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Abstract

molecular shapes of the MMP co-crystallised ligands.

volumes.

Background: Matrix metalloproteinases (MMPs) are well-known biological targets implicated in tumour
progression, homeostatic regulation, innate immunity, impaired delivery of pro-apoptotic ligands, and the release
and cleavage of cell-surface receptors. With this in mind, the perception of the intimate relationships among
diverse MMPs could be a solid basis for accelerated learning in designing new selective MMP inhibitors. In this
regard, decrypting the latent molecular reasons in order to elucidate similarity among MMPs is a key challenge.

Results: We describe a pairwise variant of the non-parametric chaotic map clustering (CMC) algorithm and its
application to 104 X-ray MMP structures. In this analysis electrostatic potentials are computed and used as input for
the CMC algorithm. It was shown that differences between proteins reflect genuine variation of their electrostatic
potentials. In addition, the analysis has been also extended to analyze the protein primary structures and the

Conclusions: The CMC algorithm was shown to be a valuable tool in knowledge acquisition and transfer from
MMP structures. Based on the variation of electrostatic potentials, CMC was successful in analysing the MMP target
family landscape and different subsites. The first investigation resulted in rational figure interpretation of both
domain organization as well as of substrate specificity classifications. The second made it possible to distinguish
the MMP classes, demonstrating the high specificity of the Sy pocket, to detect both the occurrence of punctual
mutations of ionisable residues and different side-chain conformations that likely account for induced-fit
phenomena. In addition, CMC demonstrated a potential comparable to the most popular UPGMA (Unweighted
Pair Group Method with Arithmetic mean) method that, at present, represents a standard clustering bioinformatics
approach. Interestingly, CMC and UPGMA resulted in closely comparable outcomes, but often CMC produced more
informative and more easy interpretable dendrograms. Finally, CMC was successful for standard pairwise analysis
(ie, Smith-Waterman algorithm) of protein sequences and was used to convincingly explain the complementarity
existing between the molecular shapes of the co-crystallised ligand molecules and the accessible MMP void

Background

Matrix metalloproteinases (MMPs) are members of the
large family of zinc-containing endopeptidases and are
biologically attractive drug targets owing to their involve-
ment in tissue remodelling and degradation of extracellu-
lar matrix [1]. Allegedly, interest in MMPs was recently
prompted by evidence that a number of synthetic inhibi-
tors used for the treatment of various pathological states,
such as inflammation, arthritis, and cancer, triggered
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unbalanced and, to some extent, unexpected responses of
certain MMPs; in this respect, MMPs have been distin-
guished as targets, anti-targets and counter-targets [2].
MMP catalytic domains possess high sequence similarity
(56-64%) with a common residue motif, HExGHxxGxxH,
incorporating 3 histidines that coordinate the catalytic
zinc ion. All protein structures exhibit the characteristic
fold of zinc-dependent endopeptidases consisting of
a five-stranded beta sheet (1 anti-parallel and 4 parallel)
and three alpha helices. Shaped as a cavity crossing the
entire enzyme, the active site is characterized by a num-
ber of subsites [3] directly involved in the interaction
with physiological substrates and natural or synthetic
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inhibitors. The human genome sequence has enabled us
to characterize the entire MMP family, a gallery of pro-
teases encoded by 26 distinct genes. This family includes
the archetypal MMPs, the matrylisin, the gelatinases and
the convertase-activable MMPs [4]. To date, at least 26
human MMPs are known and diverse efforts for their
classification have been made. In view of this, the devel-
opment of new analytical strategies enabling the decod-
ing and proper interpretation of information encrypted
in protein structures is indeed an open challenge. Among
others, cluster analysis is a valuable approach to this end.
Clustering deals with the partitioning of a set of N
elements into K groups based on a suitable similarity cri-
terion. As is well known, clustering is generally per-
formed through parametric and non-parametric methods
[5]. The parametric algorithms require prior knowledge
of the data structure, enabling the formulation of
assumptions, such as establishing the number of clusters
to be found. The clustering problem is, thus, converted
into an optimization task, as a cost function is minimized
in correspondence to the best partition of the data: typi-
cal examples are K-means and deterministic annealing.
Non-parametric methods represent the optimal strategy
when no prior knowledge of potential clusters is avail-
able: these methods make few assumptions about the
structure of the data. Examples of non-parametric meth-
ods are linkage (agglomerative and divisive) algorithms,
whose output is a dendrogram displaying the complete
hierarchy of clustering solutions on different scales. A
recently proposed non-parametric method is chaotic map
clustering (CMC) [6]. This algorithm was inspired by a
study of the statistical properties of chaotic physical sys-
tems which are exploited to obtain an optimal partition
of data. The CMC has already been successfully applied
to cluster data in different fields, from medicine to engi-
neering and finance; examples are: the detection of bur-
ied land mines using dynamic infrared imaging [7]; the
study of human evolution by clustering mitochondrial
DNA sequences [8]; the analysis of electroencephalo-
graphic signals to recognize Huntington’s disease [9]; and
the clustering of Dow Jones stock market companies for
portfolio optimization strategies [10].

In the present investigation, CMC was used for the first
time to analyse protein structures. Recently analysed
through different chemometrical approaches aimed at
studying the structural differences [3,11-13], the family of
MMPs was chosen as a case study. It represented a good
benchmark, having a high number of entries in the
World Wide Protein Data Bank (wwPDB) [14]. In this
regard, it is worth saying that the CMC algorithm is even
more accurate when dealing with large number of data.
Mostly based on the electrostatic potential similarity, the
present study accounted for a number of MMPs higher
than previous investigations greatly widening the
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structural boundaries of the so-called MMP target family
landscape [12]. More specifically, previous analyses have
been performed on a low number (i.e., 10) of MMPs to
evaluate their selectivity on the basis of GRID molecular
interaction fields and consensus principal component
analyses (CPCA) [3]. Other studies, addressing a higher
number of MMPs (i.e., 24, including 15 structures from
homology modeling), estimated the similarity within the
MMP subsites by taking into account ligand interaction
energies [11]. Based again on GRID/CPCA, a further ana-
lysis has been reported to evaluate MMP selectivity on a
larger number of proteins (i.e., 56 MMPs and 1 TACE)
[12]. Finally, some of us carried out the screening of all
available MMP structures from the PDB and demon-
strated that the analysis of the protein sequences enabled
us to reproduce the MMP classification based on the
structural domain organization [13]. The present analysis
of protein electrostatic potential similarities was shown
to be effective in obtaining insight into molecular recog-
nition and substrate specificity. CMC analysis was a suc-
cessful strategy in landscaping the entire MMP target
family as well as in investigating the subsites responsible
for molecular selectivity. Despite their diverse fundamen-
tals, the analysis of MMPs via CMC provided satisfying
results that generally match, or even outperform, those
obtainable by applying standard approach such as the
Unweighted Pair Group Method with Arithmetic mean
(UPGMA) algorithm. CMC performances were also chal-
lenged to analyse MMP primary structures. Finally, CMC
made it possible to properly relate molecular shape simi-
larity of the co-crystallised ligands with void volumes
available in the X-ray MMP complexes.

Results and Discussion
MMP target family landscape
As a first step, electrostatic potential values calculated on
the aligned protein structures were analysed using the
CMC algorithm to represent the entire MMP family. In
the present analysis, over the course of 10000 iterations,
K was heuristically set at 16 while the threshold 6 of the
mutual information (I) equal to 0.06 was chosen since it
intercepted the first and flattest plateau of the cluster
entropy [Fig. 1 (a)] yielding the highest member density
for the most populated cluster (black line in Fig. 1(b)).
This threshold 6 was highlighted through a dashed red
line in Fig. 2 and represents the resolution at which the
data are analysed or, in other words, indicates the
boundary to consider a given structure as a singleton.
CMC demonstrated high sensitivity in portraying the
MMP target family landscape by properly recognising
proteins with similar structural motifs among the differ-
ent MMP subfamily. When considering domain organi-
zation [4], assignment of the MMP structures almost
perfectly matched the classification (Fig. 2) with the
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Figure 1 Choice of the parameter K controlling the resolution at which the data are processed. (a) Plot of cluster entropy as a function of
the mutual information (). (b) Size of the three largest clusters obtained by the CMC algorithm as a function of the mutual information (I) whose
value ranges from 0 to In2 with a bin-width equal to 0.01.
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single exception of a gelatinase (PDB:1QIB) that was
misplaced in the group of archetypal MMPs. This misal-
location was however due to the inclusion of a short
peptide, Ser187-Leu-Gly-Lys-Gly-Vall91, instead of the
three fibronectin modules enabling specific binding with
collagen. This finding emerged also in a previous work
concerned with sequence analysis [13]. Interestingly,
closer analysis revealed that collagenases as well as MT-
MMPs and stromelysins were properly grouped in full
agreement with the classification based on MMP
subfamilies.

Then, it was observed that MMPs of identical class
were aggregated into highly homogenous groups, except
for two singletons determined by two stromelysins
whose X-ray structures (PDB:1QIA and PDB:1QIC)
were missing from a stretch of six residues (i.e., Phe83-
Arg-Thr-Phe-Pro-Gly88).

The comparison of CMC and UPGMA (see additional
file 1) revealed that congruent results were obtained.
However, the dendrogram generated via CMC was
indeed more easily interpretable and, to some extent,
more informative. Unlike CMC, UPGMA was in fact
unable to generate the classification based on the
domain organization [4], which is known as the highest
level of MMP classification, but also failed to properly
cluster MMP-8 and MMP-1 (i.e., 1HFC joined first the
unique MMP-2 and then the group formed by MMP-3).
Similarly, the analysis carried out by UPGMA confirmed
that 1QIA and 1QIC were effectively diverse from the
other elements of the same class (i.e., MMP-3) and pro-
duced a cladogram (see additional files 1) with the long-
est branches for these two proteins.

CMC analyses of MMP binding sites

The second stage of our investigation was focused on
MMP active sites and a number of independent CMC
analyses were carried out for studying: a) the significant
role of the S;” pocket in determining enzyme specificity;
b) the residues involved in the S,-S,” stretch embedding
the catalytic domain responsible for protein function
regulation; c) the region involving S3-S;-S3’ subsites con-
stituting a shallow region containing B-strand IV and
two slightly variable loops among different MMP
isoforms.

a) Analysis of the S;" subsite

Known as the specificity pocket, the S;’ subsite is the
most relevant cavity within the MMP active site and is
characterised by a loop behind such a pocket [13]. CMC
analysis focused on 16 residues (from position 217 to
position 231 according to MMP-8 numbering) whose
consensus sequence PLYHSFTDLTRFRLSQ, obtained
through multiple sequence alignment, disclosed rather
lower percentages for most of the amino acids [13].
The study of such a variable residue composition is
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fundamental for interpreting the structural implications
responsible for MMP selectivity. In this regard, CMC
was successful in properly resolving the different MMP
classes through variations of the corresponding key-
point residues. As shown in Fig. 3, MMPs of identical
class were grouped into a single subgroup with a high
level of similarity and, more importantly, were clearly
distinguished from all the others. Interestingly, the
assignments obtained through the CMC S,  focused ana-
lysis was, again, better interpretable than those attain-
able via UPGMA (see additional file 2) which failed in
grouping the MMP-3 and two MMP-8 (i.e., 1JH1 and
1MNC that firstly linked the unique MMP-10 and then
the MMP-1). However, a closer look at the dendrogram
of Fig. 3 revealed that MT-MMPs (i.e., MMP-14 and
MMP-16) formed a single group with MMP-1. Such an
observation held true also when applying the UPGMA
method. Moreover, it was observed that metallo-elas-
tases were split into two different groups containing 12
and 8 members, respectively, exhibiting different side-
chain conformations of polar residues Arg249 and Lys
241 (MMP-12 numbering). Similarly, it was observed
that the MMP-8 cluster required lower similarity values
to incorporate the PDB:1MNC crystal protein with a dif-
ferent side-chain conformation of Glu233 (MMP-8
numbering). In addition, the CMC algorithm designated
three structures as singletons. Two of these were stro-
melysin-1 (i.e., PDB:1C8T, PDB:1CQR), whereas the
third was a collagenase-3 (i.e., PDB:1CXV). In particular,
the 1C8T structure exhibited a different conformation
of the region encompassing Leu229-Thr-Arg-Phe-
Arg233 of the loop at the bottom of the S;” pocket
despite the consistent overlap of protein backbone
atoms. Visual inspection of the PDB:1CQR crystal
revealed that it was an apo-form and, unlike other stro-
melysin-1, presented a more restricted and hampered
loop. Interestingly, such an observation was also
reported in a recent analysis based on the GRID/CPCA
approach [12]. In addition, the CMC algorithm recorded
that residues Thr247-Gly-Lys-Ser-His251 (MMP-13
numbering) were absent in the PDB:1CXV structure
that was thus left as a singletons in the dendrogram.

Finally, a value of global electrostatic similarity [15]
for the S;” subsite was measured applying the following
formula:

N-1 N
SI. .
22 m
Csimn = — =
N(N-1)/2
where SI is the Hodgkin index of all the protein pair-
wise (i.e., i and j) combinations and N is the total num-
ber of protein structures. Being SI commutative, Cgspy
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Figure 3 Analysis of the S,’ specificity pocket. Dendrogram obtained from the partition data relative to the electrostatic analysis of the Sy’
subsite. Different background colour boxes were used to distinguish the main stable groups at B = 0.08, by setting K = 10. Singletons are
indicated with the PDB codes.

accounts for N(N-1)/2 calculations thus avoiding double
counts.

The analysis involved the MMP classes with N > 1
and resulted in the following decreasing similarity order:
MMP-7 (Cgpm = 0.946, N = 3) > MMP-1 (Cgppy = 0.933,
N =7) > MMP-9 (Cgm = 0.923, N = 7) > MMP-8
(Csim = 0.902, N = 22) > MMP-12 (Cgpy = 0.899, N =
20) > MMP-13 (Cgpy = 0.815, N = 13) > MMP-3 (Cypm
= 0.678, N = 26). The global electrostatic similarity over
all the 104 S;’ subsites was equal to 0.539. These results
underlined the relevance of the S;” subsite for molecular
selectivity, as higher similarity values were observed
within each class (intra-class similarity) while the simi-
larity among all the classes was significantly lower
(inter-class similarity) [Fig. 4].

b) Analysis of the S,-S," subsites

The S,-S,’” protein regions represented the catalytic
domain and displayed a more pronounced similarity
(Csim = 0.949, N = 104) compared to the S;’ subsite. As
expected, this remarkable electrostatic similarity value
was directly related to the consistent percentages of resi-
due consensus.

Although the detection of electrostatic differences
proved even more difficult, CMC was able to perceive

the variation of electrostatic potential of diverse polar
residues. Encompassing residues from position 197 to
position 207 (MMP-8 numbering), the stretch under
investigation is the well-known sequence motif,
HExGHxxGxxH, which is common to all MMPs. As
expected, the presence of charged residues among vari-
able residues was immediately detected by the CMC
algorithm. For instance, the presence of negatively
charged residues (i.e., Glu, Asp) at position 206 implied
a consistent variation of the electrostatic potential that
was immediately perceived by the CMC algorithm,
which resulted in clearly distinct groups including gelati-
nases, MT-MMPs and MMP-13. In addition, the CMC
was able to detect the occurrence of different side-chain
conformations and even punctual residue mutations. For
instance, gelatinases were split into two groups. The
first collected MMP-9 structures incorporating the
E402Q mutation (MMP-9 numbering) while the second
group contained the only wild MMP-9 structure
(PDB:1GKC) and the only X-ray MMP-2 (PDB:1QIB)
structure. Moreover, MMP-14 included a member
(PDB:456C) of the MMP-13 class. Such a crystal struc-
ture differed from other MMP-13 proteins since it
lacked residues 104 to 109 (MMP-13 numbering),
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whose remaining available space was occupied by the
Asp421 side-chain exhibiting a diverse conformation.
Furthermore, the MMP-12 group did not include two
structures (PDB:2WO0D and PDB:1JK3) for the occur-
rence of the E219A mutation (MMP-12 numbering).
Interestingly, the UPGMA method afforded comparable
results. In this regard, the obtained cladogram (see addi-
tional file 3) associated such elements with clearly dis-
tinguishable longer branches emerging from a fairly flat
tree-like plot.

¢) Analysis of the S3-S;-S3’ subsites

The residue stretches comprising the S3-S;-S3” subsites
disclosed a higher electrostatic similarity (Cs;y = 0.964)
compared to the S;’ subsite. In this regard, the heat map
in Fig. 5 (a) furnished an immediate idea of the over-
whelming dominance of red colours indicating high
electrostatic similarity at the S3-S;-S3’ subsites. However,
the presence of somewhat limited green-like coloured
regions was observed for similarity values lower than
0.93. By zeroing values greater than 0.93, a spy plot
[Fig. 5 (b)] was obtained to conveniently illustrate the

high internal similarity of gelatinases as well as their
remarkable differences compared with other MMPs.
Nevertheless, it has to be again remarked that such
results are in full agreement with those obtained when
applying the UPGMA method. In this regard, by
inspecting the cladogram obtained via UPGMA (see
additional file 4), the interested reader can appreciate
that the high inter-class similarity is proved by the
occurrence of short links among all MMP structures,
with the exception of the gelatinases, as discussed above.

A close assessment of the spy plot disclosed a number
of other valuable clues. For instance, the only X-ray
structure of MMP-11 (i.e., PDB:1HV5) was clearly dis-
tinguished from all the others; such a result was in
agreement with previous investigation [13] based on
rmsd analyses. Similarly, the PDB:1CGL crystal belong-
ing to MMP-1 displayed a pronounced dissimilarity
compared to the other members of the same class for
the likely occurrence of induced fit phenomena. As
shown in Fig. 6, the Asn80 residue was shifted away
from its location observed in apo-forms of the same
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structure (i.e., PDB:1CGE and PDB:1CGF) for the likely
occurrence of a hydrogen bond interaction with the car-
bonyl group of co-crystallised peptide inhibitor. In this

Asn80

Figure 6 Induced fit phenomena differentiates structures
belonging to the same MMP class. Elucidation of differences
between PDB:1CGL with PDB:1CGE and PDB:1CGF when comparing
S5-S:1-S5' regions. The Asn80 residue is coloured yellow for the apo-
proteins (PDB:1CGF and PDB:1CGE) and cyan for the complex
(PDB:1CGL) co-crystallised with a peptide inhibitor rendered as
green sticks. The coordination of zinc with the three catalytic
histidines and carboxylic group of the ligand is highlighted.

regard, it is worth saying that similar considerations can
be drawn by inspecting the cladogram generated via
UPGMA (see additional file 4). The CMC and UPGMA
methods differed remarkable in assigning the
PDB:1YOU structure which is completely isolated in the
cladogram resulting from UPGMA and is able to join
only the PDB:1HV5 through a very long link. In this
regard, the CMC assignment seems to be more interpre-
table since the PDB:1YOU, which belongs to MMP-13,
is inserted in the cluster of the MMP-13 and is directly
joined to two of them (i.e., PDB:2PJT and PDB:1ZTQ).
Interestingly, the inspection of the PDB:1YOU structure
revealed that its Tyr195 residue was differently oriented
with respect to the other MMP-13 and was instead clo-
ser to the PDB:2PJT and PDB:1ZTQ.

CMC analysis of MMP primary structures

CMC was also challenged to evaluate its ability to group
proteins on the basis of their sequence similarity. Pair-
wise sequence distances were represented through a
heat map (Fig. 7). As can be seen, high similarity was
generally measured in each class. Nevertheless, some
sequences (i.e., PDB:1UEA, PDB:1IMNC and PDB:1CXV)
did not meet this trend and thus the CMC algorithm
effectively detected them as singletons despite their
proximity to other proteins of the same type. Moreover,
it was observed that MMP-1 and MMP-12 were both
split into two different subclusters. This was in part due
to the occurrence of punctual mutations (e.g., E219A,
F171D) or missing residues so that sequences belonging
to two separate clusters were similar at 99.4%.
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Ligand analysis via molecular shape similarity

The CMC algorithm was finally used to analyse the
molecular shapes of the 84 co-crystallised ligand mole-
cules extracted from the pool of the 104 examined
X-ray MMP structures. The present analysis was aimed
at evaluating binding specificity towards MMPs on the
basis of the complementarity between void volumes
within the MMP binding sites and the molecular shapes
of the co-crystallised inhibitors. Specifically, CMC made
it possible to relate molecular shape similarity with even
subtle diversity of MMP physicochemical environments
based on the fundamental assumption that two ligand
molecules would have the same shape if their volumes
matched exactly.

The CMC algorithm allowed us to obtain a dendro-
gram encoding various informative levels (Fig. 8). Firstly,
the co-crystallised inhibitors were assigned according to
the their chemical structure, since the observed clusters
contain structurally similar inhibitors (e.g., malonyl
derivatives, barbiturates, 2-benzenesulfonylamino-
N-hydroxy-acetamides, macrocyclic derivatives and so
on). Secondly, the CMC was able to discern zinc

chelating inhibitors from non-zinc chelating inhibitors
regardless of MMP class. The vast majority of reported
MMP inhibitors are zinc chelating compounds, whose X-
ray structures reveal that inhibitor binding interactions
typically include coordination of the catalytic zinc ion
and occupancy of the S;’ pocket with a hydrophobic
group [16]. However, these are broad spectrum inhibitors
lacking selectivity. In the development of new therapeutic
agents targeting MMPs, there remains considerable room
for new structural classes not coordinating the active site
zinc atom [17]. In this regard, exploiting the structural
differences between the MMP subtypes, currently an
important issue in this area, should lead to more specific
inhibitors, intended to avoid the toxic side effects suppo-
sedly linked to broad spectrum inhibitors [18].

Thirdly, low molecular selectivity was immediately
inferred by observing a high concentration of replicates
(i.e., batimastat and NNGH analogues) within the same
cluster, although these co-crystallised with different
MMPs. Finally, the analysis of ligand molecular shapes
via CMC algorithm made it possible to gain insight into
selectivity beyond the backbone on the basis of the size
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(i.e., shallow or deep) of the S;” pocket [19]. Inhibitors
with bulkier moieties (e.g., 4-(4-phenyl-piperidin-1-yl)-
benzenesulfonylamino and 4’-[(benzofuran-2-carbonyl)-
amino]-biphenyl-4-sulfonylamino substituents) were
effectively comprised in the same cluster intercepting
deep pocket MMP complexes (i.e., PDB:1B8Y, PDB:1CIZ
and PDB:1CAQ as MMP-3, PDB:1ZTQ and PDB:1ROS
as MMP-12).

Conclusions

The main objective of the present investigation was to
apply the chaotic map algorithm to clustering MMP
structures. Based on electrostatic potential values, CMC
analyses afforded a comprehensive representation of the
intimate relationships existing among MMPs, showing
that structural differences between proteins reflect genu-
ine variation of their electrostatic potentials. In particular,
CMC analysis of entire MMP structures was successful in
accurately reproducing the canonical classification of
MMPs normally based on domain organization. Such a

result was not attained when the analysis was repeated by
using the UPGMA approach. In addition, CMC demon-
strated high sensitivity in discerning even smaller protein
stretches, and defining relevant areas in proximity to the
binding site. More importantly, CMC was able to prop-
erly detect the variance of electrostatic potential occur-
ring for even punctual mutations of ionisable residues.
Furthermore, CMC demonstrated an outstanding apti-
tude for capturing local distortions of the electrostatic
potential probably related to physical incorporation of
small ligands inducing smaller structural protein rearran-
gements. Interestingly, CMC represented a valid strategy
even for standard analyses as those involving only MMP
sequences. Similarly, CMC was successful in correctly
relating the molecular shapes of ligand molecules to the
void volumes available within the MMP binding sites.

In this view, CMC could represent a valuable alterna-
tive approach or a complement to other clustering meth-
ods assessing the structural similarity within protein
families. CMC demonstrated performances comparable
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to those of the UPGMA, with the former leading however
to more easily interpretable results. Incidentally, it should
be said that CMC is tailored to deal with large amounts,
and could also have potential in the database mining.

Methods

Data set

The protein data set is made of 104 MMP 3D structures
available from the wwPDB [14] and listed in Table 1.
The herein presented collection of MMPs encompassed
all the structures previously published [3,10-13].” In
cases where the asymmetric unit contained more than
one protein occurrence, the first structural copy of the
biological unit was considered. Structures resulting from
NMR analysis were intentionally not taken into account,
in order to minimize the risk of introducing noise in the
data set, and to avoid bias in selecting just one Cartesian
snapshot among those collected in solution.

After removing water molecules and co-crystallised
inhibitors, MMPs were aligned onto Cartesian coordi-
nates of C-alpha atoms and the three catalytic histidine
side chains of 1ZS0, selected as template.

In addition, the ligand data set comprised a number of
84 co-crystallised ligands extracted from the pool of
X-ray MMP structures.

Protein electrostatic potential similarity

According to a recent work [19], each protein structure
was subjected to electrostatic potential calculation by
using Adaptive Poisson-Boltzmann Solver (APBS) pro-
gram [20]. A grid of dimensions 65 x 65 x 65 A® was
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used, together with a 1.5 A grid spacing, for the compu-
tation of the electrostatic potential via a finite difference
solution of the linearised Poisson-Boltzmann equation.
The grid was centred on the global centre of mass of
the superimposed structures. The dielectric constants of
the solvent and the protein were set to 78 and 1, respec-
tively. Charges were assigned by using AMBER99 force
field and hydrogen bonding network optimization was
not set to keep unchanged the protonation state of all
polar residues [21].

Using default parameters, Protein Interaction Property
Similarity Analysis (PIPSA) software [22] was run to
obtain distance matrix. Electrostatic potentials (M) were
computed at points (x, y, z) on a three-dimensional grid
surrounding the entire protein structures. On the basis
of the electrostatic potential values, Similarity Indices
(SI) were then computed for grid points within the
intersection of a specific region, defined as “skin”, sur-
rounding each MMP structure at a distance of 3A from
the van der Waals surface and having a thickness of 4
A. As documented [22], the use of the skin region
enabled to better account for the protein similarity
shape.

For all the n(n - 1)/2 possible pairwise comparisons,
electrostatic similarity was computed by applying the

Hodgkin index [23] as follows:
) o
OMP M

being (M;, M), Mi2 , and sz scalar products.

Table 1 List of X-ray solved MMP structures retrieved from the wwPDB

sub-families classes PDB codes
archetypal MMPs MMP-1 1CGE, 966C, THFC, 2TCL, 1CGL, 1CGF, 2J0T
Collagenasi MMP-8  TMNC, 1250, 1ZP5, TMMB, 1JAO, 1JAP, 1JAQ, 1JJ9, 1176, 1173, 1ZVX, 1BZS, 1KBC, 1JAN, 1A86, 1A85,
1JH1, 3DNG, 3DPE, 3DPF, 20Y2, 20Y4
MMP-13 1XUC, TXUR, 1XUD, 1YOU, 830C, 456C, 1ZTQ, 2D1N, 1CXV, 2PJT, 20W9, 2E2D, 20ZR
metallo-elastase MMP-12  1Y93, 1RMZ, 1059, 10S2, 1UTZ, 1UTT, 1JIZ, 1ROS, 1JK3, 3F15, 3F16, 3F17, 3F18, 3F19, 3F1A, 2WO0D,
2HU6, 20XU, 20XW, 20XZ
Stromelysin MMP-3 1B8Y, 1CIZ, 1CAQ, 1G4K, 2USN, TUSN, 1SLM, TUEA, THFS, 1QIC, 1C3l, 1CQR, 1BQO, 1BIW, 1SLN,
1HY7, 1G05, 1G49, 1D5J, 1D8F, 1D7X, 1D8M, 2D10, 1B3D, 1QIA, 1C8T
MMP-10 1Q3A
matrilysin Matrilysin MMP-7 TMMP, TMMQ, TMMR
gelatinases Gelatinase MMP-9 1GKC, 1GKD, 20VX, 20VZ, 20W0, 20W1, 20W2
MMP-2 1QIB
convertase- MT-MMPs MMP-14 1BUV, 1BQQ
activatable MMPs
MMP-16 1RM8
stromelysin-3 MMP-11 THV5
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It is easy to demonstrate that when two potentials are
identical then SI;; = 1, when they are uncorrelated SI;; =
0 and when they are anti-correlated SI;; = - 1.

Similarity matrix was, therefore, converted into the
correspondent distance matrix by applying the following
widely accepted equation:

D;; = [2(1- SI;;) (3)

where, for each given pair of proteins, SI;; and D;;
represent the similarity and distance values, respectively.
The latter were effectively used as input for the CMC
algorithm.

Sequence similarity

The Smith-Waterman algorithm [24] was used for align-
ing primary structures by selecting the PAM250 scoring
matrix and setting gap-open, gap-extend, and scale
value at 10.0, 0.5 and 3.0, respectively. As already done
for electrostatic potential similarity values, the obtained
matrix was converted into the corresponding distance
matrix through the equation 3.

Ligand molecular shape similarity

The molecular shape and the pairwise similarity analysis
of the ligand data set was operated through the program
ROCS (standing for Rapid Overlay of Chemical Struc-
tures, from OpenEye Scientific Software) [25], disabling
solid-body optimization process to maintain unchanged
the protein-ligand positions. The Tanimoto indexes cal-
culated for all the n(n - 1)/2 pairwise MMP ligand com-
binations were, thus, converted into distance values by
applying equation 3. The obtained data were stored into
a square matrix for running CMC algorithm.

Chaotic map clustering algorithm

Written in MATLAB metalanguage (The MathWorks,
Inc.) [26], the CMC algorithm was originally introduced
as a central algorithm, where the elements to cluster are
embedded in a D-dimensional feature space. In such a
picture, the data-points are viewed as sites of a grid, host-
ing a chaotic map dynamics. Depending on the analysis
carried out, the entire protein structures, the protein sub-
sites, the sequences or the ligand structures are thus used
as input data-points which are distributed in a vectorial
space so that a map variable x; € [-1,1],1 = 1...N can be
assigned to each structure. Initially, the assignment is
purely random. The entire system will then evolve on the
basis of the short range interactions between neighbour-
ing maps. In this respect, the diverse distance Dj; asso-
ciated to the different analyses is used to measure the
corresponding data coupling J;; = exp [-(Dij)2/2a2], where
o is the local length scale, whose value is the average
distance of the K-nearest neighbours. Being J;; an
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exponential decreasing function of the site distance D;;, a
high value of the distance stands for a low tendency of
coupling. In the present study, a pairwise version of the
algorithm was implemented by simply adopting the dis-
tance matrix described above, in the equation of the cou-
plings J;;. The parameter K is set at a value such that its
change does not affect substantially the clustering results.
This value is independent of the size of the dataset, rather
it depends on the particular distribution of the data at
hand.

The dynamics of the system, leading to the formation
of synchronized maps in correspondence of points close
in the feature space, is given by

Xi(t+1) = 2= > Jifx,(0) @

Ui

where C; = ¥.; J;; is a normalization factor and flx) =
1 - ax” is the logistic map with o = 2. Starting from a
random configuration {x;}, the last equation is iterated
until the system attains its stationary regime when clus-
ters of synchronized maps emerge out. Once the algo-
rithm completed a given predetermined number of
iterations, a similarity index for clustering the data is
obtained through the value of the mutual information Ij
between maps. The mutual information can be calcu-
lated after defining, for each evolving map x;(¢), a bit
sequence S; = {0,1} such that S; = 1 if x;(#) > 0, and O
otherwise. The dichotomic values occurring into the bit
sequence allow the evaluation of the Shannon entropy
H;, for each map x;(¢), and the joint entropy Hj;, for
pairs of maps i and j as follows:

Hi== ) P(S)InP(s;)

Si=0,1

Hy== ) ) P(S;,8))InP(s;8)

Si=0,1 5j=0,1

(5)

where P(S;) is the probability of the state S; = {0,1}
along the bit sequence i, computed as the fraction of
occurrence; likewise, P(S;,S;) is the probability that the
pair {S;,S;} = {(0,0),(0,1),(1,0),(1,1)} occurs at the same
step, along two sequences i and j. The mutual informa-
tion is then given as follows:

The mutual information is a measure of the correla-
tions between maps, ranging from I;; = 0 for indepen-
dently evolving maps to I; = In 2 for exactly
synchronized maps. In the stationary regime, a link is
set between all pairs of data points whose associated
maps satisfy the condition I; > 9, where 9 is a threshold.
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The clusters are identified as the linked components of
the graph, thus, obtained. The parameter controls the
resolution at which the data are processed: sweeping its
value throughout the range [0, In2] a hierarchical solu-
tion is obtained. Each clustering level corresponds to a
partition of the data; the optimal solution among the
whole hierarchy yielded by the algorithm is selected as
the most stable one, and the corresponding value of 9 is
set at the flattest plateau in the plot of the cluster
entropy, defined as follows:

S(g)z_ziNiég)lnNiISS) )

where N;(9) is the number of elements in the i-th
cluster at threshold 9 and N is the total number of
elements.

Unweighted Pair Group Method with Arithmetic mean

To compare CMC performance with those achievable
through others clustering methods, UPGMA was used
as it represents a standard clustering bioinformatics
approach. Moreover, it was adopted to generate Phylip
representations [27] from a distance matrix within the
PIPSA package [22]. The UPGMA constructs a rooted
tree by using the average-linkage as metric of clustering.
At each step, the nearest two clusters are combined into
a higher-level cluster. The distance between any two
clusters A and B is taken to be the average of all dis-
tances between pairs of objects x in A and y in B, that
is, the mean distance between elements of each cluster.

Additional material

Additional file 1: UPGMA tree representation of the MMP target
family landscape. Cladogram obtained from the partition data relative
to the analysis of electrostatic potential similarity applied to the entire
protein structures.

Additional file 2: UPGMA tree representation of the S, specificity
pocket. Cladogram obtained from the partition data relative to the
electrostatic analysis of S;" subsite.

Additional file 3: UPGMA tree representation of the S,-S,’ subsites.
Cladogram obtained from the partition data relative to the electrostatic
analysis of S,-S," subsites.

Additional file 4: UPGMA tree representation of the S3-S;-S3’
subsites. Cladogram obtained from the partition data relative to the
electrostatic analysis of S3-5;-S3' subsites.
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