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Abstract

Background: The Gene Ontology project supports categorization of gene products according to their location of
action, the molecular functions that they carry out, and the processes that they are involved in. Although the
ontologies are intentionally developed to be taxon neutral, and to cover all species, there are inherent taxon
specificities in some branches. For example, the process ‘lactation’ is specific to mammals and the location
‘mitochondrion’ is specific to eukaryotes. The lack of an explicit formalization of these constraints can lead to errors
and inconsistencies in automated and manual annotation.

Results: We have formalized the taxonomic constraints implicit in some GO classes, and specified these at various
levels in the ontology. We have also developed an inference system that can be used to check for violations of
these constraints in annotations. Using the constraints in conjunction with the inference system, we have detected
and removed errors in annotations and improved the structure of the ontology.

Conclusions: Detection of inconsistencies in taxon-specificity enables gradual improvement of the ontologies, the
annotations, and the formalized constraints. This is progressively improving the quality of our data. The full system

is available for download, and new constraints or proposed changes to constraints can be submitted online at
https://sourceforge.net/tracker/?atid=605890&group_id=36855.

Background

The Gene Ontology (GO) Project [1,2] provides ontolo-
gies for the categorization of gene products according to
their locations of action, the molecular functions that
they carry out, and the processes that they are normally
involved in. These categorizations propagate up the
ontology graph structure, from specific classes to more
general classes. This is known as the “true path rule”,
and great care is taken in ontology development to
ensure that the true path rule holds, and detection of
errors is a high priority. Over 56 million GO annota-
tions are currently available from the GO Consortium,
supplying functional information for almost 220,000 dif-
ferent taxonomic groups (January 2010). Many of these

* Correspondence: jdeegan@ebi.ac.uk; cjm@berkeleybop.org
'European Bioinformatics Institute, Wellcome Trust Genome Campus,
Hinxton, Cambridge, CB10 1SD, UK

2240C Building 64, Lawrence Berkeley National Lab, 1 Cyclotron Road,
Berkeley CA 94720

Full list of author information is available at the end of the article

( BioMVed Central

GO annotations have been generated through manual
curation, in which a curator extracts data from pub-
lished literature. Others have been generated by
reviewed computational predictions. A large number are
also produced by minimally supervised automatic
prediction pipelines. A number of different automated
prediction methods are applied by members of the GO
Consortium. These methods include transfer of
manual GO annotations to closely related orthologs
(Ensembl [3], GO reference genome project [4]), use of
protein signatures to predict functionally-similar pro-
teins (InterPro [5]), and mapping of external functional
concepts to equivalent GO classes (UniProtKB [6]). The
number and type of GO annotations available for a set
of gene products relies heavily on the amount of funded
curation work and the experimental literature available.
Therefore, although many model organisms have a large
amount of manual GO annotation, automated GO
annotation is the principal source of functional data for
many other organisms. Each GO annotation records the
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type of evidence associating a gene product with a parti-
cular GO class using an evidence code. Sixteen evidence
codes are used to describe manual GO annotation
efforts, and one code, ‘IEA’ (Inferred from Electronic
Annotation), describes all automatically-predicted GO
annotations http://www.geneontology.org/GO.evidence.
shtml. There are many different methods of automati-
cally predicting GO annotations, and one of the most
popular is the InterPro2GO method [7], which uses a
mapping file between protein domains and GO classes
to predict annotations on the basis of domain
predictions.

GO contains in excess of 28,000 classes, and the GO
as a whole is intended to cover the full range of species.
GO classes are defined to be taxon neutral, avoiding
reliance on taxon information for full definition of the
given process, function, or component. As an example
of this, the class ‘lactation’; GO:0007595 is defined as
‘The secretion of milk by the mammary gland.” rather
than ‘The secretion of milk by the mammary gland in
mammals.’. In classes such as this, however, there is
obvious implicit taxon specificity, such that this class
should only be used to categorize gene products from
mammalian species. It is possible to automatically detect
errors in the ontologies by looking for inconsistencies
between the taxonomic origin of the annotated gene
products, and the implicit taxon specificity of the GO
classes. For example, either direct or indirect automated
annotation of a bacterial gene product to the class ‘lac-
tation” would give a clear indication that either the
ontology or the annotation set required some improve-
ment. Although it may seem trivially obvious to a
human curator that a bacterial gene product could not
be involved in lactation, this connection is not apparent
to an automated annotation system. Inclusion of auto-
mated checking is essential for detection and correction
of flaws in such a system.

Quality control is of critical importance in both the
ontology structure and the annotations. To improve
both datasets we have developed a system to automati-
cally find inconsistencies between the implicit taxon
specificity of GO classes and the species of origin of the
annotated gene products. Using this system, inconsisten-
cies are automatically detected and passed on to cura-
tors for correction. This work builds upon the prior
publication of three logically defined relations (validity,
specificity, and relevance) used to link classes in the
Gene Ontology with taxonomic classes [8].

Results

Specification of taxonomic constraints

The mainstay of this inconsistency detection system is
the capture of taxon specificity of GO classes using two
new relationships. Where a GO class should only be
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used for annotation of gene products from a given taxo-
nomic grouping, the relationship used is only_in_taxon.
Conversely, where a gene product should never be used
for annotation of gene products from a given taxonomic
grouping, the relationship is never_in_taxon. The syntax
in which this information is recorded, and that of the
other associated files, can be viewed at the locations
noted in the methods section.

Where a GO class X has the only_in_taxon relation-
ship to a taxonomic group Y, this indicates that that
GO class and its sub-types and parts should only be
used for annotation of gene products from organisms of
that taxonomic group and its sub-types. There may be
some sub-types of the taxonomic group that do not
carry out the process, but there will certainly be no
examples of the process outside of the named taxo-
nomic group. To give an example, if the class ‘lactation’
is restricted to use with Mammalia (lactation only_in_-
taxon Mammalia - Figure 1), then this class may only be
used for annotation of Mammalian gene products. As
the relationship is inherited by all Mammalian sub-
types, the class can be used for annotation of gene pro-
ducts from species such as Ornithorhynchus anatinus
(platypus) and Desmalopex leucopterus (white-winged
flying fox), but not for species outside of Mammalia
such as Arabidopsis thaliana (thale cress) and Gallus
gallus (chicken). The constraint is inherited by sub-
types and parts of the GO class, and it can be seen in
Figure 1 that ‘lactation’” inherits this constraint from the
GO class ‘mammary gland development’. The
only_in_taxon relationship corresponds to the previously
published specificity relationship [8]. The checking sys-
tem currently contains 443 only_in_taxon constraints
(January 2010). We anticipate that there will be scope
for a great expansion in the number of constraints,
however these are added as the terms are spotted by
curators, so the number will continue to build up gradu-
ally for some time.

Where a GO class X has the never_in_taxon relation-
ship to a given taxonomic group, this indicates that that
GO class and its sub-types and parts should never be
used for annotation of gene products from organisms of
that taxonomic group or its sub-types. It also indicates
that there is no restriction on using the GO class for
annotation of gene products from any taxonomic group
outside of the one mentioned. To give an example, if
the cellular component class ‘secretory granule’ has the
relationship never_in_taxon to the taxonomic group
Ascomycota, then that means that the class cannot be
used for annotation of gene products from any of the
Ascomycota, including Schizosaccharomyces pombe (fis-
sion yeast) and Saccharomyces cerevisiae (baker’s yeast).
This relationship does not place any restriction on using
the class outside of this taxonomic grouping.
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Figure 1 Lactation. The GO class ‘lactation” is restricted for use with gene products from species of the taxonomic grouping Mammalia. The
class inherits this restriction from the superclass ‘mammary gland development'. In this figure, the GO classes are shown in blue, and the
taxonomic classes are shown in yellow. The relationship types are labeled in the diagram.

The never_in_taxon relationship is particularly useful in  to use the more comprehensive only_in_taxon relation-

cases where gene products of some taxa are known to  ship where possible.

be inappropriate for annotation to a given GO class, but Taxon classes are drawn from the NCBI taxonomy
where we do not yet have enough information to make hierarchy and supplemented with union classes created
an only_in_taxon grouping, or in situations where it for use in-house. For example, to capture the set of
would be inappropriate to make an only_in_taxon rela-  organisms carrying out photosynthesis in any form we
tionship because the class is widely applicable, having  have created the union class ‘Bacteria or Archaea or Vir-
just a few exceptions. The checking system currently idiplantae or Euglenozoa’ (Figure 2). This is necessary
contains only two never_in_taxon constraints, as we try  because sub-types of all of these classes carry out
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photosynthesis, but in the NCBI taxonomy hierarchy
there is no common super-class that includes all of
these groups. Where sub-types of a taxon-restricted GO
class have narrower implicit taxon specificity than the
ancestor class, this is asserted by applying a stricter rela-
tionship. For example, photosynthesis is restricted for
use with gene products of the group that is the union of
‘Bacteria or Archaea or Viridiplantae or Euglenozoa’.
However, the sub-type of photosynthesis known in GO
as ‘PEP carboxykinase C4 photosynthesis’ is restricted
for use to the smaller Viridiplantae group (Figure 2).
This narrower taxonomic group further constrains the
applicability of the class relative to the ancestor GO
class.

Consistency checking using taxon constraints

The main utility of this set of formalized constraints is
in checking for inconsistencies between the annotations
and the ontologies. A script is run once a week to check
for annotations that contravene the constraints (see
methods). For example, one of the checks is to see if
any gene products from species outside of the taxon
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Mammalia has been annotated to the GO class ‘lacta-
tion’ or to any of its sub-types. Discovery of an annota-
tion contravening such a constraint would give a clear
indication that work was required to improve either the
ontology or the annotation. All annotations in the GO
central repository are checked with each of the con-
straints, and a set of the inconsistencies flagged is made
available to the groups that produced the annotations.
There are several beneficial outcomes of this regular
checking. Problems in the ontology structure or annota-
tion set are quickly spotted and corrected. A common
type of error is an inaccuracy in the inheritance path
down the long series of relationships in the ontology.
Though these are hard to spot by eye, they are easy to
automatically detect with this new checking system.
Another frequently occurring problem is an ambiguity
in a GO class definition that may have led annotators to
interpret and use classes in a very different way from
that intended by the editors. Prompt detection and
reporting of such problems greatly enhances the accu-
racy of the ontology and the speed of correction. One of
the most common errors that we have found with the

n

S~ |
u S~ I
~ ™ !
S b -
un  TTe—- =
Yiridiplantae or Bacteria
or Euglenozoa or Archaea
S~

S
only_in_taxon ">~ _

C4 photosynihesis

Figure 2 C4 photosynthesis. The GO class ‘C4 photosynthesis' is restricted for use with gene products from species of the taxonomic grouping
Viridiplantae. This is a narrower taxonomic group than that to which the GO superclass ‘photosynthesis’ is restricted. The GO class
‘photosynthesis’ is restricted for use with gene products from any sub-type of the Viridiplantae, Euglenozoa, Archaea or Bacteria. The relationship
between ‘photosynthesis’ and these four taxonomic groups is shown by the relationship only_in_taxon from ‘photosynthesis’ to the union term
Viridiplantae or Euglenozoa or Archaea or Bacteria’, and by the relationships between this union term and the four individual taxonomic groups.
These latter relationships are shown as union_of relationships (marked ‘un’). In this figure, the GO classes are shown in blue, and the taxonomic
classes are shown in yellow. The relationship types are labeled in the diagram.
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checks is the annotation of a viral gene product to a cel-
lular component term rather than the equivalent ‘host’
cellular component term. This can particularly be seen
with the EXP and TAS annotations (Table 1). In these
cases many viral gene products were annotated to terms
such as ‘endosome lumen’ instead of ‘host endosome
lumen’. As this appears to be a significant issue, we are
reviewing our policies on the annotation of viral gene
products to these terms. On closer examination we dis-
covered that the majority of these EXP and TAS viral
annotations are sourced from Reactome [9] (in fact the
only annotations to use the generic EXP code are those
sourced from Reactome). We are exploring the possibi-
lity of automatically fixing these annotations to use the
“host” term.

The following section shows further specific examples
of improvements that have been made to the annotation
sets. A summary of the numbers of annotation inconsis-
tencies being flagged by a selection of the constraints is
shown in Table 2. It is important to note that inconsis-
tencies may reflect problems in either the annotations
or ontologies, even though they are flagged as inconsis-
tent annotations. We have been able to make extensive
improvements to both datasets as a result of these
checks. A summary of the number of annotation incon-
sistencies that have been found and fixed is shown in
Table 1 sorted by evidence code, and in Table 3 sorted
by ontology. These tables do not include annotations
from the GOA UniProtKB electronic annotation dataset,
as we have not yet been able to fully check this very
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large dataset. We would like to stress that only a very
tiny minority of annotations and GO classes are proble-
matic, reflecting the diligence of GO annotators and
ontology developers, and the quality of our electronic
annotation methods. This is indicated by the very low
percentage error rate shown in the last column of each
table. However, even a small number of errors can
cause problems for our users, and so we consider this
checking system to be a valuable contribution to quality
control in the GO dataset.

Inconsistencies found and fixed - Electronic annotations
Automated pipelines can quickly produce large volumes
of annotation for a diverse set of species. In situations
where there is no funded manual annotation program
such methods are extremely valuable, but generation
methods must be strictly controlled to reduce produc-
tion of incorrect annotations. A large proportion of the
queries returned by this checking system were triggered
by automatically generated annotation, and so we con-
clude that implementation of the system is a valuable
contribution to quality control in this area.

As examples of this, Drosophila two IEA annotations
to GO:0019684 ‘photosynthesis, light reaction” and eight
annotations to GO:0009288 ‘bacterial-type flagellum’
have been caught and removed, prompting a review of
the FlyBase automatic annotation pipeline. These spur-
ious annotations arose because of low probability
matches between Drosophila proteins and short InterPro
domains. The automated Interpro2GO pipeline mapped

Table 1 Numbers of annotation inconsistencies found, classified by evidence code

Evidence code type Evidence code

Annotation errors

Total annotations Percentage error rate

Experimental (manually assigned) EXP 977 5360 18.23
IDA 12 105764 0.01
IMP 84 88283 0.10
IEP 10129 0.00
IPI 29877 0.00
IGI 12914 0.00
Computational Analysis (manually assigned) ISS 85 228605 0.04
1SO 1 2975 0.03
ISA 0 5921 0.00
ISM 0 143 0.00
IGC 0 483 0.00
RCA 3 75175 0.00
Author statement (manually assigned) TAS 4070 46888 8.68
NAS 3 23578 0.01
Curator statement (manually assigned) IC 0 5682 0.00
ND 0 171817 0.00
Automatically Assigned [EA 639 844441 0.08

A large number of inconsistencies have been found, and the problems corrected. The number of inconsistencies in each evidence code group are shown here,
both as an absolute number, and as a percentage of the total annotations with that code. Note that the high rate of EXP annotation flags are due to Reactome
virus annotations (when this is corrected for, the EXP error rate drops to nearly zero). For interpretation of evidence codes see http://www.geneontology.org/GO.

evidence.shtml.
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Table 2 Numbers of annotation inconsistencies found by  these false positive domain hits to GO classes. By

certain rules increasing the stringency for InterPro domain to protein
Constraint Errors Evidence class mapping, these taxon errors have been eliminated and
detected the confidence level of all IEA-based GO assignments
GO:0030879 19 IEA has improved in FlyBase.
‘mammary gland development’ Similarly, automatic transfers of annotations to ortho-
only_in_taxon logs needed to be further restricted when the class
NCBITaxon:40674 GO:0001701 ‘in utero embryonic development’ was
‘Mammalia’ found to have been transferred from a mammalian gene
GO:0012511 21 IEA product to an avian gene product by Ensembl Compara
‘monolayer-surrounded lipid [3] for 144 annotations.
storage body’
only_in_taxon Inconsistencies found and fixed - Manual annotation or
NCBITaxon:33090 ontology development
Viridiplantae’ Excluding the viral EXP annotations, the majority (77%)
GO:0001701 51 IEA of remaining inconsistencies found were derived from
'in utero embryonic development’ unvetted automated prediction programs, but errors
only_in_taxon were also found in experimentally derived and manually
NCBITaxon:32525 checked annotations. Some problems in manual annota-
Theria’ tions were found to have resulted from misunderstand-
GO:0001541 10 IEA ings of the meanings of GO classes between the ontology
‘ovarian follicle development’ editors who wrote the class definitions and the annota-
only_in_taxon tors who were using them. For example, the class ‘sen-
NCBITaxon:40674 sory perception’ was originally defined as ‘The series of
‘Mammalia’ events required for an organism to receive a sensory sti-
GO:0051300 13 Mixture of 1SO, ISS, mulus, convert it to a molecular signal, and recognize
IEA and IMP. and characterize the signal.”. To an annotator reading the
‘spindle pole body organization’ class name and definition it would seem that this class
only_in_taxon could be used for annotation of bacterial gene products
NCBITaxon:4751 ‘Fungi’ that enable the bacterium to sense and recognize outside
G0:0015979 9 IEA influences. However, the GO class has in its ancestry the
‘photosynthesis’ class ‘cognition’, indicating that this is a neurological pro-
only_in_taxon cess and therefore not suitable for annotation of bacterial
NCBITaxon_Union:0000021 gene products. To avoid future annotation errors, the
Viridiplantae or Bacteria or definition was clarified by the addition of the sentence:
Euglenozoa or Archaea ‘This is a neurological process.’. The incorrect bacterial
GO0015995 9 IEA annotations were removed from the source database.
‘chlorophyll biosynthetic process' In some cases the class names and definitions can be
only_in_taxon quite subtle and gene products can accidentally be
NCBITaxon_Union:0000007 annotated to classes that are almost, but not quite cor-
Viridiplantae or Bacteria or rect. For example the fungal microtubule organizing

Euglenozoa’

center is called the ‘spindle pole body’, whilst in mam-
A I.arge number of inconsistencies have been found an.d various repairs made. mals the microtubule organizing center is called the
This table gives a summary of the numbers of annotation errors found using ) , .
a selection of the rules that we have implemented. For interpretation of centrosome’. In GO we have classes for ‘centrosome
evidence codes see http://www.geneontology.org/GO.evidence.shtml Organization’ and for ‘spindle pole bOdy Organization”

Table 3 Numbers of annotation inconsistencies found, classified by ontology

Ontology Annotation errors Total number of annotations Percentage errors
Biological process 237 568306 0.04
Molecular function 35 627858 0.01
Cellular component 5602 461910 1.12

A large number of inconsistencies have been found, and the problems corrected. The number of inconsistencies in each ontology are shown here, both as an
absolute number, and as a percentage of the total annotations to that ontology.
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and only fungal gene products should be annotated to
the ‘spindle pole body organization’ class.

Application of a taxon constraint has enabled annota-
tions applied to this class in error to be caught and cor-
rected. Having caught this kind of error once, the
ontology developers can improve the definition so that
in future the meaning will be more apparent to annota-
tors. This kind of check is particularly useful where a
constraint has been applied to a fairly high-level class,
showing up ambiguity and consequent errors in the use
of the sub-types of the class. The advantage here is that
all the sub-types do not need to be individually consid-
ered for application of constraints, but that they can be
caught using a single high-level constraint.

A small number of other inconsistencies were found
to have been brought about by typing errors in acces-
sion numbers, and these have been fixed.

Novel electronic annotations

In addition to preventing errors, the new system enables
us to produce a large volume of new electronic annota-
tions. In previous years many mappings have been
omitted from the InterPro2GO mapping files, because
they would not be applicable to all species. However,
now such mappings can be used in conjunction with the
taxon constraints to ensure that annotations are only
transferred to gene products from appropriate species.
The new combined system will enable generation of a
very large body of novel electronic annotation.

Discussion

In creating this system we have examined the previously
published relationship options [8] and adapted them to
provide a simple, useful checking system. This has
brought about improvement to both the annotation set
and the ontologies.

In developing the taxon constraints there is always the
concern of over- or under-constraint. If the constraints
are too tight then we risk flagging correct annotations,
whilst if the constraints are too loose, we risk failing to
detect problems in the annotations or ontologies. The
system has been designed to work hand-in-glove with
the manual annotation and ontology development pro-
cesses, so that there is a virtuous circle of error detec-
tion and correction. To best integrate the system into
our existing processes, we have chosen to start with
excessively tight constraints, and then immediately cor-
rect any errors in the constraints that are shown up by
the annotation set. As we have a very large and diverse
annotation set available, errors in the constraints can be
quickly detected and removed.

Currently we have not integrated the taxonomic con-
straints directly into automated function prediction
tools, instead opting to use the constraints to vet the
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resulting annotations, to minimize false positives during
error detection. We are currently integrating the con-
straints into our Phylogenetic Annotation INference
Tool (PAINT) [10], which allows a curator to rapidly
propagate experimental annotations across species using
common descent in a semi-automated fashion. The
curator is notified if an attempt to propagate an annota-
tion violates a constraint.

In addition to the core utility of annotation and ontology
checking, the development of this system brought about a
few other interesting avenues for exploration. The most
notable surprise to us was the frequency with which we
found annotations indicating horizontal gene transfer
between viral and host genomes. For example, one check
flagged a viral gene product that encodes a component of
the photosynthetic machinery [11]. Another set of checks
highlighted functional gene products encoded by an endo-
genous retrovirus in the mouse that can produce mature
envelope proteins [12]. Clearly this information was
already in the scientific literature for individual gene pro-
ducts, however our system has fortuitously shown us a
way to automatically mine such cases. This situation pre-
sents a slight difficulty for the checking system, as viral
gene products are being found in many processes that
would be expected to be carried out only by the host. To
accommodate this we are keeping the checks that flag
these cases, but then the database groups are ignoring the
flagged gene products in the violations file. We may inves-
tigate more satisfactory approaches in the future - for
example, indicating genes that arose through horizontal
transfer in the annotations.

Creation of the union classes also gave us an opportu-
nity to reflect on the diversity of taxonomic groups that
carry out very similar processes. Initially we created a
union class ‘Viridiplantae or Bacteria’ as a constraint for
the high level class ‘photosynthesis’. Annotation check-
ing showed us that we needed to expand this to ‘Bac-
teria or Archaea or Viridiplantae or Euglenozoa’. This
demonstrated to us an interesting automated method
for detection of diverse taxonomic groups that carry out
very similar processes. It should be noted that the union
classes do not give any indication of the relatedness of
taxonomic groups, or of either convergent or divergent
evolution in the past. They simply give an indication of
which diverse groups of organisms might be investigated
for either phenomenon.

Conclusions

The GO Consortium provides a highly developed ontol-
ogy structure associated with a large volume of annota-
tions. It is essential that a range of automatic checks are
carried out on these resources to ensure provision of a
maximally correct dataset. The feedback generated from
the described taxon checking system has benefited both
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ontology development and annotation in the GO Con-
sortium. It is intended that the simple format of these
taxon sanity checks will allow GO annotation providers
and external GO annotation prediction tools to directly
integrate the checks into their tools, so that annotations
can, in future, be checked pre-release. Such efforts are
already being undertaken by the UniProtKB-GOA and
InterPro groups at the EBL

Methods

Generation of taxon-slim

We converted the NCBI taxonomy from a tab delimited
format to an ontology in OBO format using a custom
translation that preserves information such as synonyms
and taxonomic rank. The basic relation used is isA. The
file is available from the OBO registry [13].

The full taxonomy contains 357849 classes (February
2010) and is difficult to browse due to the depth at
which species taxa reside. In practice we only need a
subset for the human-guided selection of constraints.
We used a custom implementation of the MIREOT
method [14], taking all leaf nodes (species) with human
curation in the GO, and generating a slim version of the
taxonomy. The slim includes only those taxa that are
annotated species nodes, or the least-common-ancestor
of any two species nodes.

Although the taxon constraints are created using an
NCBI slim, the checks use the entire NCBI taxonomy
hierarchy, ensuring that any new species added to an
annotation set will be checked. The NCBI taxonomy
slim is useful for editing, and can just be periodically
updated. However, it is important to carry out the
inconsistency checks using the entire NCBI taxonomy,
as the UniProt set of annotations expands to cover
around 4,500 new species with every data release. New
species could easily fail to inherit constraints if only the
slim was used. For example, in the case of the class lac-
tation, in any given month, annotations may be made
with gene products from a type of mammal species like
Lasiurus seminolus (the Seminole bat) that was pre-
viously not included in the in-house NCBI slim. When
this occurs, use of the full NCBI taxonomy for checking
ensures that that species will still correctly inherit any
taxon constraints, and that it will be correctly checked
by the script.

Automated support for generation and selection of
constraints

Generation of the GO taxon constraints was primarily a
manual process, using biological knowledge. We also
seeded the constraint checks by querying the GO data-
base using the AmiGO GOOSE interface [15] for classes
that lacked annotations within a given taxon, but that
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had annotations in sister taxa. This method is not fully
reliable due to under-annotation. For example, there may
be no annotations from species other than Arabidopsis
thaliana to the class ‘stipule development’, but this
merely reflects a lack of experimental evidence, or a lack
of annotation. It does not indicate that stipule develop-
ment is absent from all other species. We manually
vetted all the constraints that were seeded in this way.

We also used the deprecated ‘sensu’ designators in
GO to seed some of the taxon constraints. This resulted
in an over-constrained set, so the set was manually
vetted [2]. The sensu designations previously captured a
form of taxonomic information, but were commonly
misunderstood by users, and therefore have recently
been removed and replaced by more comprehensive
class definitions and clearer class names. For example,
there was previously a class called ‘eye development
(sensu Insecta)’, where the sensu designation indicated
‘eye development as found in the taxonomic group
Insecta’. This class is now called ‘compound eye devel-
opment’, and it has a comprehensive definition that
does not require taxonomic context for clarity. Although
the sensu designations have now been removed, the his-
torical use of a sensu designation gives a valuable clue
to where implicit taxon specificity might be found.

Detection of constraint violations
The constraint system is implemented using the GOBO
perl toolkit [16]. GOBO includes a backward-chaining
inference engine, which is used to calculate the link
between any given class in the GO and a taxonomic
group. In addition, there is a reference implementation
written in SWI-Prolog [17] that uses the biological logic
programming toolkit [18].

Relation composition rules were derived from the for-
mal definitions provided in the OBO Relations Ontology
[19]. These are:

is_a(AB), is_a

( —is_a(AC)
is_a( A, B), part_of (

(

(

B,C)
B,C)— part _of (A,C)
part _of (A,B), is_a(B,C)— part _of (A,C)

is_a(A,B), occurs _in(B,C)— occurs _in(A,C)

occurs_in(A,B), is_a(B,C)— occurs__in(A,C)

is_a(AB),U=BvC—is_a(AU)
annotated (G,A), (is_a(A,B)v part _of (A,B)voccurs__in(A,B)) — annotated (G,B)
in_taxon(G,T), is_a(T,T ) — in _taxon(G, T )
never _in _taxon(A,T), in_taxon(G,T ) — —annotated (G, A)

only _in_taxon(A,T), —in_taxon(G,T ) — —annotated (G, A )

Note that the regulates relations are not used here.
This is because it is possible to regulate processes in
other species. The additional occurs_in relation is speci-
fied in an experimental extension of the Gene Ontology
[20]. For example, constraints for the class nucleus are
inherited by the class nuclear translation, because this
process occurs in the nucleus.
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File availability
All files in this system are publicly available from GO
cvs at: go/quality_control/annotation checks/taxon_ch-
ecks/ and in the online GO cvs browser at: http://www.
geneontology.org/quality_control/annotation_checks/
taxon_checks/

The files are named as follows:

« ncbi_taxon_slim.obo - The NCBI taxonomy slim
that we use in-house for editing purposes.

« taxon_go_triggers.obo - The list of GO classes and
taxonomic groupings, with the relationships between
them shown as only_in_taxon and never_in_taxon.

« taxon_violations.txt - The file listing annotations
that show inconsistencies.

» taxon_union_terms.obo - The le of in-house taxo-
nomic groupings that are unions of two or more
NCBI taxonomy groupings.

« taxon_union_materialized_terms.obo - As the pre-
vious le, but with the is_alinks materialized from the
union definitions, as define above.

« taxon_go_imports.obo - The file that can be called
by the ontology editor tool OBO-Edit [21] to auto-
matically load all of the other files for editing or
browsing.

Numbers of inconsistencies found

Several tables are provided to give in an indication of
the numbers of inconsistencies found with our initial set
of constraints. Table 2 was made using annotation and
constraint files from February 2010. The figures in
Table 1, and Table 3 were generated using the inconsis-
tency file of 23rd March 2010 with the annotation files
from 1st January 2010. The older annotation set was
used with the newer constraint file as we had spent time
in between correcting the annotation set and the taxo-
nomic constraints file. To give a clear idea of the effi-
cacy of the checking system it made sense to gather
data using the older uncorrected annotation files with
the newer corrected inconsistency checking file (from
which overly strict constraints had been removed). The
GOA UniProtKB IEA dataset is not included in these
tables, as the dataset is so large that we have not yet
been able to process it.

Acknowledgements

All members of the GO Consortium contributed to the development of this
system through lively and helpful analytical discussion in the development
phase. Many also contributed invaluable information regarding taxon
specificity of GO classes and in this regard we would particularly like to
thank Jane Lomax, David Hill, Tanya Berardini, Doug Howe, Ranjana Kishore,
Kimberly van Auken, Midori Harris, Susan Tweedie, Becky Foulger, Simon
Twiggger, Fiona McCarthy, Jim Hu, Donghui Li, Rama Balakrishnan, Julie Park,
Stan Lauderkindand, Michelle Gwinn-Giglio, Alex Diehl and Valerie Wood.

Page 9 of 10

Waclaw Kuénierczyk provided useful discussion at the inception of the
project, following on from his publication of relationships to link GO classes
to taxonomic groups. David Hill provided valuable thoughts on the
implications of the system for electronic annotation pipelines. We would like
to thank Emily Dimmer and the GOA group for carrying the work forward
after this implementation phase, in conjunction with the GO Editorial Office.
Funding for our work was provided by NIH NHGRI grant HG002273 to the
GO Principle Investigators Michael Ashburner, Judith Blake, Mike Cherry and
Suzanna Lewis. This work was supported by the Director, Office of Science,
Office of Basic Energy Sciences, of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231.

Author details

1European Bioinformatics Institute, Wellcome Trust Genome Campus,
Hinxton, Cambridge, CB10 15D, UK. 2240C Building 64, Lawrence Berkeley
National Lab, 1 Cyclotron Road, Berkeley CA 94720.

Authors’ contributions

JID and CJM jointly designed the system, developing new relationship types
appropriate for capture of this taxon specificity information. JID
implemented the system, collecting taxon constraints and devising taxon
union classes. She did this under the supervision of CJM, who developed
the computational aspects of the implementation. ECD extensively vetted
the output of the inconsistency checks and spotted interesting trends. She
also fed back valuable information on how the system could be improved.
All authors read and approved the final manuscript.

Received: 22 April 2010 Accepted: 25 October 2010
Published: 25 October 2010

References

1. The Gene Ontology Consortium: Gene ontology: tool for the unification
of biology. Nat Genet 2000, 25:25-9.

2. Clark JI, Brooksbank C, Lomax J: It's all GO for plant scientists. Plant Physiol
2005, 138(3):1268-79.

3. Hubbard TJP, Aken BL, Beal K, Ballester B, Caccamo M, Chen Y, Clarke L,
Coates G, Cunningham F, Cutts T, Down T, Dyer SC, Fitzgerald S,
Fernandez-Banet J, Graf S, Haider S, Hammond M, Herrero J, Holland R,
Howe K, Howe K, Johnson N, Kahari A, Keefe D, Kokocinski F, Kulesha E,
Lawson D, Longden |, Melsopp C, Megy K, Meidl P, Overduin B, Parker A,
Prlic A, Rice S, Rios D, Schuster M, Sealy |, Severin J, Slater G, Smedley D,
Spudich G, Trevanion S, Vilella A, Vogel J, White S, Wood M, Cox T,
Curwen V, Durbin R, Fernandez-Suarez XM, Flicek P, Kasprzyk A, Proctor G,
Searle S, Smith J, Ureta-Vidal A, Birney E: Ensembl. Nucleic Acids Res 2007,
35:0610-D617.

4. Reference Genome Group of the Gene Ontology Consortium: The Gene
Ontology’s Reference Genome Project: a unified framework for
functional annotation across species. PLoS Comput Biol 2009, 5(7):
e1000431.

5. Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P,
Das U, Daugherty L, Duguenne L, Finn RD, Gough J, Haft D, Hulo N,

Kahn D, Kelly E, Laugraud A, Letunic |, Lonsdale D, Lopez R, Madera M,
Maslen J, McAnulla C, McDowall J, Mistry J, Mitchell A, Mulder N, Natale D,
Orengo C, Quinn AF, Selengut JD, Sigrist CJA, Thimma M, Thomas PD,
Valentin F, Wilson D, Wu CH, Yeats C: InterPro. Bioinformatics 2009, 37:
D211-D215.

6. The UniProt Consortium: The Universal Protein Resource (UniProt) in
2010. Nucleic Acids Res 2010, 23:D142-D148.

7. Camon E, Barrell D, Brooksbank C, Magrane M, Apweiler R: The Gene
ontology Annotation (GOA) project-application of GO in SWISS-PROT,
TrEMBL and InterPro. Comparative and Functional Genomics 2003, 4:71-74.

8. Kusdnierczyk W: Taxonomy-based partitioning of the Gene Ontology. J
Biomed Inform 2008, 41(2):282-92.

9. Vastrik |, D'Eustachio P, Schmidt E, Joshi-Tope G, Gopinath G, Croft D, de
Bono B, Gillespie M, Jassal B, Lewis S, et al: Reactome: a knowledge base
of biologic pathways and processes. Genome biology 2007, 8(3):R39.

10.  Mi H, Dong Q, Muruganujan A, Gaudet P, Lewis S, Thomas P: PANTHER
version 7: improved phylogenetic trees, orthologs and collaboration
with the Gene Ontology Consortium. Nucleic Acids Research 2009.


http://www.geneontology.org/quality_control/annotation_checks/taxon_checks/ 
http://www.geneontology.org/quality_control/annotation_checks/taxon_checks/ 
http://www.geneontology.org/quality_control/annotation_checks/taxon_checks/ 
http://www.ncbi.nlm.nih.gov/pubmed/10802651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10802651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16010001?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17148474?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19578431?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19578431?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19578431?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18629103?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18629103?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18629103?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17921072?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17367534?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17367534?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20015972?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20015972?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20015972?dopt=Abstract

Deegan (née Clark) et al. BMC Bioinformatics 2010, 11:530 Page 10 of 10
http://www.biomedcentral.com/1471-2105/11/530

11. Millard A, Clokie MR, Shub DA, Mann NH: Genetic organization of the
psbAD region in phages infecting marine Synechococcus strains. Proc
Natl Acad Sci USA 2004, 27(101):11007-12.

12. Evans L, Lavignon M, Taylor M, Alamgir A: Antigenic subclasses of
polytropic murine leukemia virus (MLV) isolates reflect three distinct
groups of endogenous polytropic MLV-related sequences in NFS/N mice.
J Virol 2003, 77(19):10327-38.

13. OBO Conversion of NCBI Taxonomy. [http://www.obofoundry.org/cgi-bin/
detail.cgi?id=ncbi_taxonomy].

14.  Courtot M, Gibson F, Lister A, Malone J, Schober D, Brinkman R,

Ruttenberg A: MIREOT: the Minimum Information to Reference an
External Ontology Term. /CBO 2009 [http://precedings.nature.com/
documents/3574/version/1/files/npre20093574-1.pdf].

15. Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S, the AmiGO Hub,
the Web Presence Working Group: AmiGO: online access to ontology and
annotation data. Bioinformatics 2008 [http://bioinformatics.oxfordjournals.
org/cgi/content/abstract/25/2/288].

16. GOBO Perl Toolkit. [http://search.cpan.org/dist/GOBO/].

17.  Wielemaker J: An overview of the SWI-Prolog Programming Environment.
In Proceedings of the 13th International Workshop on Logic Programming
Environments. Edited by: Mesnard F, Serebenik A. Heverlee, Belgium:
Katholieke Universiteit Leuven; 2003:1-16, [CW 371].

18. Mungall C: Experiences Using Logic Programming in Bioinformatics. In
Proceedings of the 13th International Workshop on Logic Programming
Environments. Volume 5649. Springer; 2009:1-21[http://www.blipkit.org/blip-
iclp09.pdf].

19. Smith B, Ceusters W, Kohler J, Kumar A, Lomax J, Mungall C, Neuhaus F,
Rector A, Rosse C: Relations in Biomedical Ontologies. Genome Biology
2005, 6(5)[http://genomebiology.com/2005/6/5/R46).

20. Mungall CJ, Bada M, Berardini TZ, Deegan J, Ireland A, Harris MA, Hill DP,
Lomax J: Cross-Product Extensions of the Gene Ontology. Journal of
Biomedical Informatics 2010 [http://dx.doi.org/10.1016/},jbi.2010.02.002],
(accepted).

21.  Day-Richter J, Harris MA, Haendel M, Lewis S: OBO-Edit - An ontology
editor for biologists. Bioinformatics 2007, 23:2198-2200.

doi:10.1186/1471-2105-11-530

Cite this article as: Deegan (née Clark) et al. Formalization of taxon-
based constraints to detect inconsistencies in annotation and ontology
development. BMC Bioinformatics 2010 11:530.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at ( -
www.biomedcentral.com/submit BioMed Central



http://www.ncbi.nlm.nih.gov/pubmed/12970417?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12970417?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12970417?dopt=Abstract
http://www.obofoundry.org/cgi-bin/detail.cgi?id=ncbi_taxonomy
http://www.obofoundry.org/cgi-bin/detail.cgi?id=ncbi_taxonomy
http://precedings.nature.com/documents/3574/version/1/files/npre20093574-1.pdf
http://precedings.nature.com/documents/3574/version/1/files/npre20093574-1.pdf
http://www.ncbi.nlm.nih.gov/pubmed/19033274?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19033274?dopt=Abstract
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/25/2/288
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/25/2/288
http://search.cpan.org/dist/GOBO/
http://www.blipkit.org/blip-iclp09.pdf
http://www.blipkit.org/blip-iclp09.pdf
http://www.ncbi.nlm.nih.gov/pubmed/15892874?dopt=Abstract
http://genomebiology.com/2005/6/5/R46
http://dx.doi.org/10.1016/j.jbi.2010.02.002
http://www.ncbi.nlm.nih.gov/pubmed/17545183?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17545183?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Specification of taxonomic constraints
	Consistency checking using taxon constraints
	Inconsistencies found and fixed -- Electronic annotations
	Inconsistencies found and fixed -- Manual annotation or ontology development
	Novel electronic annotations

	Discussion
	Conclusions
	Methods
	Generation of taxon-slim
	Automated support for generation and selection of constraints
	Detection of constraint violations
	File availability
	Numbers of inconsistencies found

	Acknowledgements
	Author details
	Authors' contributions
	References

