method using the entire 62 samples.
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when 7, = 20%, A9 = 60% and 70%; the mean (standard
deviation) of the sample size estimates are 6.4(0.012)
and 6.8(0.012), respectively. The estimated values appear
too small to be correct. This method does not appear to
be applicable for small pilot sample sizes. Using the
entire colon cancer dataset [14] of 62 samples, the sam-
ple size estimates are shown in Column 8. The estimates
generally need one or two more arrays than the univari-
ate methods, but fewer than the proposed method.
Since the Tibshirani [10] method gave larger estimates
and the Shao and Tseng [8] gave smaller estimates than
the proposed method. In the second step of analysis, the
univariate method and the proposed method were
evaluated.

Comparison of the performance of the two methods is
similar to that shown in Table 3. The data were sampled
without replacement from the colon cancer dataset,
instead of from the normal random variables under the
independent model. The sample sizes were based on
Column 3 or Column 4 of Table 4. The data were then
randomly permuted to remove the difference between
two groups, and a common effect size J, = 2 was added
to a set of randomly selected m; genes in the tumor
group. For each re-sampled data set, the permutation
test was used to generate a p-value and the numbers of
false positives and true positives were computed using
q* = 0.05. The number of repetitions to compute the
permutation test was 10,000. The empirical estimates of
FDR, A and @;o were computed. The entire procedure
was repeated 1,000 times.

Table 5 shows the empirical estimates of ¢g*, A, and
@0 for the two methods. Both methods are shown to
control the FDR well and achieve the desired sensitivity.
Thus the two methods can be expected to have satisfac-
tory performance in practice. However, for the univari-
ate method, the empirical @;, estimates are between
55% and 75%, except one at 80%. One would have to
take a risk that the sensitivity can fall below the speci-
fied level.

The effect size of d, = 2 (Table 4) was used to validate
the proposed permutation method under a correlated
model using the colon cancer dataset [14]. In practice,
the effect sizes can be much smaller. We calculated the
sample sizes using the same parameters as Table 4 with
an effect size g = 1 for two pilot sample sizes 4 and 6.
The sample size estimates are shown in Table 6. The
proposed procedure gives similar results for the two
pilot sample sizes, which are consistent with the results
for 6y = 2 in Table 4. The difference between the uni-
variate method and the proposed method is about 15
arrays per group. The Tibshirani [10] method would
require up to 67 and 35 extra arrays per group for 4
and 6 pilot samples, respectively. The estimates for the
Shao and Tseng [8] method could be estimated only
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Table 5 Empirical estimates of FDR, average sensitivity A,

and probability @;, from the univariate method and the

proposed method based on the results of Table 4.

95% probability
formulation:

Proposed method

Average formulation:
Univariate method

m Ao N q A @ n q A Qo
5%  60% 00412 065 0661 13 00431 094 0976
70% 9 00424 065 0558 14 00443 097 0984
80% 10 00389 076 0611 15 00458 099 0993
90% 12 00460 091 0743 17 00426 100 0998
10% 60% 8 00427 066 0666 11 00474 092 0964
70% 8 00419 066 0585 12 00478 096 0973
80% 9 00431 078 0666 13 00450 098 0981
90% 11 00466 092 0800 15 00475 100 0994
20% 60% 7 00433 069 0711 10 00447 094 0975
70% 7 00448 069 0634 11 00498 097 0987
80% 8 00428 081 0703 12 00496 099 0994
90% 9 00442 089 0716 14 00488 100 1.000

when the pilot study size is around or larger then the
needed sample size.

Discussion and Conclusions

Determination of the needed sample size before con-
ducting a microarray experiment is an important issue.
The sample size problem is commonly formulated as
the number of arrays needed to achieve the specified
sensitivity 4 on average. This paper demonstrates that
the calculated sample size under this formulation may
have the sensitivity A at the specified level on average,
but, the probability ¢, that the specified sensitivity is
achieved can be low (less than 50%) due to the variance
in sensitivity distributions. Furthermore, under this for-
mulation this paper shows that the sample size can be
calculated by a univariate method, regardless of the cor-
relation structure among the gene expression levels; the
procedures to account for correlations, such as Li et al.
[6], are not needed (Table 5). These findings agree with
the results reported by Jung [4] and Dobbin and Simon
[11]. However, this paper provides a theoretical interpre-
tation for this approach.

Under the confidence probability formulation, consid-
eration of the dependency among gene expressions is
necessary in estimating the sample size since the per-
centile of the sensitivity distributions not only depends
on the effect size of individual genes but also on their
correlations. We propose a permutation method based
on the method proposed by Tibshirani [10], but with an
inclusion of an adjustment factor and a requirement to
achieve a specific sensitivity with 95% probability. The
adjustment factor provides more accurate estimates of
the power and sample size. Shao and Tseng [8] also
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Table 6 Sample size estimates (standard deviations) for the proposed method and the Tibshirani [10] permutation

method under a correlated model with effect size 1.2

Pilot study of group

Pilot study of group Entire data of

size 4 size 6 size 62
m Ao n® n® nd n¢ n® n®
5% 60% 26 394(11.166) 77.8(22.283) 40.5(8.743) 56. 8(1 2.376) 29.0
70% 29 43.0(11 659) 84.5(24.442) 43.5(8913) 1(13.570) 317
80% 33 48.7(13.104) 92.2(23.398) 47.8(9.138) 65 4(1 3.134) NaN
90% 40 56.8(13. 846) 106.3(25.373) 54.3(9.168) 4.1(13.846) NaN
10% 60% 23 34.9(9.140) 60.9(18.692) 36.8(8.074) 48. 5(1 2212) 250
70% 26 38.8(9.821) 66.2(18.993) 40.0(8.408) 52.0(11.819) 278
80% 29 43.3(10.399) 72.5(18492) 43.3(8475) 55.8(11.662) 314
90% 35 50.2(10.649) 83.7(20.271) 49.5(8.593) 64.0(12.485) NaN
20% 60% 19 31.1(9.066) 47.0(14.301) 32.6(7.572) 39.8(9.552) 20.7
70% 22 34.4(8.740) 504(14.156) 35.7(7.816) 42.6(9.570) 234
80% 25 38.6(9.611) 55.5(15. 393) 39.0(7.766) 46.6(10.415) 27
90% 31 44.7(9.655) 63.6(14.919) 44.5(7.999) 523(10313) 323

a. The sample size estimates are based on 1,000 repetitions using the colon tumor data [14] with 4 and 6 samples from each group as pilot dataset. The

parameters used in the calculation were: m = 2,000, dp = 1 and g* = 0.05.
b. The univariate method.

¢. The proposed permutation method

d. The Tibshirani [10] permutation method.

e. The Shao and Tseng [8] model-free method using the entire 62 samples.

formulated the needed sample size in terms of confi-
dence probability. Under the normality assumption,
Shao and Tseng [8] proposed algorithms for mild corre-
lations among genes using a preliminary dataset. They
showed that their approach worked well for an example
dataset of 72 samples. However, using their Algorithm B
in our simulation for the colon dataset (the average cor-
relation for the colon dataset is about 0.4), the estimated
variance of the true positives can be negative when the
preliminary sample size is 4 or 6. Their procedure does
not perform well for a small pilot dataset with small
sample size. In practice, sample sizes of pilot data are
often small. Our simulation studies show that our pro-
cedure can work well with 4 to 6 samples per group.
However, our procedure seems to over-estimate the
needed sample size when the correlations are very small,
especially with small effect sizes. In this situation, our
simulation results indicate that the factor f, may not be
necessary (data not shown).

The choice of a particular multiple testing procedure
used for data analysis can affect the error rate and
power in the sample size estimation. Using a conserva-
tive procedure in the data analysis may decrease the
“power” of the study; sometimes, the calculated sample
size may have sensitivity below the specified level. For
example, in this paper the calculation is based on the
true number of non-differentially genes m,. However, if
the data analysis uses an overestimated i, such as the
Benjamini and Hochberg procedure [15], then the
power may be below the desired level. An alternative is
to use the total number of genes m instead of the

number of non-differentially genes m, to estimate the
sample size. This procedure is expected to generate an
appropriate sample size to achieve the desired sensitivity
with a specified probability, regardless of which multiple
testing procedure is used for data analysis.

Additional file 1: The software for the algorithm of the proposed
method. It provides software and an example for the algorithm of the
proposed method.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471
48-S1.TXT]
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