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Abstract

Background: Estimating the rate constants of a biochemical reaction system with known stoichiometry from noisy
time series measurements of molecular concentrations is an important step for building predictive models of
cellular function. Inference techniques currently available in the literature may produce rate constant values that
defy necessary constraints imposed by the fundamental laws of thermodynamics. As a result, these techniques may
lead to biochemical reaction systems whose concentration dynamics could not possibly occur in nature. Therefore,
development of a thermodynamically consistent approach for estimating the rate constants of a biochemical
reaction system is highly desirable.

Results: We introduce a Bayesian analysis approach for computing thermodynamically consistent estimates of the
rate constants of a closed biochemical reaction system with known stoichiometry given experimental data. Our

software.html.

method employs an appropriately designed prior probability density function that effectively integrates
fundamental biophysical and thermodynamic knowledge into the inference problem. Moreover, it takes into
account experimental strategies for collecting informative observations of molecular concentrations through
perturbations. The proposed method employs a maximization-expectation-maximization algorithm that provides
thermodynamically feasible estimates of the rate constant values and computes appropriate measures of
estimation accuracy. We demonstrate various aspects of the proposed method on synthetic data obtained by
simulating a subset of a well-known model of the EGF/ERK signaling pathway, and examine its robustness under
conditions that violate key assumptions. Software, coded in MATLAB®, which implements all Bayesian analysis
techniques discussed in this paper, is available free of charge at http://www.cisjhu.edu/~goutsias/CS5%20lab/

Conclusions: Our approach provides an attractive statistical methodology for estimating thermodynamically
feasible values for the rate constants of a biochemical reaction system from noisy time series observations of
molecular concentrations obtained through perturbations. The proposed technique is theoretically sound and
computationally feasible, but restricted to quantitative data obtained from closed biochemical reaction systems.
This necessitates development of similar techniques for estimating the rate constants of open biochemical reaction
systems, which are more realistic models of cellular function.

Background

Biochemical reaction systems are popular models of cellu-
lar function. These models are extensively used to repre-
sent the inter-connectivity and functional relationships
among molecular species in cells and, most often, they
provide accurate description of cellular behavior. Inferring
a biochemical reaction system from experimental data is
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an important step towards building mathematical and
computational tools for the analysis of cellular systems.
This step requires both structure (stoichiometry) identifi-
cation as well as parameter (rate constant) estimation
[1-4]. Due however to the large combinatorial complexity
of determining the stoichiometry of a biochemical reaction
system, solving this problem requires large amounts of
high quality experimental data and substantial computa-
tional resources, which are not usually available in
practice.
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Recently, several approaches have been proposed in
the literature for addressing a simpler problem, known
as model calibration. The objective of model calibration
is to adjust the kinetic parameters of a biochemical reac-
tion system with given stoichiometry in order to obtain
a sufficiently good match between simulated and
observed dynamics; e.g. see [2,5-11].

Among known model calibration techniques, the ones
based on Bayesian analysis [7,10,11] are perhaps the most
versatile. Bayesian analysis allows us to effectively incor-
porate biophysical knowledge into the problem at hand
and naturally draw statistical conclusions about the
unknown kinetic parameters. This is done by employing
a probability density function that encapsulates prior
information about the rate constants of a biochemical
reaction system and by deriving a posterior probability
density function over the kinetic parameters after experi-
mental data have been collected. By taking into account
the experimental data and the information contained in
the prior, the posterior density summarizes all knowledge
available about the unknown kinetic parameters and
quantifies uncertainty about their true values [12,13].
Moreover, the posterior allows us to quantify our confi-
dence about estimation accuracy, compute probabilities
over alternative calibrations, and design additional
experiments to improve inference.

Most published model calibration techniques do not
take into account constraints on the reaction rate con-
stants imposed by the fundamental laws of thermody-
namics. If these constraints, known as Wegscheider
conditions [14,15], are not explicitly considered by a
model calibration technique, then the method will spend
most time examining impossible kinetic parameter sets
and will most probably produce a biochemical reaction
system that is not physically realistic [16]. This issue has
been recently recognized in the literature, and new mod-
eling formalisms have been suggested in an effort to
address it [17-20]. The proposed formalisms describe a
biochemical reaction system by well-defined thermody-
namic parameters whose values always guarantee that the
reaction rate constants satisfy the Wegscheider condi-
tions. For example, in [19,20], a biochemical reaction sys-
tem is parameterized in terms of molecular capacities
and reaction resistances, by using a thermodynamic
kinetic modeling (TKM) formalism that enjoys a number
of advantages over the ones suggested in [17,18].

We believe that parameterizing a biochemical reaction
system in terms of capacities and resistances is unneces-
sary and, in certain instances, problematic. It has been
pointed out in [19] that different choices for the TKM
parameters can lead to the same concentration dynamics.
As a consequence, the TKM parameters cannot be deter-
mined uniquely from concentration measurements. A
way to address this problem is to take the capacities to be
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the equilibrium concentrations (which is always possible
in closed biochemical reaction systems), in which case
the capacities are constrained by conservation relation-
ships imposed by the system stoichiometry. Then, para-
meter estimation in the TKM formalism may be possible
by arbitrarily fixing a subset of capacity values and esti-
mating the remaining capacities and resistances. How-
ever, this approach can be very cumbersome when
dealing with molecular perturbations (as we do in this
paper) or when merging estimated TKM models, since,
in both cases, the capacities may not refer to compatible
equilibrium concentrations. It has been suggested in [19]
that a way to merge two models using the TKM formal-
ism is to first convert the capacities and resistance to the
rate parameters, merge the two models, and then convert
back to the TKM formalism. However, this approach
seems to be overly complicated, especially in view of the
model calibration methodology presented here.

In this paper, we introduce a thermodynamically con-
sistent Bayesian analysis approach to model calibration
that does not require reparametrization. Our approach
relies on statistically modeling the reaction rate constants
of the forward reactions as well as the equilibrium con-
stants of individual reactions. We restrict our attention
to closed systems (or systems that can be approximately
considered to be closed), since thermodynamic analysis
of such systems is easier to handle than open systems.
The proposed approach controls thermodynamic consis-
tency of the reaction rate constants by employing well-
defined relationships between the kinetic parameters of a
biochemical reaction system, imposed by the Wegschei-
der conditions. By embedding these relationships within
an iterative algorithm that finds the mode of the poster-
ior density, we arrive at a thermodynamically consistent
Bayesian estimate for the rate constants.

Bayesian analysis can be appreciably influenced by the
choice of the prior probability density functions. This is
particularly true in systems biology problems in which
only a small number of observations is usually available.
It is therefore important to focus our effort on con-
structing appropriate prior densities for the unknown
rate constants of the forward reactions and the equili-
brium constants of individual reactions. Although a
number of choices may be possible, it is imperative to
use fundamental biophysical and thermodynamic princi-
ples to derive informative prior densities that effectively
encapsulate such principles.

By using the classical Arrhenius formula of chemical
kinetics [21], we construct an appropriate prior density
for the log-rate constants of the forward reactions. To
do so, we assume that the prefactor and activation
energy associated with the Arrhenius formula are both
random variables following log-normal and exponential
distributions, respectively. This approach takes into
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account unpredictable changes in biochemical condi-
tions affecting the structure of the reactant molecules
and the probability of reaction after collision. On the
other hand, by exploiting the thermodynamic relation-
ship between rate constants, equilibrium concentrations,
and stoichiometric coefficients, we derive an analytical
expression for the joint prior density of the logarithms
of the equilibrium constants. This expression depends
on steady-state concentration measurements and on the
stoichiometry of the biochemical reaction system under
consideration.

Another important issue associated with the inference
problem considered in this paper is the need to collect an
informative set of measurements that can lead to suffi-
ciently accurate parameter estimation. It has been increas-
ingly recognized in the literature that a powerful approach
to accomplish this goal in problems of systems biology is
to selectively perturb key molecular components and mea-
sure the effects of these perturbations on the underlying
concentrations [22-24]. We follow this strategy here and
assume that we can selectively perturb, one at a time, the
initial concentrations of a selected number of molecular
species in a biochemical reaction system, by increasing or
decreasing their values without altering the underlying
stoichiometry. This can be achieved by a variety of experi-
mental techniques, such as RNA interference (RNAi),
transfection, or molecular injection. Therefore, our
approach combines Bayesian analysis with current experi-
mental practices, thus bridging the gap between statistical
inference approaches and experimental design.

The Bayesian analysis technique discussed in this paper
requires numerical evaluation of a number of statistical
summaries of the posterior density. Although several
methods are available to deal with this problem (e.g., see
[25,26]), we employ here a maximization-expectation-
maximization (MEM) strategy that calculates a thermo-
dynamically consistent estimate of the reaction rate
constants as well as Monte Carlo estimates of posterior
summaries used to evaluate the quality of inference. This
strategy is based on sequentially combining a powerful
stochastic optimization technique, known as simultaneous
perturbation stochastic approximation (SPSA) [27], with
Markov chain Monte Carlo (MCMC) sampling [25]. Our
experience with extensive synthetic experiments, based on
data obtained by simulating a subset of a well-known
model of the EGF/ERK signaling pathway, indicates that
the proposed algorithm is robust, producing excellent esti-
mation results even in cases of high measurement errors
and limited time measurements.

This paper is structured as follows. In the “Methods”
section, we provide a brief overview of biochemical reac-
tion systems, discuss how to model perturbations, and
present a standard statistical model for the measure-
ments. We then outline our Bayesian analysis approach
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to model calibration and present our choices for the
prior and posterior densities. By emphasizing the fact
that the prior density must assign zero probability over
the thermodynamically infeasible region of the para-
meter space, and by employing an encompassing prior
approach to Bayesian analysis, we derive an appropriate
posterior density that satisfies this condition. We finally
outline our proposed methodology for computing
thermodynamically consistent Bayesian estimates of
the kinetic parameters and for assessing estimation
accuracy.

In the “Results/Discussion” section, we provide simula-
tion results, based on a subset of a well-established model
of the EGF/ERK signal transduction pathway. These
results illustrate key aspects of the proposed model cali-
bration methodology and show its potential for producing
sufficiently accurate thermodynamically consistent esti-
mates of a biochemical reaction system from noisy time-
series measurements of molecular concentrations.

Finally, in the “Conclusions” section, we discuss a key
statistical advantage of the proposed model calibration
methodology, viewed from a bias-variance tradeoff per-
spective. Moreover, we provide suggestions for further
research to address a number of practical issues asso-
ciated with model calibration, such as estimating the
initial concentrations and their perturbations, dealing
with partially observed or missing data, and extending
the proposed technique to the case of open biochemical
reaction systems.

Extensive mathematical and computational details
are required to rigorously formulate, derive, and
understand various aspects of the proposed approach.
We provide these details in three Additional files
accompanying this paper. In Additional file 1, we pre-
sent a detailed exposition of the underlying theory,
whereas, in Additional file 2, we carefully discuss com-
putational implementation. Finally, in Additional file 3,
we provide all necessary details pertaining the bio-
chemical reaction system we use in our simulations.
Well-documented software, coded in MATLAB®,
which implements all Bayesian analysis techniques dis-
cussed in this paper, is available to interested readers
free of charge at http://www.cis.jhu.edu/~goutsias/CSS
%20lab/software.html.

Methods

Biochemical reaction systems

In this paper, we consider a biochemical reaction system
comprised of N molecular species X;, X5, ..., Xy that
interact through M coupled reactions of the form:

N N
kYYI— ’

E vnan—*_ E VinXy, me M={1,2,...M}. (1)
2m

n=1 n=1
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The parameters kj,,.; and k,,, are the rate constants
of the forward and reverse reactions, whereas, v,,,,

Vi, 2 0are the stoichiometries of the reactants and
products. Note that ky,,.1, k3, >0, for all m € 4, since
irreversible reactions are thermodynamically not possible
in a closed biochemical reaction system [19]. We will
assume that the system is well-mixed (homogeneous)
with constant temperature and volume. We will also
assume that the molecular concentrations evolve con-
tinuously as a function of time and that all reactions
can be sufficiently characterized by the mass action rate
law. In this case, we can describe the dynamic evolution
of the molecular concentrations in the system by the
following chemical kinetic equations:

()
20N 5,000,

teT,ne N,pe P,
i eT,ne pe 2)

meM
initialized by

x&")(o)={6p+ﬂ”' nhe 3)
Cpr if p=0ornzp=0,

where Pr(f)(t) is the net flux of the m'™ reaction at

time ¢, given by

PO = leays | [P OF ke [ [P O1 ", g

ie N ie N

Sum is the net stoichiometry coefficient of the nth
molecular species associated with the m'™ reaction,
defined by s, =V, — V> and T := [0, fnay] is an
observation time window of interest.

Equations (2)-(4) are based on the assumption that we
can selectively perturb, one at a time, the concentrations
of molecular species in a set P, by increasing or
decreasing their values at time ¢ = 0 without altering the
underlying stoichiometry. For notational convenience,

we include 0 in P and assign p = 0 to the original
unperturbed system. In this case, xgo)(t) is the concen-
tration of the n™ molecular species in the unperturbed
system at time t, whereas, x,(f)(t), for p =0, is the con-

centration of the #n™ molecular species at time ¢,
obtained by perturbing the initial concentration of the
p™ species. In (3), 7, 2-c, quantifies the perturbation
applied on the initial concentration c, of the ™ molecu-
lar species at time ¢ = 0. When -¢c, <m, <0, the initial
concentration of the p™ molecular species is reduced, a
situation that can be achieved by a variety of experimen-
tal techniques, such as RNA interference (RNAi). On the
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other hand, when 1, >0, the initial concentration of the
p™ molecular species is increased, a situation that can be
achieved by transfection or molecular injection.

Due to the enormous complexity of biological reaction
networks, (1) is used to model a limited number of mole-
cular interactions embedded within a larger and more
complex system. Mass flow between the biochemical
reaction system given by (1) and its surroundings compli-
cates modeling. As a matter of fact, some molecular con-
centrations in the system may be influenced by unknown
reactions, not modeled by (1), or by partially known reac-
tions with reactants regulated by unknown biochemical
mechanisms. To address this problem, we will assume
that there is no appreciable mass transfer between the
biochemical reaction system and its surroundings during
the observation time interval 7 = [0, f,.<]. AS a conse-
quence, we can assume that (1) characterizes a closed
biochemical reaction system within 7. Moreover, we will
assume that the system reaches quasi-equilibrium at
some time & < £, after which its thermodynamic prop-
erties do not appreciably change for ¢ < ¢ < £,,,. Note
however that the quasi-equilibrium assumption does not
necessarily imply that the biochemical reaction system
will be at thermodynamic equilibrium after time £,y
since mass transfer may take place at some time ¢ > a5
Although we may be able to satisfy these assumptions by
appropriately designed synthetic or in vitro biological
experiments, the assumptions are certainly not satisfied
in vivo. For this reason, we believe that future research
must be focused on extending the approaches and
techniques discussed in this paper to the case of open
biochemical reaction systems.

Measurements

We will now specify an appropriate model for the avail-
able measurements. We will assume that, by an appro-
priately designed experiment, we can obtain noisy

y = {y&p)(tq),ne N,pe P,qe Q} and

measurements

Y= {yS,”)(tQH),ne N, pe P} of the concentrations of

all molecular species in the unperturbed and perturbed
systems at a limited number of distinct time points

ty < Iy < ..<tg<tgsy in T, where Q:={1, 2, ..., Q}.
We will also assume that these measurements are

related to the true concentrations ng’)(t )by

rP(eg) =] Pt )xP(e,) | = nxPe) +ne,),
ne N,pe P,

(5)

forg=1,2,..,Q + 1, where e,(!p)(tq) is a multiplica-

tive random error factor and nﬁp)(tq) =1In e,(,p)(tq). The
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assumption of multiplicative errors is common in most
data acquisition procedures, such as DNA microarray-
based genomics and mass spectrometry-based proteo-
mics [28-30], whereas, the logarithm is used to obtain a
convenient additive error model for the measurements.
In the following, we will assume that the biochemical
reaction system, and all its perturbed versions, is suffi-
ciently close to steady-state at time point tg,;. We can
justify this assumption by taking - < tg,1 < . and by
recalling our previous assumption that the biochemical
reaction system is at thermodynamic quasi-equilibrium
at times £« < t <t Our Bayesian analysis approach is
based on data y, whereas, we use the steady-state mea-

surements ¥ to derive a joint probability density func-

tion for the logarithms {In(k,,,.1/ks,,), m € -} of the
equilibrium constants of the reactions needed for speci-
fying the posterior density.

Finally, we will assume that the error components

nslp )(t ;) are statistically independent zero-mean Gaussian

random variables. The Gaussian assumption is quite
common in genomic problems and has been experimen-
tally verified in some cases; e.g., see [31]. This assumption
is usually justified by the central limit theorem and the
premise that the errors are due to a large number of
independent multiplicative error sources. We may
attempt to justify the independence assumption between
measurement errors by arguing that an error occurred in
a particular measurement may only be due to the acquisi-
tion process used to obtain that measurement and,
hence, it may not affect the error values of other mea-
surements. In general, however, this is only a mathemati-
cally convenient assumption that may not be realistic.
We experimentally demonstrate later that, at least for the
example considered in this paper, the proposed estima-
tion methodology is quite effective even in the case of
non-Gaussian and correlated measurement errors. For
simplicity, we finally assume equal error variances; i.e.,

we will assume that V&I[T],(lp )(t D= o2 for every n, p, and

q. This assumption is not crucial to our approach and
can be relaxed if necessary.

Bayesian model calibration
In this paper, we deal with the following problem: Given

noisy concentration measurements y and ¥y, we want to
calculate thermodynamically consistent estimates of the
log-rate constants & := {ko,,.1 = In ko, 1, Kop = 1n ko,
m € M} of a closed biochemical reaction system, such
that (2), initialized by (3), produce molecular concentra-
tions xfj’)(t) that “best” match (in some well-defined

sense) the available measurements.
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We should note here that it is convenient to estimate
the logarithms of the rate constants instead of the con-
stants themselves. By focusing on the logarithms, we
can reduce the dynamic range of rate constant values
and make their estimation numerically easier. To sim-
plify our developments, we will assume that the initial
concentrations {c,, » € N} and perturbations {r,,
p € P} are known or have been estimated by an appro-
priate experimental procedure. When this is not true,
these quantities must be treated as unknown parameters
and estimated from data, together with the rate con-
stants, provided that a sufficient amount of data is avail-
able to allow reliable estimation.

Given data y, the objective of Bayesian analysis is to eval-
uate the posterior probability density function p(x | ),
which summarizes our belief about the log-rate constants
k after the data y have been collected. It can be
shown [see Equations (S-1.4) and (S-1.5) in Additional
file 1] that

ploc )=y | ) [ x| p(a)dz, ©)

where p « g denotes that p is proportional to g, and

ply 1) = [y | ,02)p(o | o, @)

with z = {z,,, m € 4} being the set of log-equilibrium
constants of the reactions, defined by

k2m—1

z, =1In

m =Koy — Ko, forme M. (8)

2m

Note that the prior density of the log-rate constants
rdepends on z. For this reason, we view z as a set of
random hyperparameters (in Bayesian analysis, para-
meters used to specify prior densities are known as
hyperparameters), specified by means of the prior den-
sity p(2).

The posterior density p(x | y) takes into account our
prior belief about the rate constant values and the data
formation process, summarized by the prior density
p(z) of the log-equilibrium constants, the conditional
prior density p(x | z) of the log-rate constants given
the log-equilibrium constants, the conditional probabil-
ity density p(c® | ) of the error variance given the
log-rate constants, and the likelihood p(y | &, ¢?).
However, the posterior density is hard to interpret,
especially in high-dimensional problems that involve
many parameters, such as the problem we are dealing
with here. As a consequence, the main objective of
Bayesian analysis is to produce numerical information
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that can be effectively used to summarize the posterior
density and simplify the task of statistical inference to
the extent possible. Typical summaries include mea-
sures of location and scale of the posterior, which are
used to produce estimates for the parameter values and
to evaluate the accuracy of such estimates, respectively.

It is clear from (6) that, to evaluate the posterior
p(k| ¥), we need to compute the “effective” prior density
Ip(k| 2)p(z) dz as well as the “effective” likelihood [p(y |
K, 0°)p(c* | k)do?®. To do so, we must specify the afore-
mentioned densities p(c” | k), p(2), p(k| 2), and p(y | &,
0°). We discuss this problem next.

Prior density of error variance

In general, it is difficult to derive an informative prior
probability density function p(c” | k) for the error var-
iance. To deal with this problem, we assume here that the
error variance is independent of the rate constants; i.e., we
assume that p(c® | k) = p(0®). Moreover, we assume that
o follows an inverse gamma distribution, in which case

2 :i 2\—(a+1) ,-b/c?
p(o”) a) G ©

for two parameters o, b >0.

The independence assumption between ¢* and ris
reasonable, in view of the fact that the errors are mainly
due to the experimental methodology used to obtain the
measurements, whereas, the rate constants are due to
biophysical principles underlying the biochemical reac-
tion system. On the other hand, the choice given by (9)
has been well-justified in Bayesian analysis. In fact, the
inverse gamma distribution is the conjugate prior for
the variance of additive Gaussian errors [13]. Conjugate
priors are common in Bayesian analysis, since they often
lead to attractive analytical and computational simplifi-
cations. Note that E[6?] = b/(a - 1) and var[c?] =
{E[?1V /(o - 2) = b*/[(er - 1)*(ex - 2)], for o > 2. There-
fore, the parameters ¢, b control the location and scale
of the inverse gamma distribution given by (9). We illus-
trate this prior in Figure S-1.3 of Additional file 1. In
the following, we treat o and b as hyperparameters with
known values. For a practical method to determine
these values, the reader is referred to Additional file 1.

Prior density of log-equilibrium constants

Before we consider the problem of specifying a prior
density for the log-equilibrium constants z, we first
investigate how much information about z can be
extracted from measurements.

It is a direct consequence of thermodynamic analysis
that, at steady-state, the net flux of each reaction in a
closed biochemical reaction system must be zero. This
implies that
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kzm*IH[E;gp)]v"m = kzmH[E'(lP)]vnm,

ne N ne N’

forallme M,pe P,

(10)

by virtue of (4), where {Er(l”) >0,ne N}are the sta-

tionary concentrations when the initial concentration of
the p™ molecular species is perturbed (thermodynamic
analysis dictates that these concentrations must be non-
zero, provided that the initial concentrations are non-
zero). As a matter of fact, (10) is equivalent to the
following constraints on the reaction rate constants (see
Additional file 1):

H [ Rams ] =1, for all r € null(S), (11)

meM 2m

known as Wegscheider conditions [14,15], where r,, is
the m™ element of the M x 1 vector r, Sis the N x M
stoichiometry matrix of the biochemical reaction system
with elements s,,,, and null(S) is the null space of §.
As a consequence, for a biochemical reaction system to
be physically realizable, it is required that the reaction
rates satisfy the thermodynamically imposed Wegscheider
conditions.

From (8) and (10), note that

1 —
- E E (r)
Zy = 1 Spm InXy7, forallme M. (19)
peP neN

By employing (5) and (12), we can show that

Z,, :ym—nm,where

- 1
Vim = P+1 Z Z Snmygtp)(tQH) and

peP neN

. 1
N = P+1 z Z Snmnglp)(tQH)'

peP neN

(13)

Using this result and some straightforward algebra
(see Additional file 1), we can show that, given

y:= {f/m,me My}, which can be calculated from the

measurements y = {y,(f)(tQH), ne N,pe P}of the
steady-state molecular concentrations and (13), we can

construct the posterior density p(z |y) of z by

+(z-7)'H ' (z~) , (14)

:|—(M/2+a)

e | oo
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where H is an M x M matrix with elements
By = anN S » @0d @, b are the two hyperpara-

meters associated with the prior density of the measure-
ment variance, given by (9).
The previous result suggests that we may be able to use

p(z] ;;) as an informative prior for the log-equilibrium con-

stants z; i.e., we may be able to replace p(z) by p(z | ;;) in

(6). At a first glance, this idea may not seem appropriate.
However, it perfectly agrees with the fact that, in Bayesian
analysis, hyperparameters are often estimated directly from
data [13]. Since we have shown here that steady-state mea-
surements can be effectively used to construct the entire
posterior probability density function of z, it seems reason-
able to use this posterior as a prior density for z. Note how-

ever that, by replacing p(z) with p(z|y)in (6), we must

make sure that y is independent of y (see Additional file

1). Otherwise, our choice for p(z) may not lead to a proper
posterior density p(x | y) (i.e., it may not lead to a density
that is finite for all y). Note that the independence

of ;; and y is assured by the independence between the

measurement errors

MP(tgn)ne N,pe Pyand
{Tlr(tp)(tq)/ne N,peP,qe Q}.

An important observation here is that evaluation of
p(z|y), given by (14), may not be possible, since the

matrix H may not be invertible. We can address this
problem by decorrelating z using the singular value
decomposition (SVD) of matrix H. As a consequence,

we obtain H:UO]D)OUg, where D,is an invertible
diagonal matrix containing the nonzero singular values
of H, and U, is an appropriately constructed matrix
(see Additional file 1 for details). In this case, instead of

using (14) for p(z | ;/) , we must use

SNT ~171T -1
+ U,D, U , (15)
P+l (z=9) UoDo Uy (2 Y)]

p(ZIi)x[

which we can always evaluate, since matrix D, is

invertible.

Prior density of log-rate constants

To specify the (conditional) prior density p(x | z) of the
log-rate constants of a biochemical reaction system, we will
first derive a prior probability density function p(ky,,.1) for
the log-rate constant of the 7™ forward reaction. To do so,
we use the well-known Arrhenius formula of chemical
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kinetics [21]and set ky,,.; = @, exp{-E,/kgT}, where @, is
the prefactor, E,, is the activation energy of the reaction, kg
is the Boltzmann constant (kg = 1.3806504 x1072%J/K), and
T is the temperature. Unfortunately, we cannot predict the
values of the prefactor and activation energy precisely. To

deal with this problem, we set a, :0131 exp{gm}and

E, =EJ +U, , where ) ED are the predictable por-

tions of the prefactor and activation energy, respectively,
and g,,, U, are two random variables that model the
unpredictable portions of these quantities. In the Addi-
tional file 1, we argue that it is reasonable to model g, as a
zero-mean Gaussian random variable with standard devia-
tion A,,, and U, is an exponential random variable with

mean and standard deviation k,T, , where T, is a tem-

perature larger than 7. As a consequence, we obtain the
following prior density for the log-rate constant ks, of
the m™ forward reaction [see Equation (S-1.31) in Addi-
tional file 1]:

JREYER:

P o) = .

m

erfel| [ A Koo =K Ko=)/
V2 Tm A

where 7, =T} /T>1, k0 :=Inal —E2 [ k,T, and
erfc[-] is the complementary error function. We illus-
trate this prior in Figure S-1.1 of Additional file 1.

Basic thermodynamic arguments (see Additional file 1)
imply that z,,, defined by (8), is a constant characteristic
to the m™ reaction. Since Kom = Kom-1 - Zm this implies
that the rate constants ,,, and k,,,.; are two dependent
random variables, given z,,, with joint probability density
p(’{2m’ K2m-1 | Zm) = 5(’{/2;44 - Kom-1 + Zm)p(HZm-l)’ where
d(-) is the Dirac delta function [see Equation (S-1.37) in
Additional file 1]. By assuming that the reaction rate
constants of different reactions are mutually indepen-
dent given the z’s (which is reasonable if we assume that
all common factors affecting these rates, such as tem-
perature and pressure, are kept fixed), we obtain

(16)

plc12) = [ | 802 = Kamos + 2P0 2)

me M

(17)

Equations (16) and (17) provide an analytical form for
the prior density of the log-rate constants. To use this
expression, we must determine appropriate values for
o= {Kf;,rm,/lm,me M}, which can be treated as

hyperparameters. Although we could treat ¢ as random,
we will choose here known values for these parameters.
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This is motivated by the fact that ¢ determines the loca-
tion and scale of the prior densities of the forward rate
constants; see Figure S-1.1 in Additional file 1. In cer-
tain problems of interest, there might be enough infor-
mation to determine possible ranges for the forward
rate constant values. As a consequence, we can use this
information, together with an appropriate procedure, to
effectively determine values for ¢. The reader is referred
to Additional file 1 for details on how to do so.

Effective likelihood

Calculating the effective likelihood p(y | k), given by (7),
is straightforward. From (5), (7), and (9), we can show
that

1 o(x,y) 2
010 [ | -2 bao?, a9

20
where
olk,y)=2b+ D DN [1P(e) - InxPe) (o)
neN peP qeQ
By setting &= ¢(k,y)/20° in (18), we obtain
o ’ —a—N(P+l)Q/2J atN(PH)Q/2-1,-E 4
py | k) = [p(x,y)] 3 ¢ 20)

o [(p(K., y)]—a—N(P+l)Q/2.

Note that evaluating ¢(x,y) at given values of  and y
requires integration of the system of ordinary differential
equations (2).

Posterior density

Our previous developments lead finally to an analytical
formula for the posterior density p(x| y) of the log-rate
constants. Indeed, (6), (15), (17), (19), and (20), lead to

(k)

v (. 1)1 [o(x, ¥)]*

p(x | y) =< (21)

with

0
my Kom-1 = K Komt [T
o(k) = I Ierfc[ [ - i ]:lg 2

meM

v(ky)= 1 Z z O (Kot = Ko — }’m)(’(m -1~ Ko }’m) (22)

meMm'e M

o(xy 2b+222[}(")[ ~InxP(c,))
neN peP qeQ
B=a+NP+1)Q/2,
where 0,,,,r are the elements of matrix

U,Dy'U} obtained from the SVD decomposition of

sTs, and y,,is given by (13).
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Note that the posterior density of the log-rate con-
stants is a compromise between the prior and the likeli-
hood. The prior terms w(x) and y(x, y) penalize log-
rate values that do not fit well with available a-priori
information, whereas, the likelihood term ¢(x, y) pena-
lizes log-rate values that produce concentration
dynamics which deviate appreciably from measurements.
As the number N(P + 1)Q of available measurements
increases, this compromise is controlled to a greater
extent by the data through the factor ¢(, y).

A problem arises with the posterior density p(x | ¥),
given by (21) and (22), since nonzero probabilities may
be assigned to thermodynamically infeasible log-rate
constants. A Bayesian analyst might argue that we have
correctly done our job by formulating the problem as
we did and that it is the data which will rule out the
possibility that our biochemical reaction system can be
characterized by thermodynamically infeasible para-
meters. However, we choose to trust thermodynamics
far more than we would trust noisy data and appropri-
ately modify the posterior density based on our know-
ledge that the kinetic parameters must satisfy the
Wegscheider conditions given by (11).

By using the Wegscheider conditions, we can decom-
pose the 2M log-rate constants x into two mutually
exclusive sets: M + M; “free” log-rate constants x;and
M -M; “dependent” log-rate constants k,; where

M, =rank(S) (see Additional file 1). Although para-
meters ky can take any value, parameters x; must be
equal to Wk for the Wegscheider conditions to be
satisfied, where W is an appropriately defined matrix.
One way to incorporate the constraint k; = WK into

our Bayesian analysis problem is to treat it as prior
information and apply it on the prior density of the
unconstrained problem. This principle forms the basis
of an attractive strategy for incorporating constraints
into Bayesian analysis, known as encompassing prior
approach (EPA) [32]. By following EPA, we can replace
the previously discussed encompassing “effective” prior
density [p(k | z)p(z)dz by the following probability
density function:

o, - W) [l | Dp(o)dz

pw(Kj Kd) - ’
H 8y — Wi ol i | 2)p(2)dadc e,

(23)

where 9 is the Dirac delta function. Clearly, this den-
sity assigns zero probability to kinetic parameters that
do not satisfy the Wegscheider conditions, since

o(k;—Wky)=0, if x;# WK;. Note now that the

log-rate constants ~, are of no immediate interest, since
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their values can be determined as soon as the values of
the log-rate constants x; have been estimated. As a con-
sequence, we can treat k; as “nuisance” parameters and
integrate them out of the problem [13]. This integration,
together with the updated prior density we presented
above, leads to the following marginal posterior density
of the log-rate constants sy :

Py |y) o< ‘[5("41 =Wk )p(icp iy | y)dx, = plc;, W | p). (24)

Clearly, the values of the marginal posterior py (x| ¥)
are proportional to the corresponding values of the origi-
nal posterior density p(xy, k4 | y) over the thermodyna-
mically feasible region of the parameter space, given by

the hyperplane x; = Wk . In the following, we will base

our Bayesian analysis approach on py (k7| y).

Computing the posterior mode

In a Bayesian setting, we use the location of the posterior
density over the parameter space to provide an estimate of
the unknown parameter values. Typically, two measures of
location are employed, namely the mode and the mean of
the posterior. The posterior mean minimizes the mean-
square error between the estimated and true parameters,
whereas, the posterior mode is more likely to produce
dynamics that closely resemble the true dynamics (see
Additional file 1 for why this is true). We note here that
the main objective of parameter estimation in biochemical
reaction systems is not necessarily to determine parameter
values that are “close” to the true values (e.g., in the mean
square sense) but to obtain appropriate values for the rate
constants so that the resulting molecular concentration
dynamics closely reproduce the dynamics observed in the
true system [33]. As a consequence, we choose the poster-
ior mode as our parameter estimator.

The posterior log-density Inpy, (x| y) is usually not
concave, especially when a limited amount of highly
noisy data y is available. As a consequence, there is no
optimization algorithm that can find the posterior mode
in a finite number of steps. A method to address this
problem would be to randomly sample the parameter
space at a predefined (and usually large) number of
points and use these points to initialize an optimization
algorithm, such as the simultaneous perturbation sto-
chastic approximation (SPSA) algorithm discussed in
the Additional file 2. We can then calculate the para-
meters and the associated values of Inpy (k| y)
obtained by each initialization after a set number of
optimization steps, and declare the parameters asso-
ciated with the highest log-posterior value as being the
desired mode estimates.

Unfortunately, SPSA (and as a matter of fact any other
appropriate optimization algorithm) is computationally
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costly, especially in the case of large biochemical reac-
tion systems. Therefore, using SPSA in the previous
multi-seed strategy may result in a computationally pro-
hibitive approach for finding the posterior mode. In
order to reduce computations, we may choose only a
small number of initial points that we believe are suffi-
ciently proximal to the posterior mode. Two such points
might be the prior and posterior means. As a matter of
fact, as the data sample size tends to infinity, we expect
that the posterior mean will coincide with the posterior
mode, since, under suitable regularity conditions, the
posterior density converges asymptotically to a Gaussian
distribution [12,34]. This simple idea leads to the
sequential maximization-expectation-maximization
(MEM) algorithm we discuss in the Additional file 2.
According to this algorithm, we perform a relatively
small number of SPSA iterations, initialized by the prior

mode, to obtain a posterior mode estimate ,}}H?de . We
~ mode ,to

then use an MCMC algorithm, initialized by ,;

obtain an estimate of the posterior mean g ™" . Subse-

quently, we perform another set of SPSA iterations,

~ mean

initialized by , ", to obtain the posterior mode esti-

~ mode

- We finally set

~ mode

mate 5 to be the log-rate

constants that produce the maximum posterior value
during all SPSA and MCMC iterations, and set the opti-

mal estimate g of the log-rate constants x equal to

~ mode

Wy}

~ mode

{xy

Estimation accuracy
One way to quantify the accuracy of the posterior mode

~mode

estimate of a “free” log-rate constant sy is to cal-

culate and report the root mean square error (RMSE),
given by

» mode

ERI\ASE(’QI‘nOde)Z\/E[(Kf_’(f )? (7]

12 (25)
» mode

= e =57 oty 1 )i

A small value of erysg provides us with confidence
that the estimated value of that constant is accurate. On
the other hand, the estimate may be perceived as inac-
curate if eppse is exceedingly large.

Another useful metric for evaluating estimation accu-

racy is D :=Indet|V]/(M+ M,), where det[V]is the
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determinant of the posterior covariance matrix

~ mode

)(Kf—'ff

~ mode

V=E|:(K'f—1€f

the average of the log-eigenvalues of V and is related to
the well-known D-optimal criterion used in experimen-
tal design [27]. We can use D to quantify the overall
accuracy of a model calibration result, with smaller
values of D indicating better overall accuracy.

Note that the RMSE’s expse can be computed from
the diagonal elements of V. It turns out the we can

)t |y:| Note that D is

approximate epyse and D from an estimate § of the

posterior covariance matrix V obtained during the sec-
ond (MCMC) phase of the proposed MEM algorithm
(see Additional file 2for details).

When the true values x™"° of the log-rate constants
are known (which is the case when we use simulated
data to evaluate the performance of the proposed Baye-
sian analysis approach, as we do in this paper), we can
provide a more direct evaluation of estimation perfor-
mance. As we have mentioned previously, calculating a
measure of “closeness” (such as the square error)
between the estimated and true parameter values may
not be quite appropriate here. Since, in reality, our
objective is to estimate the rate constant values so that
the biochemical reaction system produces dynamics that
closely match the true molecular dynamics, it may be
more appropriate to use, as measures of estimation per-
formance, the following median and maximum absolute
error criteria:

J 00 = xO(0)|ae
GMED-AE:nEH/\I//e;iP - j xﬁf’)(t)dt
: ’ (26)
j F0(0) = 20 0)|de
GMAX—AE:neH,/\l/jaP)éP - J P (0)de '
T

where {x,(f)(t),te 7}and {;cg,p)(t),te T} are the true

and estimated dynamics of the #n'™ molecular species
under the p™ perturbation, produced by the biochemical
reaction system with log-rate constants "¢ and

~ mode

, Wk r
and epax.ap provide measures of closeness between the
estimated molecular responses

e

~ mode

K= {xf 3 respectively. Clearly, epep.-aE

() te T,ne N,pe P} and the true molecular

responses {x,(f)(t),te T,ne N,pe P}, normalized by
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the corresponding true integrated responses

{JT x%”)(t)dt, ne N,pe P}. Normalization is required

in order to make sure that no one species dominates
the error values more than any other. Finally, note that
half of the normalized absolute errors will be between 0
and eyep.ap, whereas, the remaining half will be
between epep-ar and €piax-AE-

Results/Discussion

To illustrate key aspects of the previous Bayesian analy-
sis methodology, we now consider a numerical example
based on a subset of a well-established model of the
EGEF/ERK signal transduction pathway proposed by
Schoeberl et al. [35]. This model corresponds to an
open biochemical reaction system, since it contains irre-
versible reactions as well as reactions governed by
Michaelis-Menten kinetics that involve molecular spe-
cies not included in the model. We extract a closed sub-
set of the Schoeberl model by choosing the largest
connected section that contains only reversible reactions
governed by mass action kinetics. The resulting bio-
chemical reaction system is depicted in Figure 1 and is
comprised of N = 13 molecular species that interact
through M = 9 reversible reactions. Of course, we could
attempt to generate a closed biochemical reaction sys-
tem for the entire EGF/ERK signaling pathway, by
including all relevant molecular species not considered
by the Schoeberl model (e.g., ADP, ATP, intermediate
forms in catalyzed reactions, etc.). However, since we
are only interested in demonstrating the potential and
key properties of our Bayesian analysis methodology, we
found this to be unnecessary. We feel that the biochem-
ical reaction system depicted in Figure 1 leads to a suffi-
ciently rich numerical example that serves the main
purpose of this section well.

In specifying the model depicted in Figure 1, we must
provide three sets of physically reasonable values: true
rate constant values, initial concentrations, and experi-
mentally feasible perturbations to the initial concentra-
tions. Published values for the reaction rate constants
associated with our example are given in Equation
(S-3.1) of Additional file 3. However, these values do
not correspond to a thermodynamically feasible bio-
chemical reaction system, since they do not satisfy the
Wegscheider conditions, given by (11). We should point
out here that this is a common problem in systems biol-
ogy. Reaction rate values are usually amalgamated from
various independent sources in the literature, so it is
highly unlikely that these values will correspond to a
thermodynamically feasible biochemical reaction system.
As a consequence, it is desirable to develop a method
that uses published values for the reaction rate constants
and calculates an appropriate set of thermodynamically
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(EGF-EGFR*)2-GAP (x,)

(EGF-EGFR*)2-GAP-Grb2 (x;)
A

Ras-GTP* (X,,)

v (xy)

associated with the reactions.

ky kg
Grb2 (x,)
k,k
e Grb2 (x,)
She* (x,) 4 Sos
X,
Shc*-Grb2 (x;) (x,) ks ki
Sos (x,)
rk (EGF-EGFR*)2-GAP
Kk, ke (x,)
v
Shc*-Grb2-Sos Grb2-Sos
(x5) k. kg (%) ko

(EGF-EGFR*)2-GAP-Grb2-Sos-Ras-GDP

Figure 1 A subset of the EGF/ERK signal transduction pathway model proposed in [35]. The biochemical reaction system is comprised of
N = 13 molecular species that interact through M = 9 reactions. Bayesian analysis is focused on estimating the values of the 18 rate constants

» (EGF-EGFR*)2-GAP-Grb2-Sos

Ras-GDP (x,,) i
17>

15216
(EGF-EGFR*)2-GAP-Grb2-Sos-Ras-GTP

(x3)
(x)

feasible values that can be considered as the “true” para-
meter values. In Additional file 3, we calculate “true”
values for the log-rate constants by using a linear least
squares approach to project the published values onto
the thermodynamically feasible hyperplane. The result-
ing “true” values are given in Equation (S-3.3) of Addi-
tional file 3.

Regarding the initial concentrations, we use the values
specified in [35,36], with two minor modifications. First,
molecular species with zero initial concentrations are
modified to have a small number of molecules present.
We do this to accommodate the fact that, in a real cel-
lular system, these molecular species are constitutively
expressed. The second modification comes from the fact
that we are no longer modeling the entire EGF/ERK sig-
naling cascade and, therefore, we must account for the
upstream EGF stimulus. To take this into account, we
increase the initial concentration of the most upstream
molecular species in our model, namely (EGF-EGFR*)
2-GAP. The initial concentrations used are given by
Equation (S-3.4) in Additional file 3.

To specify appropriate perturbations to the initial
molecular concentrations, note that molecular com-
plexes, such as dimers, trimers, etc., are far more diffi-
cult to perturb than simple monomeric molecular
species. For this reason, we focus our perturbation
efforts on Shc*, Grb2, and Sos. Since Shc* is

commercially available in a purified and quantified form,
we will assume that we can increase its initial concen-
tration by a factor of 100 using molecular injection. We
will also assume that we can perturb Grb2 and Sos by
RNAI, resulting in a decrease in their initial concentra-
tions by a factor of 100. Thus, we set m; = 99¢y, my =
-.99¢,, and 1, = -.99¢,.

To avoid specifying different hyperparameter values
for the prior densities of the forward log-rate constants,
we assume here that all densities share the same known
values {k°, 7, A}, where k° = -5.1010, z= 1.8990, and A=
0.7409, whereas, we set a= 3 and b = 1 for the hyper-
parameters of the prior density of the variance o° of the
measurement errors. These choices correspond to the
prior densities depicted in Figure S-1.2(a) and Figure
S-1.3(a) in Additional file 1. We implement our Bayesian
analysis approach using the MEM algorithm described
in Additional file 2, with I = 5,000 SPSA iterations in
each maximization step and a total of L = 50,000
MCMC iterations in the expectation step. Finally, we
observe the biochemical reaction system within a time
period of 1 min.

In Figure 2, we depict a typical result obtained by the
proposed Bayesian analysis algorithm. In this figure, we
compare the estimated log-rate values (blue) with the
thermodynamically consistent true log-rate values (red)
as well as the corresponding concentration dynamics of
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molecules/cell log-rate value

molecules/cell

Figure 2 True (red) vs. estimated (blue) log-rate values and selected molecular dynamics in the unperturbed biochemical reaction
system depicted in Figure 1. The results are based on measuring the dynamics in the unperturbed and perturbed systems at Q = 6
logarithmically-spaced time points (green circles). Perturbations are applied on the initial concentrations of Shc*, Grb2, and Sos, one at a time.
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Table 1 Estimated posterior RMSE values for the case of i.i.d. zero-mean Gaussian errors with standard deviation

o = 0.3. Logarithmic sampling is used with Q = 6

K1 K3 Ks K7 K11 K13 K1s K17
0.2414 0.1578 0.1838 0.2950 0.1426 0.1683 0.0968 04474 0.1484
K2 K4 K6 Kg K12 R K16 K18
0.2594 0.2095 0.1704 - 02124 02136 - 0.5093 0.0494

The log-rate constants kg and k14 are “dependent”variables. Therefore, no RMSE values are reported for these variables.

selected molecular species in the unperturbed biochem-
ical reaction system. We have obtained these results by
measuring the concentration dynamics in the unper-
turbed and perturbed systems at Q = 6 logarithmically-
spaced time points (green circles), with the measure-
ments being corrupted by independent and identically
distributed (i.i.d.) zero-mean Gaussian noise with stan-
dard deviation o= 0.3. Moreover, we summarize the
estimated posterior RMSE values, given by (25), in
Table 1. Finally, the calculated median and maximum
absolute error values, given by (26), are 3.03 x107 and
1.68 x107}, respectively.

The concentration dynamics produced by the estimated
rate constant values match well the dynamics produced
by the true values. As a matter of fact, the calculated
median and maximum absolute error values imply that
half of the relative integrated absolute error values
between the estimated and true concentration dynamics
(across all molecular species and all applied perturba-
tions) are smaller than 3.03%, whereas, the remaining
values are between 3.03% and 16.8%. On the other
hand, the estimated posterior RMSE values summarized
in Table 1 indicate a high probability that, given the
concentration measurements, the log-rate values will lie
within a relatively small region around the correspond-
ing posterior mode values.

We expect that, in general, by selecting appropriate
perturbations and by increasing the number of concen-
tration data collected during an experiment, we can
improve estimation accuracy. However, how can one
know if the right perturbations have been applied on
the biochemical reaction system and if enough data has
been collected in a practical situation? Inspection of
RMSE values can provide an answer to these important
questions. If the estimated RMSE values of the log-rate
constants of many reactions are large, it may be worth
collecting additional data by increasing P and Q. Addi-
tional data can improve estimation accuracy by shrink-
ing the RMSE values to a size that indicates an
acceptable degree of uncertainty. However, if the bio-
chemical reaction system is insensitive to a given kinetic
parameter, then the RMSE associated with that reaction
may remain large even as the quality of data improves.
Therefore, additional data should only be collected
when the RMSE values are large and sensitivity analysis

indicates that the values of the rate constants associated
with these RMSE values appreciably affect the system
dynamics.

The RMSE values do not provide a global measure of
estimation accuracy, since some parameters may have
small RMSE values and some may have large values. To
address this problem, we may instead employ the
D-optimal criterion as a measure of estimation accuracy.
As a matter of fact, we can effectively use the D-optimal
criterion as a guide for selecting appropriate perturba-
tions and for determining the data sampling scheme we
must use in order to increase estimation accuracy. In
Table 2, for example, we summarize estimated values of
D, for the case of uniform and logarithmic sampling,
calculated for different values of Q. Clearly, the sampling
scheme used may appreciably affect estimation perfor-
mance. For each value of Q, uniform sampling results in
higher values of D than logarithmic sampling. As a con-
sequence, we must use logarithmic sampling over uni-
form sampling, since the former may produce better
estimation accuracy than the latter. This is expected,
since uniform sampling may result in measuring steady-
state concentrations much more often than (short-lived)
transient concentrations. On the other hand, logarithmic
sampling may be used to gather valuable information
about the transient behavior of a biochemical reaction
system while placing less emphasis on its steady-state
dynamics (which only provide information about the
equilibrium constants of the underlying reactions). The
results depicted in Table 2 also suggest an appropriate
value for Q. If our goal is to find the smallest value Q*
of Q (an objective dictated by the high cost of experi-
mentally measuring molecular concentrations) which
results in a value of D that is no less than, say 5%, of

Table 2 Estimated values of the D-optimal criterion for
uniform and logarithmic sampling schemes

Q uniform logarithmic % change
2 -1.7697 -2.3500

3 -2.0030 -34287 45.90%

4 -2.3752 -3.7432 9.17%

5 -26115 -4.1173 9.99%

6 -2.3492 -4.1039 -0.33%

The measurement errors are i.i.d. zero-mean Gaussian with standard deviation
o= 03.
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Table 3 Estimated values of the D-optimal criterion for
different replications and perturbations
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Table 4 Median and maximum absolute error values
under a variety of measurement error conditions

Perturbation D mean =0 ii.d. Gaussian ii.d. Uniform correlated Gaussian
NO: 1 replication 30123 o=01 398 x10° 864 x10° 148 x107
NO: 2 replications -34950 556 107 481 x107 732 x107
NO: 3 replications -3.7544 0=02 101 x107 1.78 X107 3.09 x107
YES: Shc* 31398 829 x10°7 130 x10 189 10
YES: Grb2 30747 0=03 3.03 x10° 1.78 x107 305 x10°
YES: Sos 34531 168 x10™ 130 x10™ 246 x10”
YES: Shc*, Grb2 39279 o= 04 219 x10° 256 X102 104 x107
YES: Shc*, Sos 37716 227 X107 141 %10 367 x10™
YES: Grb2, Sos 36363 =05 267 X107 3.86 X107 643 X107
YES: Shc*, Grb2, Sos 41039 248 x10" 332 %10 3.10 x10”

The measurement errors are i.i.d. zero-mean Gaussian with standard deviation
o=0.3.
Logarithmic sampling is used with Q = 6.

the value obtained when Q = Q* - 1, then we must set
Q*=6.

In Table 3, we summarize the estimated values of D
obtained from seven different perturbation experiments
(logarithmic sampling is used with Q = 6). Moreover,
we report the D values obtained by repeating an experi-
ment that does not use molecular perturbations. Experi-
mental replication may be an effective approach to
obtain additional data, especially when molecular pertur-
bations are costly or difficult to apply. Our formulation
allows us to consider this scenario by setting m, = 0, for
every p € P. The data collected this way correspond to
repeating the same experiment P + 1 times, where P is
the number of elements in P. The maximum experi-
mental replication considered in Table 3 uses P = 3,
which corresponds to repeating the same experiment
four times. This produces the same amount of data as
the data obtained by perturbing the initial concentra-
tions of Shc*, Grb2, and Sos, one at a time. The values
depicted in Table 3 suggest that perturbing the initial
concentrations of Shc*, Grb2, and Sos may be the right
thing to do, since this produces the lowest value of D
and, thus, it may result in better estimation performance
as compared to perturbing the initial concentrations
of one or two of these molecular species. In this case,
however, it may also be acceptable to replicate an
experiment that does not use molecular perturbations,
since the minimum value of D is only 9.31% lower than
the D value obtained by repeating the experiment four
times.

One of the underlying assumptions associated with the
proposed Bayesian analysis algorithm is that the mea-
surement errors are statistically independent, following a
zero-mean Gaussian distribution with standard deviation
0. To assess the adequacy of this assumption and

Logarithmic sampling is used with Q = 6.

evaluate its implication on estimation performance, we
depict in Table 4 calculated median and maximum
absolute error values obtained when the measurement

errors m(lp) in (5) are i.i.d. zero-mean Gaussian with
standard deviation o, i.i.d. zero-mean uniform within
the interval [—ﬁa,ﬁa], with standard deviation o,

and correlated zero-mean stationary Gaussian with auto-

EnP(t)nP(t,)) = o exp{-|1, —t, |}-
We consider different values for the standard deviation,
namely o= 0.1, 0.2, 0.3, 0.4, 0.5, and measure the con-
centration dynamics in the unperturbed and perturbed
systems at Q = 6 logarithmically spaced time points.
Table 4 shows clearly that violation of the i.i.d. Gaussian
assumption may lead to reduction in estimation accu-
racy, especially when the measurement errors are corre-
lated, due to an increase in the maximum absolute error
values. However, the calculated median absolute error
values indicate that the proposed algorithm is relatively
robust to the statistical behavior of the measurement
errors, producing reasonable estimates for at least half
of the concentration dynamics. In Figure 3, we depict
results obtained by the proposed Bayesian analysis algo-
rithm when measuring the concentration dynamics in
the unperturbed and perturbed systems at Q = 6 loga-
rithmically-spaced time points (green circles), with the
measurements being corrupted by correlated zero-mean
stationary Gaussian errors with standard deviation o=
0.3. These results compare favorably to the ones
depicted in Figure 2. In this case, the calculated median
absolute error value is 1.48 x107, which is 62.8% smal-
ler that the value obtained when the errors are i.i.d.
zero-mean Gaussian, whereas, the calculated maximum
absolute error value is 7.32 x1072, which is 31.7% larger
that the value obtained when the errors are i.i.d. zero-
mean Gaussian.

correlation
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Conclusions

In this paper, we have introduced a novel Bayesian ana-
lysis technique for estimating the kinetic parameters
(rate constants) of a closed biochemical reaction system
from time measurements of noisy concentration
dynamics. The proposed procedure enjoys a clear advan-
tage over other published estimation techniques: the
estimated kinetic parameters satisfy the Wegscheider
conditions imposed by the fundamental laws of thermo-
dynamics. As a consequence, it always leads to physi-
cally plausible biochemical reaction systems.

From a statistical perspective, there are additional
advantages for thermodynamically restricting the kinetic
parameters of a biochemical reaction system to satisfy
the Wegscheider conditions. This may be seen through
the well-known bias-variance tradeoff in estimation [27].
The mean squared error of a given estimator can be
decomposed into a bias term and a variance term. In
general, imposing constraints on the estimator may
increase its bias but decrease its variance (hence the tra-
deoff). However, if the true parameter values satisfy the
constraints, then the variance may decrease without
increasing the bias term [27]. Since the true values of
the kinetic parameters must lie on the thermodynami-
cally feasible manifold in the parameter space, confining
the Bayesian estimator to this manifold (which is of
lower dimension than the parameter space itself) may
lead to lower mean squared error due to a smaller var-
iance. Since the thermodynamically feasible manifold is
of lower dimension than the parameter space, gains in
variance (and hence improvements in the mean squared
error) are expected to be large. This may be seen
through the “curse of dimensionality,” which refers to
the exponential increase in the volume of the parameter
space as its dimension grows, making estimation expo-
nentially harder in higher dimensional spaces (in our
example, the unconstrained parameter space has 12.5%
more dimensions than the thermodynamically feasible
subspace). The Wegscheider conditions reduce the
dimensionality of the parameter space to a feasible
region in which estimation may be easier. Thus, the pro-
posed Bayesian analysis procedure improves on other
estimation techniques by producing a statistically super-
ior, physically meaningful and plausible estimate for the
kinetic parameters of a closed biochemical reaction
system.

The Bayesian analysis methodology discussed in this
paper has been formulated by assuming that all initial
concentrations and perturbations are precisely known
and that concentration measurements can be obtained
by directly sampling all system dynamics. However, cur-
rent experimental practices in quantitative systems biol-
ogy restrict the amount and type of data that can be
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collected from living cells. As a consequence, further
research is needed to develop approaches that can
accommodate this important issue and make a Bayesian
analysis approach to parameter estimation better applic-
able to systems biology problems.

If the initial concentrations and the perturbations
applied on these concentrations are not known, then we
may try to estimate them together with the unknown
kinetic parameters. Although formulation of this problem
is similar to the one considered in this paper, the addi-
tional computational burden will be substantial. More-
over, while quantitative biochemical techniques are
improving, the vast majority of data available in problems
of systems biology are obtained by measuring ratios of
molecular concentrations (e.g., by using techniques such
as SILAC [37]). Estimation of the rate constants of a bio-
chemical reaction system from concentration measure-
ments available as ratios relative to a reference system
requires special consideration and extensive modification
of the proposed Bayesian analysis procedure. Finally, it is
very important to address the problem of missing obser-
vations. This is a common problem in systems biology,
since it is not possible to monitor and measure the con-
centrations of all molecular species present in the system.
Although appropriate modifications to the proposed
algorithm can lead to a Bayesian analysis approach that
can handle missing data, we think that development of a
practically effective way to address this problem is chal-
lenging. Our future plan is to expand and improve the
Bayesian analysis procedure discussed in this paper in
order to provide practical solutions to the previous
problems.

It is worth noting here that the estimation procedure
suggested in this paper applies only to closed biochem-
ical reaction systems (or to approximations of closed
systems embedded in a larger open system). However, a
cell is an open system, since it effectively interacts with
its environment. If we include the cell’s environment
into our system and monitor the combined system until
steady-state (i.e., until cell death), then we would have
the necessary closed system. Unfortunately, this is
clearly an unrealistic scenario. As a consequence, there
is also a need to develop a theoretical and computa-
tional approach for dealing with thermodynamically
consistent parameter estimation in open biochemical
reaction systems.

To conclude, it has been argued in a recent paper [33]
that most models of computational systems biology are
“sloppy,” in the sense that many parameters of such
models do not appreciably alter system behavior. A key
conclusion of this paper is that collective fitting proce-
dures (such as the Bayesian analysis technique presented
in the present paper) are far more desirable than
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piecewise construction of a biochemical reaction system
model from individual parameter estimates (which is
how most models are constructed when investigators
scour the literature for individual rate constant values).
Moreover, it has been pointed out in [33] that using a
method to obtain precise parameter values may be diffi-
cult, even with an unlimited amount of data, since the
behavior of a sloppy model is insensitive to the values of
most parameters. As a consequence, the authors suggest
that, instead of focusing on the quality of parameter
estimation, it will be more wise to focus on the quality
of prediction achieved by an estimated model (as we
have also argued in this paper).

To a certain extent, our Bayesian analysis approach
addresses some of the issues raised in [33]. By imposing
the Wegscheider conditions on the kinetic parameters
of a biochemical reaction system, we can effectively con-
strain these parameters to a thermodynamically feasible
manifold in the parameter space, thus reducing sloppi-
ness. Moreover, we can effectively use the RMSE values
and the D-optimal criterion to determine an appropriate
experimental design and distinguish those estimated
values that can be trusted from those that cannot. For
example, if the RMSE value associated with a kinetic
parameter is small, then we may trust these values. On
the other hand, a large RMSE value may indicate high
uncertainty in the estimated parameter values, which
may be untrustworthy. As we mentioned before, if a
sensitivity analysis approach, such as the one proposed
in [38], indicates that the kinetic parameters associated
with large RMSE values are influential parameters, then
we must reduce these RMSE values to an acceptable
level of uncertainty by adopting a new and more effec-
tive experimental design approach. On the other hand,
if these parameters correspond to a non-influential reac-
tion, then we can accept the estimated values with no
further consideration, since high uncertainty in the
exact values of these parameters will not affect the pre-
dicted concentration dynamics.

Additional material

Additional file 1: In this document, we provide theoretical
details necessary to understand the Bayesian analysis approach
introduced in the Main text.

Additional file 2: This document contains a detailed description
of the computational algorithms used for implementing various
steps of the proposed Bayesian analysis approach.

Additional file 3: In this document, we list the biochemical
reactions associated with our numerical example and provide
thermodynamically consistent values for the rate constants as well
as appropriate values for the initial molecular concentrations.
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