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Abstract

Background: Systematic reviews address a specific clinical question by unbiasedly assessing and analyzing the
pertinent literature. Citation screening is a time-consuming and critical step in systematic reviews. Typically,
reviewers must evaluate thousands of citations to identify articles eligible for a given review. We explore the
application of machine learning techniques to semi-automate citation screening, thereby reducing the reviewers’
workload.

Results: We present a novel online classification strategy for citation screening to automatically discriminate
“relevant” from “irrelevant” citations. We use an ensemble of Support Vector Machines (SVMs) built over different
feature-spaces (e.g., abstract and title text), and trained interactively by the reviewer(s).
Semi-automating the citation screening process is difficult because any such strategy must identify all citations eli-
gible for the systematic review. This requirement is made harder still due to class imbalance; there are far fewer
“relevant” than “irrelevant” citations for any given systematic review. To address these challenges we employ a cus-
tom active-learning strategy developed specifically for imbalanced datasets. Further, we introduce a novel under-
sampling technique. We provide experimental results over three real-world systematic review datasets, and
demonstrate that our algorithm is able to reduce the number of citations that must be screened manually by
nearly half in two of these, and by around 40% in the third, without excluding any of the citations eligible for the
systematic review.

Conclusions: We have developed a semi-automated citation screening algorithm for systematic reviews that has
the potential to substantially reduce the number of citations reviewers have to manually screen, without
compromising the quality and comprehensiveness of the review.

Background
In this section we first motivate our work by presenting
a brief overview of the systematic review process in gen-
eral, and the abstract screening component in particular.
We then review previous research in biomedical text
classification, which provides the foundation for our
contribution.
On Systematic Reviews
Systematic reviews (with or without meta-analysis) are
increasingly used to inform all levels of healthcare, from
bedside individualized decisions to policy-making. Like
all scientific approaches, a systematic review tries to
address a well-formulated research question by following
a protocol of well-defined steps [1,2]. To minimize
selection bias, systematic reviews appraise and analyze

all research reports that fulfill a set of pre-defined elig-
ibility criteria. To identify all eligible reports, reviewers
conduct broad searches of the literature, and then
manually screen the titles and abstracts of all returned
citations. All relevant (potentially eligible) citations are
retrieved and reviewed in full text to select those that
are ultimately included in the systematic review.
Screening of citations for systematic reviews is a

tedious and time-consuming, yet critical, step. Failure to
identify eligible research reports threatens the validity of
the review. Typically, reviewers screen between 2,000
and 5,000 citations, approximately 200 to 500 of which
are deemed relevant and are reviewed in full text. From
these, at most a few dozen are ultimately included in
the systematic review. Much larger projects are not
uncommon. For example, in a project that involved
three evidence reports conducted for the United States* Correspondence: bwallace@tuftsmedicalcenter.org
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Social Security Administration on the association of low
birth weight, failure to thrive, and short stature in chil-
dren with disability, the Tufts Evidence-based Practice
Center screened over 33,000 abstracts [3-5].
An experienced reviewer can screen an average of two

abstracts per minute. At this rate, a project with 5,000
abstracts requires 5 person days (40 hours) of uninter-
rupted work time. Abstracts for difficult topics may take
several minutes each to evaluate, thus multiplying the
total time needed to process them by several fold.
Herein, we modify the typical (manual) approach to

screening citations for systematic reviews in order to
semi-automate the process. We use a classification
model to automatically exclude irrelevant citations. The
reviewers will trust the model’s exclusions, and will only
screen those citations that are suggested by the classi-
fier. The aim of our approach is to reduce the reviewers’
workload, allowing them to focus on the more intellec-
tually demanding steps of the systematic review (e.g.,
interpretation and analysis), while reducing costs.
Previous Work
In this section we review related work. We first discuss
previous applications of machine learning techniques to
biomedical text classification. Next, we review some of
the machine learning tools we use (Support Vector
Machines and the active learning framework, in
particular).
Previous Applications of Machine Learning to Biomedical
Literature
Due to the exponential growth of available biomedical
literature [6], much work has been done in automati-
cally mining and learning from published manuscripts.
Here we briefly review the emerging body of promising
research on applications of machine learning methods
to biomedical text classification [7-11], particularly those
works focused on automatic classification of biomedical
abstracts into clinically relevant categories.
Aphinyanaphongs et al. applied machine learning

techniques to automatically discriminate “high-quality”
from “low-quality” articles in the domain of internal
medicine [10]. They explored classification using several
different feature-spaces (this is sometimes referred to as
multi-view learning [12]). A feature-space is the mathe-
matical space where the points for each citation for a
particular feature set live. For example, title text is a fea-
ture-space, and each citation is represented by exactly
one point in this space, corresponding to the vector
representation (e.g., bag-of-words encoding) of its title.
They found that using publication type, abstract text,
title text, and Medical Subject Headings (MeSH) terms
as features with a Support Vector Machine (SVM) clas-
sifier resulted in the best performance.
Building on this work, Kilicoglu et al. demonstrated

the feasibility of automatically identifying “scientifically

rigorous” articles using classification algorithms [8].
They too found that using multiple features from publi-
cations, including “high-level” features such as Unified
Medical Language System (UMLS) terms, boosted classi-
fication accuracy. Additional research [13-15] has
further corroborated the observation that biomedical
text classification can be improved by using multiple
feature-spaces, and by enriching raw text with additional
information (e.g., with automatically extracted UMLS
terms, or via other Natural Language Processing
techniques).
Most similar to the present work, Cohen et al. demon-

strated that machine learning techniques can reduce the
labor required to update systematic reviews [16]. In par-
ticular, they used a boosted perceptron-based classifier
to predict when new articles should be added to existing
drug class systematic reviews. (A perceptron is a type of
neural network that finds a linear function to discrimi-
nate between classes.) They aimed to reduce the number
of abstracts reviewers must manually peruse to update a
systematic review while maintaining 95% sensitivity to
new articles that ought to be added to the review. They
experimented over 15 datasets. Over each of these they
varied a key parameter - the false negative learning rate,
w - over a range of values and reported the best
achieved performance (i.e., results for the best observed
value of w). They found that their approach could theo-
retically reduce the number of abstracts that needed to
be evaluated to update systematic reviews by between
0.0 and 68%, while maintaining a sensitivity of 95% to
the eligible citations. (Though in one dataset they were
unable to achieve 95% sensitivity.)
The above works have demonstrated the potential of

machine learning methods to mitigate the burden
imposed by the overwhelming volume of published bio-
medical literature. The task of semi-automating citation
screening is unique due in part to the obstacles outlined
by Cohen et al. [16]. In particular, the requirement of
identifying all of the eligible citations changes the goal
of the classification task; rather than attaining high
accuracy, as is usually the objective in classification, we
aim to eliminate the need to review clearly irrelevant
citations without wrongly excluding eligible ones. Our
task differs from that delineated by Cohen et al. in that
we aim to semi-automate the citation screening step
while conducting systematic reviews, rather than semi-
automating the process of updating previously con-
ducted systematic reviews.
Active Learning with SVMs
As discussed above, reviewers conducting systematic
reviews first search a database (e.g., PubMed) with a
carefully constructed query tailored to the medical ques-
tion being investigated. Next, they peruse and then cate-
gorize each of the returned abstracts as either “relevant”
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or “irrelevant” to the review. This latter step of deter-
mining which articles are suitable for inclusion is a
laborious, time-intensive process. Moreover, the
reviewers are typically physicians, and their time is
therefore expensive. Thus, we have access to a large
“pool” of unlabeled data (the citations retrieved via the
database query) and an “oracle” (the reviewer) that can
provide labels ("relevant”, “irrelevant"’), at a cost. This
scenario is exactly the sort that motivated the develop-
ment of pool-based active learning [17], wherein the
expert trains the classifier interactively by providing
labels for instances the classifier “thinks” will be most
informative.
The basic idea in active learning is that if the classifier

is allowed to select the data with which it is trained, as
opposed to passively accepting a training dataset, the
training process can be expedited. Furthermore, it has
been argued [18] that active learning over a small subset
of informative data can actually produce a better gener-
alized model than one trained over more, randomly
selected data. For a recent survey of active learning, see
Settle’s literature review [19]. In this work we focus on
pool-based active learning with Support Vector
Machines (SVMs).
Briefly, SVMs are classifiers that work by finding a

hyperplane that separates instances into their respective
classes in feature-space [20]. SVMs use kernel functions
to calculate the separating hyperplane in a computation-
ally efficient manner, and can scale gracefully to pro-
blems with high-dimensional data (e.g., text). A kernel
function returns the inner product between feature vec-
tors mapped into a high-dimensional space. In many
cases the inner product can be calculated without expli-
citly computing these higher dimensional feature vec-
tors, allowing for fast, scalable computation. We use
SVMs because they have empirically performed well
over high-dimensional text data in general [21], and in
the context of biomedical text classification in particular
[9,10]. (In any case, the choice of classification algorithm
seems to matter less than the choice of features when
working with biomedical texts [22].)
Tong and Koller [23] presented an active learning

strategy for SVMs, called SIMPLE, that works as follows.
Given at least one labeled example from each class, con-
struct an SVM (i.e., find an initial separating hyper-
plane). Next, ask the expert to label the (unlabeled)
instance closest to the current hyperplane. The intuition
is that examples near the hyperplane are those about
whose label the classifier is most uncertain. Repeat this
process until some stopping criterion is met (e.g., the
expert refuses to provide any more labels). This method
has been shown to work well empirically [18], and we
use it as the foundation of our approach. We shall eluci-
date why SIMPLE must be tailored to the problem of

citation screening in later sections. (We note that Tong
and Koller also proposed two other active learning
approaches for SVMs [23]; we use SIMPLE due its sim-
plicity and empirical success.)

Results
In this section, we first present our active learning strat-
egy for biomedical citation classification. We then report
results from experiments conducted over three pre-
viously conducted systematic reviews. We demonstrate
that our technique can significantly reduce the burden
on reviewers without excluding any relevant citations.
Our Approach to Semi-Automating the Citation Screening
Task
Our novel semi-automated citation screening strategy
comprises two major components: our approach to
document representation and our novel active text clas-
sification learning strategy. The latter includes the
model training process, classification algorithm, ensem-
ble method and sampling technique used. We also
address the question of how many citations should be
manually labeled before allowing the model to classify
the remaining documents. We present these compo-
nents in the following subsections, but first outline how
we envision the semi-automated step fitting into the
citation screening process.
Figure 1 juxtaposes the typical screening process with

our semi-automated approach. In the typical citation
screening process, humans evaluate the whole set of
citations in the dataset and select (or “screen-in”) cita-
tions pertinent to the reviewed topic, following proto-
col-defined criteria. In other words, they categorize, or
label, citations as either “relevant” or “irrelevant” to the
systematic review. Papers selected at this stage ("Level
1” screening) will be retrieved and appraised in full text
("Level 2” screening). In the modified approach we
break “Level 1” screening into two phases. First,
reviewers will train and use a classifier that categorizes
citations as “relevant” or “irrelevant”. They will trust the
classifier in excluding completely “irrelevant” citations,
and thus they will manually review only the citations
that are screened in by the classification model. “Level
2” screening remains the same as in the typical
approach.
Document (Citation) Representation
The representation of biomedical documents can have a
large effect on classification performance [8,13-15] and
is arguably more important than the choice of the classi-
fication algorithm itself [22]. We represent each citation
with points in four separate feature-spaces. In particular,
we use the title text, the abstract text, MeSH keywords
(when available) and UMLS terms (Figure 2). (We use
the MetaMap [24] program to automatically extract
UMLS terms from the title texts.) Over the texts, we
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use standard Term Frequency/Inverse Document Fre-
quency (TF-IDF) encoding [25] to generate “bag-of-
words” representations of each citation in the respective
feature-spaces. Similarly, we generate a “bag-of-biomedi-
cal-terms” [8] representation in the UMLS feature-
space. Other feature-spaces (e.g., the full text of each
paper) could be used in addition to, or in place of, the
four used here. We build an ensemble of SVM classi-
fiers, with one classifier per feature space [8], and aggre-
gate their predictions as described in the following
subsections. (An alternative to this approach would be
to join the feature-spaces into a single feature-space,
concatenating the the respective points for a given docu-
ment to form a single point in the combined space [10].
However, this combined representation can be proble-
matic for active learning [26].)
Active Learning Strategy for Citation Classification
We have developed a novel active learning strategy for
scenarios where classes are imbalanced and the costs of
mistakes over these classes are asymmetric (e.g., false
negatives in our case are more costly than false posi-
tives). The strategy first attempts to characterize the
space of relevant citations before refining the decision

boundary, or hyperplane, which separates “relevant”
from “irrelevant” citations.
As discussed in the Background Section, uncertainty

sampling active learning is an online training strategy
that is more efficient than training on a random subset
of data. In uncertainty sampling, the classifier requests
labels for examples about whose class membership it is
most uncertain, and in this way incrementally refines
the current approximation to the separating boundary.
With SVMs, this is equivalent to asking the reviewer to
label citations nearest the (current) separating hyper-
plane [23]. In previous work we demonstrated that
uncertainty sampling can result in classifiers with poor
performance, in terms of sensitivity to the minority
class, when classifying text documents [27]. Theoreti-
cally, this can happen if there are different clusters, or
regions, of the minority class (here, “relevant” citations);
in such a scenario, uncertainty sampling is prone to
myopically focusing in on the first boundary or bound-
aries discovered, missing any other clusters. This pro-
blem of hasty generalization becomes particularly
important when there are asymmetric misclassification
costs, such as in citation screening, wherein the

Figure 1 Shown are the typical approach and our modified approach that includes semi-automated abstract screening on the left and
right-hand, respectively (see text for details). In the modified approach the reviewers train and use a classification model to exclude
completely “irrelevant” citations ("Level 1a”). They will trust the model’s exclusions, and will review only the citations suggested by the
classification model.
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mistaken exclusion of an eligible paper is much more
costly than wrongly including an ineligible paper.
Our algorithm, Patient Active Learning (PAL),

attempts to overcome the pitfall of hasty generalization
in active learning. Briefly, our strategy works by first
exploring the space of citations by requesting labels for
randomly drawn instances until it is likely that a reason-
able representation of the minority class has been
encountered. Only then does the algorithm begin refin-
ing the current boundary via uncertainty sampling. The
heuristic used to decide whether or not the space of
minority examples has been adequately explored is a
function of the diversity over the encountered minority
examples thus far, as measured by the average angle
between each pair in kernel-space [28]. In particular,
when this value changes by less than or equal to � for a
pre-specified number of iterations, we assume the diver-
sities have converged and switch to uncertainty
sampling.
Typically, active learning frameworks have assumed

only one underlying feature-space. However, we repre-
sent citations as points in multiple feature-spaces (see
Figure 2) and build separate classifiers over each of
these. Thus we need to adapt active learning to an
ensemble (i.e., multiple-model) scenario. Moreover, we
must address how to aggregate the predictions of the
classifiers comprising this ensemble. Note that each fea-
ture-space will have its own corresponding separating
hyperplane; thus we may be confident about the class
membership of an example in one space while uncertain
about the same example in another. It is therefore desir-
able to refine the boundaries in all k feature-spaces,
rather than focusing on just one. Here we adopt the
naive approach of picking a feature-space at random by
flipping a fair, k-sided coin at each step in the active
learning process, and requesting the label for the exam-
ple closest to the hyperplane in this feature-space. Our
approach to aggregating classifier predictions is similarly
naive. Rather than outputting the majority vote of the k

classifiers as the prediction for a particular unlabeled
document, we predict “relevant” if any of the k classi-
fiers predicts “relevant”, due to our emphasis on
sensitivity.
Class Imbalance and Aggressive Undersampling
Our datasets are (at times, extremely) imbalanced, i.e.,
the prevalance of “relevant” citations is always smaller
than 50% (and often much smaller). Class imbalance
presents a problem for classification algorithms, because
they have typically been optimized for accuracy, rather
than sensitivity to a particular class. Many techniques
have been proposed to mitigate the effects of class
imbalance and are reviewed at length elsewhere [29,30].
Here, we undersample (i.e., throw away instances

from) the majority class (irrelevant citations) so that
there are an equal number of labeled examples from
each class prior to training our classifiers. This approach
has been shown to work well with respect to increasing
classifier sensitivity to the minority class [30]. We mod-
ify this strategy as follows: rather than undersampling
the majority class at random, as is traditionally done, we
throw out the majority examples nearest the current
separating hyperplane. We call this aggressive undersam-
pling. The idea is to explicitly push the decision bound-
ary away from the minority class, as it has been
observed that when there is class imbalance, SVMs are
prone to discovering hyperplanes that are closer to the
minority class than the ideal separating boundary,
resulting in false negatives [31].
Summary of the Proposed Method
In review, our strategy is outlined in Algorithm 1, and is
briefly summarized as follows. First, map each (initially
unclassified) abstract into points in k different feature-
spaces (here k = 4). Next, randomly pick abstracts for
the reviewer to label until it is likely that the space of
relevant citations has been explored (i.e., the diversity
scores converge); at this point, switch to active learning
via SIMPLE over a feature-space selected at random at
each iteration. When some stopping criterion is satisfied

Figure 2 An article is broken down into its component parts (title, abstract text, and keywords), and these are in turn represented as
either bag-of-words or bag-of-UMLS-biomedical concepts vectors.
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(e.g., a pre-specified number of labels has been pro-
vided), aggressively under-sample the majority class
(irrelevant abstracts) in each feature-space, then retrain
and return an ensemble of SVMs, one per feature-space.
Now, given an unlabeled abstract, d*, map d* into k fea-
ture vectors, and compute k predictions with the respec-
tive SVMs. If any of these predictions is “relevant”,
predict “relevant”, else predict “irrelevant”.
Algorithm 1 ScreenCitations(D)

Input: D - list of documents (citations) {d1, d2, ..., dN
}

1. // First, pre-process the documents
2. Initialize FSl for each of the k feature-spaces to
be used
3. for di in documents do
4. for l = 1 to k do
5. // This step includes mapping free-text (e.
g., title) to UMLS concepts
6. Extract and encode a point p for di in fea-
ture-space l
7. Add p to FSl // Thus FSli is the ith docu-
ment’s point in feature-space l
8. end for
9. end for
10.
11. // Now, start the training phase
12. Define (initially untrained) classifiers {svm1,
svm2,..., svmk}
13. U ¬ {1, 2, ..., N} // Put all the document
indices in the “unlabeled pool” initially
14. L ¬ {} // Initialize labeled pool
15. while Resources are available do
16. if sufficiently explored the space of minor-
ity examples then
17. // Pick the next example to label using
SIMPLE over a randomly selected feature-space
18. l ¬ random number between 1 and k
19. i ¬ index of unlabeled document closest
the hyperplane w.r.t. svml

20. else
21. i ¬ Random(U) // pick the next exam-
ple to label at random
22. end if
23. // Here the reviewer would label di
24. U ¬ U/i, L ¬ L ∪ i
25. for l = 1 to k do
26. svml ¬ train an SVM on examples {FSli
for i Î L}, using provided labels
27. end for
28. end while
29.
30. // Finally, before outputting the final models,
aggressively under-sample and re-train

31. m ¬ ||labeled irrelevant citations|| - ||
labeled relevant citations||
32. for l = 1 to k do
33. // Remove the m majority examples closest
to the hyperplane in this feature-space
34. Lundersampled ¬ L/ closest m irrelevant cita-
tions w.r.t. svml

35. svml ¬ train an SVM on examples {FSli for
i Î Lundersampled}
36. end for
37.
38. // Return the final models
39. return {svm1, svm2, ..., svmk}

end
Experimental Setup and Results
In this section we first outline our experimental setup,
including the datasets used, metrics considered and
methodology employed. Next, we present our empirical
results from experiments over three previously con-
ducted systematic reviews.
Datasets
We experimented with datasets from three systematic
reviews previously conducted by our team: the Proton
Beam dataset [32], the chronic obstructive pulmonary
disease (COPD) dataset (manuscript currently under
review) and the Micronutrients dataset [33]. These are
summarized in Table 1.
Evaluation of the Modified Approach
Generally, classifiers are evaluated by considering their
predictive performance as evaluated over a hold-out
dataset. However, in this work we are not interested in
predictive performance. We focus on whether a citation
screening approach as a whole can identify all citations
that are eventually eligible for the systematic review; we
do not care if said citations are identified during train-
ing, or when the classifiers are applied to the unlabeled
citations. To this end, we start our learners out with the
same small initial set of labeled data, and then allow
them to request labels for examples in the unlabeled
pool, U. The center confusion matrix in Figure 3 shows
the classifier predictions over the remaining unlabeled
examples in U. To this we add the “relevant” and “irre-
levant” citations labeled during training (the leftmost
matrix) to produce the rightmost confusion matrix, used
in the metrics defined below. Thus if an active learning
strategy is somehow good at finding hard-to-classify
examples in a pool during learning, and hence does not
have to predict labels for these difficult instances, it is
rewarded. We are concerned only with performance
over the total pool of citations initially returned by the
searches; anything else is immaterial for our purposes.
To make this point explicit, consider the following

extreme scenario. Active learning strategies often ask for
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labels for a subset of citations that is enriched with
“relevant” examples, compared to a random sampling.
In our explorations the SIMPLE active learning strategy
behaved this way. Assume an active learning strategy
that happens to identify all abstracts that are finally eli-
gible in the systematic review during training. We
would definitely use this strategy, irrespective of its
actual predictive performance; we do not care how it
performs in a hold-out independent dataset, as long as
it works well in the dataset at hand.
We introduce two metrics to evaluate citation screen-

ing approaches. The first metric, Yield, expresses the
fraction of the citations that are finally eligible for the
systematic review that are identified by employing a
given citation screening approach. The second metric,
Burden expresses the fraction of the total number of
citations, N, that a human has to review manually with
a given screening approach. In the typical approach
reviewers screen manually the whole set of N citations.
In the semi-automated approach they screen manually
the citations that are presented to them during training,
and only those suggested by the trained model as

“relevant” (Figure 1). Figure 3 helps fix notation.

Yield
tpT tpU

tpT tpU fnU
 

 
(1)

Burden
tpT tnT fpT tpU fpU

N
     (2)

In the typical approach of manual screening, both
Yield and Burden are 100%. In the semi-automated
approach the aim is to retain a Yield of 100% while
minimizing the Burden.
Experimental Setup
We simulated the application of our semi-automated
citation screening approach on datasets from three sys-
tematic reviews recently conducted by our team. We
used two datasets, the Proton Beam and COPD datasets,
during the development of our algorithm. From these
we generalized a simple, operational stopping criterion
for citation screening, i.e., a way of determining when
enough labels have been provided to use the built

Table 1 In simulating the modified approach we considered as “relevant” the citations that were retrieved in full text
("Level 1” screening in Figure 1).

Dataset Total citations (N) Retrieved in full text (% of N) Included in the systematic review (% of N)

Proton Beam 4,751 243 (5.1) 23 (0.5)

COPD 1,606 196 (12.2) 104 (6.5)

Micro Nutrients 4,010 258 (6.4) 139 (3.5)

The Proton Beam dataset is from a systematic review of comparative studies on charged particle radiotherapy versus alternate interventions for cancers [32]. The
COPD dataset is from a systematic review and meta-analysis of all genetic association studies in chronic obstructive pulmonary disease. The Micronutrients
dataset is from a systematic empirical appraisal of reporting of systematic reviews on associations of micronutrients and disease [33]. Note the class imbalance in
all three datasets.

Figure 3 Construction of confusion matrices for the semi-automated abstract screening strategy. The leftmost matrix represents citations
that are labeled by the reviewer while training the classification model. The middle matrix displays the predictions of the trained model over
the remaining unlabeled set of citations U. The rightmost matrix shows the corresponding crosstabulation at the end of “Level 1a” (see Figure 1).
The quantities mentioned in this figure are used in the definition of Yield and Burden, the chosen evaluation metrics (see Equations 1 and 2).
Superscripts T and U refer to model training and applying the model to yet unlabeled citations, respectively. tp[T|U]: “true positives”, tn[T|U]: “true
negatives”, fp[T|U]: “false positives”, fn [T|U]: “false negatives”. We assume that reviewers will never erroneously exclude a citation that is eligible for
systematic review, i.e. fnT = 0.
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classifier to classify the remaining citations. We kept the
Micronutrients dataset as a holdout set to assess the
generalizability of our approach and also to test our
derived stopping criterion.
Experiments over the three datasets were conducted

as follows. For each dataset, we initially hid all labels
except for two; one citation from each class ("relevant”
and “irrelevant”) was selected at random and provided
to the learning algorithm. (In practice systematic
reviewers always know at least one relevant citation
from the outset; indeed they often know of more than
one, and including more relevant citations from the
start would likely expedite training.) We then simulated
active learning by allowing the learning algorithm to
pick a number of citations to label at each step (we
used 5 in our experiments, arbitrarily). The labels of the
selected examples were revealed to the learner and sub-
sequently used in training, and the examples were then
removed from the unlabeled pool, U. Every 25 labels, we
evaluated the current classifier over the remaining
examples in U, calculating Yield and Burden as outlined
in the above section. We continued active learning until
U was exhausted, i.e., until all citations had been
labeled. This whole process was repeated 10 times, and
we report the averages over the runs.
Empirical Results
We first motivate the use of our variant of active learn-
ing, PAL, and aggressive under-sampling (see Algorithm
1) by presenting results over the Proton Beam dataset
for four different active learning strategies: naive ran-
dom sampling (equivalent to passive learning), classical
SIMPLE, PAL and PAL with aggressive undersampling.
All of the approaches shown use the same four feature-
spaces (see Figure 2) and a linear kernel SVM. (We
used linear kernels because our data is high-dimensional
[34]. We kept C set to its default value of 1 and did not
perform parameter tuning, as we found its affect on per-
formance to be negligible, possibly due to the sparseness
of the feature space.) In all but PAL with aggressive
undersampling we use standard undersampling, i.e., we
throw away labeled irrelevant abstracts at random to
achieve an equal class distribution prior to training the
final classifier. In Figure 4, one can see that PAL with
aggressive under-sampling (Algorithm 1) performs the
best over this dataset. If the reviewer labels 2,000
abstracts, this method reduces their Burden by a bit less
than half, on average. Moreover, not once were any of
the 23 truly relevant citations misclassified with this
method.
Over the COPD dataset, our citation screening

approach could have reduced the burden on reviewers
by approximately 40% while maintaining 100% sensitiv-
ity to the relevant citations, as can be seen in Figure 5,
at the 750-800 label mark. We omit the other

algorithms because PAL with aggressive undersampling
again performed best. This dataset is considerably smal-
ler, which likely explains the lower burden reduction
compared to the results over the Proton Beam dataset.
(We hypothesize that semi-automated citation screening
will be most useful on large datasets.)
We extrapolated a simple operational stopping criter-

ion from the results over the Proton Beam and COPD
datasets: we hypothesized that training on half of the
dataset would be sufficient to achieve 100% Yield. The
results over the Micronutrients dataset are shown in Fig-
ure 6. Using our simple stopping criterion of stopping
after half of the citations (2,000, in this case) are labeled
would have reduced the Burden on reviewers by nearly
half, on average, while maintaing 100% Yield.

Discussion
We managed to accomplish our goal of reducing the
number of abstracts that would have needed to be
manually screened by nearly 50% without missing any
relevant abstracts on the Proton Beam dataset. Likewise,
over the COPD systematic review data, our method
would have reduced the Burden on the reviewers by ~
40%, on average, again without missing any relevant
citations. However, our strategy was in a sense ‘opti-
mized’ for these two systematic reviews, because they
were used to evaluate and tune our approach (choice of
document representation, classification and re-sampling
algorithms, etc.) during testing and development.
Regardless, the fact that our technique performed so
well over ten independent runs on these real-world
datasets is encouraging.
From the COPD and Proton Beam datasets we extra-

polated a simple stopping criterion, i.e., a minimum
number of citations that need to be labeled for training
before applying the classifier to the remaining unlabeled
citations. This is an important practical issue in deploy-
ing a system for semi-automating the citation screening
process. If no such stopping criterion is provided,
reviewers will have no way of knowing how many cita-
tions they must manually screen. We observed that in
both the Proton Beam and COPD datasets Yield was
consistently 100% after half of the citations were labeled
(see Figures 4 and 5). We thus adopted this - labeling
half of the citations - as our hypothetical stopping cri-
terion for the Micronutrients dataset. Our results over
this hold-out dataset, which we did not experiment with
during the development of our algorithm, satisfied our
stated aim of achieving 100% Yield while significantly
reducing the Burden using our simple stopping
criterion.
These initial results are promising, but there is room

for improvement. In particular, while we achieved our
aim of achieving perfect sensitivity to relevant abstracts,
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the Burden remains rather high at 50 to 60%. Ideally, we
could reduce this burden while maintaining perfect
Yield. We are optimistic about the prospects of further
improving our method. Many sources of information
remain to be exploited. For example, we plan on incor-
porating more feature sets, including full document text,
citation networks, and so forth. Moreover, we plan on
further enriching the features that we are using, e.g. by
extracting UMLS concepts from the abstract text. Other
encoded ontologies might also provide a source of
enrichment [35].
Aside from new feature sets, a few algorithmic

improvements may improve performance. One obvious
technique that we plan on implementing is bagging [36],
in which multiple subsets of each feature-space would
be constructed at random from the labeled data, and
used to build ensemble classifiers over each feature-
space. Another possible improvement would be to fol-
low the suggestion of Kilicoglu et al. and employ differ-
ent classification algorithms over the different feature-
spaces [8] (here we used only SVMs). We are also inter-
ested in the emerging work on active learning over fea-
tures rather than instances [37], which may be helpful in
identifying phrases or UMLS concepts particularly char-
acteristic of relevant citations. Indeed, active learning
over features may provide a novel framework for

extracting and modeling the reviewer’s expertise. Finally,
exploiting latent hierarchical structure in the UMLS
ontologies might also be helpful, particularly because
active learning techniques for hierarchical data have
recently been developed [38].
Our results here are promising, but more extensive

testing remains to be done. We plan on assembling 20-
30 systematic review datasets for use in a large-scale
validation of our method.

Conclusions
We have presented a strategy for semi-automating the
laborious, tedious task of citation screening for systema-
tic reviews, and provided evidence that our method can
significantly reduce reviewers’ workloads. The burden
on researchers undertaking systematic reviews is only
going to increase with the exponentially growing body
of biomedical literature. This work is a step towards
alleviating a large part of this burden without sacrificing
the scientific thoroughness of conducted reviews.

Methods
Our code is written in Python and makes use of a modi-
fied version of LibSVM [39]. Abstract and title texts
were pre-processed by removing stop words from the
pubmed stop-word list [40], and also removing all

Figure 4 Yield (blue) and burden (red) curves for four learning strategies over the proton beam dataset as a function of the size of
thetraining set. The thick lines are averages over 10 runs. Thin lines denote individual runs. Clockwise from the upper left, the strategies shown
are: random sampling, SIMPLE, PAL, and PAL with aggressive undersampling. It is desirable to achieve maximum Yield while minimizing Burden.
The upper right-corner (100% yield and 100% burden) corresponds to the manual approach of citation screening. Every point where Yield (the
blue line) is at 1.0 and Burden (the red line) is less than 1.0 is thus progress. Note that Burden curves are U-shaped because classifiers trained on
very small training sets tend to classify the majority of the unlabeled citations as “relevant” (due to our undersampling and cautious aggregation
technique), and all citations classified as “relevant” must be subsequently screened by a human. When the training set is very large, the
reviewers manually screen the majority of the citations during training.
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words that appeared fewer than 3 times (this was an
arbitrary number picked to reduce feature-space size).
To extract UMLS concepts, we used the MetaMap

transfer application [24] (available at http://www.nlm.
nih.gov/research/umls/mmtx.html.) Using this program,
a list of all discovered UMLS terms was generated for
each abstract title in the whole set of abstracts. We then
mapped title texts to a bag-of-biomedical concepts
representation, treating the UMLS terms as words.
We fully plan on open-sourcing our abstract screening

code once it is further validated (and documented).
Indeed, we have included the source code used in
experimentation as additional file 1 (curious snake.zip).
We also plan to eventually make our systematic review

datasets publically available, to allow other researchers
to work with them. In the meantime, if a researcher is
interested in obtaining the current version of the code
(or datasets), he or she may contact the authors.

Additional file 1: Curious snake: a zipped archive of source code.
This is the source code used in experimentation. It is a modified version
of our Python-based active learning framework.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
55-S1.ZIP ]
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