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Abstract

Background: Microarray data discretization is a basic preprocess for many algorithms of gene regulatory network
inference. Some common discretization methods in informatics are used to discretize microarray data. Selection of
the discretization method is often arbitrary and no systematic comparison of different discretization has been
conducted, in the context of gene regulatory network inference from time series gene expression data.

Results: In this study, we propose a new discretization method “bikmeans”, and compare its performance with
four other widely-used discretization methods using different datasets, modeling algorithms and number of
intervals. Sensitivities, specificities and total accuracies were calculated and statistical analysis was carried out.
Bikmeans method always gave high total accuracies.

Conclusions: Our results indicate that proper discretization methods can consistently improve gene regulatory
network inference independent of network modeling algorithms and datasets. Our new method, bikmeans,
resulted in significant better total accuracies than other methods.

Background
Inferring gene regulatory networks (GRN) using time
course microarray data is one of the most important
goals in systems biology [1]. A number of algorithms
have been proposed to infer the transcription networks,
including Boolean Networks [2,3], Gaussian Networks
[4], Bayesian Networks [5,6], and Dynamic Bayesian
Networks [7]. Most algorithms require discrete data as
input. However, the selection of the discretization
method is often arbitrary due to the lack of empirical
data about the performance of different discretization
methods. Discretization methods based on transitions
between time points obtain better results than those
using absolute values for biclustering time series gene
expression data [8]. We proposed therefore that some
discretization methods will produce superior results
than others when inferring GRN.

Many discretization methods commonly used in data
mining and knowledge discovery have been also used to
discretize time series gene expression data (see [8] for
review). However, most of these methods are not suita-
ble to be used during preprocessing in time course
microarray data analysis, and more specifically they are
not suitable, or perform poorly, when used to discretize
gene expression data during the process of GRN infer-
ence. Discretization algorithms can be divided into two
categories: supervised and unsupervised. Supervised
methods discretize data with the consideration of class
information, but useful class information for inferring
GRN is generally not available, so supervised methods
are not suitable for inference. Some unsupervised meth-
ods, such as “Mid-Ranged”, “Max - X% Max” and “X%
Max” [9], discretize data into only two levels (0, 1), so
they can not be extensively used for inference.
The purpose of this work was to examine whether

there were optimal discretization methods for inferring
GRN independent of the network inferring algorithms,
number of intervals and datasets. To test this hypoth-
esis, four widely-used and one proposed discretization

* Correspondence: djguo@cuhk.edu.hk; Ymzhu2001@neau.edu.cn
1Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin,
China
2State Key Lab of Agrobiotechnology and Department of Biology, The
Chinese University of Hong Kong, Shatin, N.T., Hong Kong
Full list of author information is available at the end of the article

Li et al. BMC Bioinformatics 2010, 11:520
http://www.biomedcentral.com/1471-2105/11/520

© 2010 Li et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:djguo@cuhk.edu.hk
mailto:Ymzhu2001@neau.edu.cn
http://creativecommons.org/licenses/by/2.0


method, “bikmeans”, were compared under three net-
work modeling algorithms using different datasets.

Methods
Discretization methods
An N-by-M matrix E is used to denote time course
microarray data, where N is the number of genes, and
M is the number of time points. E(n, m) denotes the
expression value of gene n at time point m. E(n,:)
denotes expression data of gene n at all time points, and
E(:,m) denotes expression data of all genes at time point
m.
(1) Equal Width Discretization (EWD)
EWD [10-12] divides the number line between E(n,:)min

and E(n,:)max into k intervals of equal width. Thus the
intervals of gene n have width w = (E(n,:)max - E(n,:)

min)/k, with cut points at E(n,:)min + w, E(n,:)min + 2w, ···,
E(n,:)min + (k - 1)w. k is a positive integer and is a user-
predefined parameter.
(2) Equal Frequency Discretization (EFD)
EFD [10-12] divides the sorted E(n,:) into k intervals so
that each interval contains approximately the same
number of expression values.
(3) Kmeans Discretization
Kmeans [13] divides E(n,:) into k intervals by k-means
clustering so that adjacent expression values of gene n
are divided into same interval.
(4) Column Kmeans Discretization (Cokmeans)
Cokmeans divides E(:,m) into k intervals by k-means
clustering so that adjacent expression values at time
point m are divided into same interval.
(5) Bidirectional Kmeans Discretization (Bikmeans)
Both kmeans and cokmeans are respectively implemen-
ted with parameter k+1, giving every expression value
two discretized values. If the product of the two values
is equal to or greater than x2, and less than (x+1)2, the
final discretized value of this expression value is x,
where x is a positive integer ranging from 1 to k. Finally,
expression values are divided into k intervals. For exam-
ple, if one expression value is divided into 3 by kmeans,
and 2 by cokmeans with the parameter k + 1 = 4, the
product is 2 * 3 = 6, which is greater than 4 (= 22) and

less than 9 (= (2+1)2). Therefore, this expression value is
divided into the second interval (Table 1).

Microarray data and regulatory networks
Microarray data and corresponding regulatory networks
were generated using ReTRN software [14], which
retrieves real yeast microarray data (GEO: GSE4987) [15]
and yeast gene regulatory networks http://www.yeastract.
com[16,17]. One hundred datasets were generated to
compare between the 5 discretization methods. Every
dataset contains a 50-by-25 (50 genes, 25 time points)
time course expression matrix and a corresponding regu-
latory network. Three network modeling algorithms,
namely, Greedy Search, K2 [18] and aracne [19] were
used to infer the regulatory network. The parameters
used in aracne were (-p = 1E-7, -t = 0.15). The parameter
“node order” used in K2 was based on the time points of
the initial changes in the time-series expression profiles
(up- or down-regulation) of genes. Greater than or equal
to 1.2-fold was considered up-regulation and less than or
equal to 0.7-fold was deemed down-regulation as com-
pared to baseline gene expression and these were used as
the cutoffs [20]. If the initial change of one gene occurred
at an early time point, this gene was selected as potential
regulator gene for other genes.

Evaluation of inferred regulatory network
To evaluate the results of the regulatory network infer-
ence, sensitivity (Sn), specificity (Sp) and total accuracy
(TA) were calculated for every dataset according to the
following equations.

Sn
Tp

Tp Fn
=

+
(1)

Sp
Tn

Tn Fp
=

+
(2)

TA
Tn Tp

Tn Fn Tp Fp
= +

+ + +
(3)

Tp (true positive) is the number of regulatory relations
correctly inferred. Tn (true negative) is the number of non-
regulatory relations correctly inferred. Fn (false negative) is
the number of regulatory relations incorrectly inferred as
non-regulatory relations. Fp (false positive) is the number
of non-regulatory relations incorrectly inferred as regula-
tory relations. TA is a synthetic index for evaluation.

Results
Using the ReTRN software, 100 datasets were generated
to infer GRNs using five discretization methods, three
interval levels and three network modeling algorithms.

Table 1 A sample of bikmeans discretization method

Kmeans

1 2 3 4

Cokmeans 1 1 2 3 4

2 2 4 6 8

3 3 6 9 12

4 4 8 12 16

Kmeans and cokmeans are respectively implemented, firstly. The product of
kmeans and cokmeans is used to decide final discretization level. Products
[1-3] will be divided into interval 1, [4,6] interval 2 and [8,9,12,16] interval 3.
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Inferred networks were then compared with real regula-
tory networks to calculate sensitivity, specificity, and
total accuracy (Figures 1, 2).
As shown in Figures 1 and 2, every discretization

method was distributed on a successive field, indicating
that every discretization method results in similar sensi-
tivities, specificities, and total accuracies, even though
different datasets were used. Bikmeans was easily distin-
guishable from other methods because it produced
much higher total accuracies under all situations. In
general, bikmeans had relatively low sensitivities (Figure
1), but high specificities (Figure 2), which collectively
produced high total accuracies. This indicates that most
regulatory relations found by bikmeans are correct.
Three-way analysis of variance revealed that total

accuracies of five discretization methods were

significantly different, irrespective of inferring algorithms
and number of intervals (Table 2). Every factor (infer-
ring algorithm, discretization method and number of
intervals) and combinations of the factors significantly
influence total accuracy. The inferring algorithm had
the biggest effect on total accuracy, followed by the dis-
cretization method. The number of intervals had the
least effect on total accuracy. Multiple comparisons (Fig-
ure 3) revealed more details on the effect of combina-
tions of factors. Eight of the 12 combinations which
significantly improved total accuracies utilized the bik-
means method.

Discussion
In this paper, we compared and contrasted several
widely-used discretization methods for inferring GRN

Figure 1 Plot of sensitivities.
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with our proposed new method and found that discreti-
zation methods gave consistent performance indepen-
dent of the network inferring algorithms, number of
intervals and datasets used. Bikmeans method resulted
in a greater number of correct inferred results, even
when using the arcane algorithm, which generally
yielded relatively low total accuracies. This result sug-
gests that bikmeans is the most suitable discretization
method for inferring GRN.
EWD and EFD are sensitive to extreme and arbitrary

values. Kmeans clusters adjacent values from the same
row or column into the same interval, and discretized
values can better reflect the real information. Row kmeans
discretizes row expression values at all time points, repre-
senting a gene profile, and column kmeans discretizes col-
umn expression values at one time point, generally
representing a microarray chip. To infer GRN, reducing

Figure 2 Plot of specificities.

Table 2 Three-way analysis of variance of total accuracy

Source Sum Sq. d.f. Mean Sq. F P

S1 1.569 2 0.7843 6845.56 0

S2 0.147 2 0.0735 641.56 0

S3 0.922 4 0.2306 2013.03 0

S1 * S2 0.128 4 0.0320 279.38 0

S1 * S3 0.683 8 0.0854 745.49 0

S2 * S3 0.080 8 0.0100 87.67 0

Error 0.512 4471 0.0001

Total 4.042 4499

S1: Inferring algorithm.

S2: Number of intervals.

S3: Discretization method.

Sum Sq.: sum of squares.

d.f.: degrees of freedom.

Mean Sq.: mean squares, the ratio Sum Sq./d.f.

F: F-statistic.

P: p-value, derived from the Cumulative Distribution Function (cdf) of F.
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dimensions by excluding unrelated genes from microarray
is a necessary preprocess [22], so these genes which are
selected to infer GRN have potential regulatory relations.
Among these genes, some may have small expression
change range, but they function as regulators in the regu-
latory process. Transcription factor and microRNA
(miRNA) genes are examples of these regulators, so their
expression values should be discretized into same number
of intervals, which can be achieved by row kmeans. To
keep gene regulatory information in a microarray chip,
column expression values should be discretized into differ-
ent intervals, which can be achieved by column kmeans.
According to the algorithms, if an expression value is very
high among its row, and low among its column, row
kmeans would discretize this value into high interval, and
column kmeans would polish it. So bikmeans is a compati-
ble method that implements kmeans at the row and col-
umn, and then combines the two results. This method
reflects expression changes within and between genes,
which is what inferring algorithms that discover regulatory

relations are based on. Therefore, as expected, bikmeans
had greater total accuracies, making it most suitable dis-
cretization method for inferring GRN. Of course, it may
be also suitable for other aspects, such as clustering and
classification, which are not analyzed in this study.

Conclusions
Choosing a correct discretization method can improve
the accuracy of inferring GRN, but is it independent of
the network inferring algorithms and datasets? How
much it influences accuracy? Based on the results from
this study, we conclude that it is critical in improving
the accuracy of GRN inference, and good discretization
method result in higher accuracies independent of the
network inferring algorithms, number of intervals and
datasets used, but the inferring algorithm has the bigger
effect on total accuracy than discretization method. In
addition, our new bikmeans method, designed according
to the mechanism of inferring GRN, obtained better
results than other methods with typical data sets.

Figure 3 Multiple comparison of population marginal means. y-axis shows the combinations of three factors: inferring algorithm,
discretization method and number of intervals. x-axis represents the means of total accuracies of combinations. Combinations marked in red
and green were significantly different between combinations of Greedy Search, 3 intervals and bikmeans. The 12 combinations with highest
total accuracies are shown in blue and green.
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Acknowledgements
This project was supported by a grant from the National Natural Science
Foundation of China (30570990), the Hong Kong UGC AoE Plant &
Agricultural Biotechnology Project AoE-B-07/09 and the Institute of Plant
Molecular Biology and Agrobiotechnology at The Chinese University of
Hong Kong.

Author details
1Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin,
China. 2State Key Lab of Agrobiotechnology and Department of Biology, The
Chinese University of Hong Kong, Shatin, N.T., Hong Kong.

Authors’ contributions
YL designed the study, participated in its implement and coordination, and
drafted the manuscript. LLL participated in its design, and carried out the
statistical analysis. XB, HC and WJ helped with statistical analysis. DJG and
YMZ participated in its design and coordination, and helped with the
manuscript editing. All authors read and approved the final manuscript.

Received: 27 June 2010 Accepted: 19 October 2010
Published: 19 October 2010

References
1. Laubenbacher R, Stigler B: A computational algebra approach to the

reverse engineering of gene regulatory networks. J Theor Biol 2004,
229(4):523-537.

2. Somogyi R, Sniegoski C: Modeling the complexity of genetic networks:
Understanding multigenic and pleiotropic regulation. Complexity 1996,
1:45-63.

3. Akutsu T, Miyano S, Kuhara S: Identification of genetic networks from a
small number of gene expression patterns under the Boolean network
model. Pac Symp Biocomput 1999, 17-28.

4. Wille A, Zimmermann P, Vranova E, Furholz A, Laule O, Bleuler S, Hennig L,
Prelic A, von Rohr P, Thiele L, et al: Sparse graphical Gaussian modeling of
the isoprenoid gene network in Arabidopsis thaliana. Genome Biol 2004,
5(11):R92.

5. Friedman N, Linial M, Nachman I, Pe’er D: Using Bayesian networks to
analyze expression data. J Comput Biol 2000, 7(3-4):601-620.

6. Hartemink AJ, Gifford DK, Jaakkola TS, Young RA: Combining location and
expression data for principled discovery of genetic regulatory network
models. Pac Symp Biocomput 2002, 437-449.

7. Murphy K, Mian S: Modeling gene expression data using dynamic
Bayesian networks. Technical report. Computer Science Division, University
of California, Berkeley, CA 1999 [http://www.cs.ubc.ca/~murphyk/Papers/
ismb99.pdf].

8. Madeira SC, Teixeira MC, Sa-Correia I, Oliveira AL: Identification of
Regulatory Modules in Time Series Gene Expression Data Using a Linear
Time Biclustering Algorithm. IEEE/ACM Trans Comput Biol Bioinformatics
2010, 7(1):153-165.

9. Pensa R, Leschi C, Besson J, Boulicaut JF: Assessment of discretization
techniques for relevant pattern discovery from gene expression data.
4th ACM SIGKDD Workshop on Data Mining in Bioinformatics 2004, 24-30,
BIOKDD’04, ACM.

10. Catlett J: On changing continuous attributes into ordered discrete
attributes. Proceedings of the European working session on learning on
Machine learning Porto, Portugal: Springer-Verlag New York, Inc 1991,
164-178.

11. Dougherty J, Kohavi R, Sahami M: Supervised and Unsupervised
Discretization of Continuous Features. Proceedings of the Twelfth
International Conference on Machine Learning: 1995; Tahoe City, California,
USA 1995, 194-202.

12. Randy K: Chimerge: discretization of numeric attributes. Proceedings Tenth
National Conference on Artificial Intelligence Publ by AAAI, Menlo Park, CA,
United States 1992.

13. MacQueen JB: Some Methods for Classification and Analysis of
MultiVariate Observations. In Proc of the fifth Berkeley Symposium on
Mathematical Statistics and Probability. Edited by: Cam LML, Neyman J.
University of California Press; 1967:1:281-297.

14. Li Y, Zhu Y, Bai X, Cai H, Ji W, Guo D: ReTRN: A retriever of real
transcriptional regulatory network and expression data for evaluating
structure learning algorithm. Genomics 2009, 94(5):349-354.

15. Pramila T, Wu W, Miles S, Noble WS, Breeden LL: The Forkhead
transcription factor Hcm1 regulates chromosome segregation genes and
fills the S-phase gap in the transcriptional circuitry of the cell cycle.
Genes Dev 2006, 20(16):2266-2278.

16. Monteiro PT, Mendes ND, Teixeira MC, d’Orey S, Tenreiro S, Mira NP, Pais H,
Francisco AP, Carvalho AM, Lourenco AB, et al: YEASTRACT-DISCOVERER:
new tools to improve the analysis of transcriptional regulatory
associations in Saccharomyces cerevisiae. Nucleic Acids Res 2008, , 36
Database: D132-136.

17. Teixeira MC, Monteiro P, Jain P, Tenreiro S, Fernandes AR, Mira NP,
Alenquer M, Freitas AT, Oliveira AL, Sa-Correia I: The YEASTRACT database:
a tool for the analysis of transcription regulatory associations in
Saccharomyces cerevisiae. Nucleic Acids Res 2006, , 34 Database:
D446-451.

18. Cooper GF, Herskovits E: A Bayesian method for the induction of
probabilistic networks from data. Machine Learning 1992, 9(4):309-347.

19. Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla
Favera R, Califano A: ARACNE: an algorithm for the reconstruction of
gene regulatory networks in a mammalian cellular context. BMC
Bioinformatics 2006, 7(Suppl 1):S7.

20. Zou M, Conzen SD: A new dynamic Bayesian network (DBN) approach
for identifying gene regulatory networks from time course microarray
data. Bioinformatics 2005, 21(1):71-79.

21. Kurgan LA, Cios KJ: CAIM Discretization Algorithm. IEEE Trans on Knowl
and Data Eng 2004, 16(2):145-153.

22. Xu R, Wunsch Ii D, Frank R: Inference of genetic regulatory networks with
recurrent neural network models using particle swarm optimization.
IEEE/ACM Trans Comput Biol Bioinform 2007, 4(4):681-692.

doi:10.1186/1471-2105-11-520
Cite this article as: Li et al.: Comparative study of discretization
methods of microarray data for inferring transcriptional regulatory
networks. BMC Bioinformatics 2010 11:520.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Li et al. BMC Bioinformatics 2010, 11:520
http://www.biomedcentral.com/1471-2105/11/520

Page 6 of 6

http://www.ncbi.nlm.nih.gov/pubmed/15246788?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15246788?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10380182?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10380182?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10380182?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15535868?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15535868?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11108481?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11108481?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11928497?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11928497?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11928497?dopt=Abstract
http://www.cs.ubc.ca/~murphyk/Papers/ismb99.pdf
http://www.cs.ubc.ca/~murphyk/Papers/ismb99.pdf
http://www.ncbi.nlm.nih.gov/pubmed/19712740?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19712740?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19712740?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16912276?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16912276?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16912276?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18032429?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18032429?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18032429?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381908?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381908?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381908?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16723010?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16723010?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15308537?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15308537?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15308537?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17975278?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17975278?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Discretization methods
	(1) Equal Width Discretization (EWD)
	(2) Equal Frequency Discretization (EFD)
	(3) Kmeans Discretization
	(4) Column Kmeans Discretization (Cokmeans)
	(5) Bidirectional Kmeans Discretization (Bikmeans)

	Microarray data and regulatory networks
	Evaluation of inferred regulatory network

	Results
	Discussion
	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	References

