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Abstract

Background: Nonparametric Bayesian techniques have been developed recently to extend the sophistication of
factor models, allowing one to infer the number of appropriate factors from the observed data. We consider such
techniques for sparse factor analysis, with application to gene-expression data from three virus challenge studies.
Particular attention is placed on employing the Beta Process (BP), the Indian Buffet Process (IBP), and related
sparseness-promoting techniques to infer a proper number of factors. The posterior density function on the model
parameters is computed using Gibbs sampling and variational Bayesian (VB) analysis.

Results: Time-evolving gene-expression data are considered for respiratory syncytial virus (RSV), Rhino virus, and
influenza, using blood samples from healthy human subjects. These data were acquired in three challenge studies,
each executed after receiving institutional review board (IRB) approval from Duke University. Comparisons are
made between several alternative means of per-forming nonparametric factor analysis on these data, with
comparisons as well to sparse-PCA and Penalized Matrix Decomposition (PMD), closely related non-Bayesian
approaches.

Conclusions: Applying the Beta Process to the factor scores, or to the singular values of a pseudo-SVD
construction, the proposed algorithms infer the number of factors in gene-expression data. For real data the “true”
number of factors is unknown; in our simulations we consider a range of noise variances, and the proposed
Bayesian models inferred the number of factors accurately relative to other methods in the literature, such as
sparse-PCA and PMD. We have also identified a “pan-viral” factor of importance for each of the three viruses
considered in this study. We have identified a set of genes associated with this pan-viral factor, of interest for early
detection of such viruses based upon the host response, as quantified via gene-expression data.

I. Background
When performing gene-expression analysis for inference
of relationships between genes and conditions/pheno-
types, one typically must analyze a small number of
samples, each composed of expression values from tens
of thousands of genes. In this setting the observed data
is X Î ℝp×n, where each column corresponds to one of
n samples, quantifying the associated gene-expression
values for all p genes under investigation. We typically

must address the “large p, small n“ problem [1], in
which often n ≪ p. Therefore, to yield reliable infer-
ence, one must impose strong restrictions on the form
of the model.
When developing regression and classification models

for gene-expression data, a widely employed assumption
(restriction) is that the model parameters are sparse,
implying that only a small subset of the genes are impor-
tant for prediction. If only a small set of genes (≪ p) are
responsible for differences in disease groups, then reliable
inference may often be performed even when n ≪ p.
Example approaches that have taken this viewpoint are
lasso [2], the elastic net [3], and related Bayesian
approaches [4]. In fact, sparse regression and
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classification algorithms are widely used in many statis-
tics and machine-learning applications, beyond gene ana-
lysis [5-7].
An important research direction for gene-expression

analysis, and many other applications, involves the use
of factor models [8-11]. To address the “large p, small
n” problem, sparseness is again imposed, now typically
on the factor loadings. Specifically, in an unsupervised
setting the data are assumed to satisfy

X AS E= + (1)

where A Î ℝp×r, S Î ℝr×n and E Î ℝp × n; if covari-
ates are available they may also be considered in the
model [11], with none assumed here. Note that here
and henceforth we assume that the gene-expression data
are centered in advance of the analysis; otherwise, there
should be an intercept added to the model. Considering
the jth sample, xj , corresponding to the jth column of
X, the model states that xj = Asj + ej , where sj and ej
are the jth columns of S and E, respectively.
The columns of A represent the factor “loadings”, and

rows of S are often called factors. To address the fact
that n ≪ p, researchers have typically imposed a sparse-
ness constraint on the columns of A [11], with the idea
that each column of A should ideally (in the gene appli-
cation) correspond to a biological “pathway”, which
should be defined by a relatively small number of corre-
lated genes. Within Bayesian formalisms, the sparse col-
umns of A are typically imposed via spike-slab-like
priors [1], [11], or alternatively via shrinkage (e.g., Stu-
dent-t [6]) priors. Several non-Bayesian approaches have
also been introduced, including sparse-PCA [12] and the
related Penalized Matrix Decomposition (PMD) [13].
A problem that is receiving increased attention in fac-

tor-analysis-based approaches is a means of defining an
appropriate number of factors (i.e., to infer r). The non-
Bayesian approaches are often sequential, and one may
infer r by monitoring the error ||E||F as a function of
iteration number [12], [13]. In many previous Bayesian
approaches r has just been set [11], and presumably
many non-biologically-relevant factor loadings are
inferred. A computationally expensive reverse-jump
MCMC approach has been developed [14], with compu-
tational efficiency improved in [15] while also consider-
ing a default robust prior specification. Perhaps the
most widely employed approach [16-18] for choosing r
is the Bayesian information criteria (BIC). A disadvan-
tage is that conditioning on a fixed choice of the num-
ber of factors ignores uncertainty and the BIC is not
well justified in hierarchical models, as the number of
parameters is unclear.
There has been recent interest in applying nonpara-

metric Bayesian methods [8], [9] to infer r (in fact, a

posterior distribution on r), based on the observed data
X. An example of recent research in this direction
employs the Indian Buffet Process (IBP) [19], [20]. In
this paper we also consider the Beta Process (BP), recog-
nizing that the BP and IBP are closely linked [21], [22].
For data sets with very large p (e.g., 10,000 or more),

computational efficiency is of major practical impor-
tance. In previous use of nonparametric Bayesian meth-
ods to this problem, a Gibbs sampler has typically been
employed [11]. The BP-based formulation admits a rela-
tively simple variational Bayesian (VB) [23] approxima-
tion to the posterior, which is considerably faster than
Gibbs sampling. An advantage of a VB analysis, in addi-
tion to speed, is that convergence is readily monitored
(for the Gibbs sampler there are typically challenges
when assessing convergence). We perform a comparison
of the difference in inferred model parameters, based on
VB and Gibbs analysis.
The specific data on which the models are employed

correspond to gene-expression data from recent viral chal-
lenge studies. Specifically, after receiving institutional
review board (IRB) approvals from Duke University, we
performed three separate challenge studies, in which indi-
viduals were inoculated with respiratory syncytial virus
(RSV), Rhino virus, and influenza. Informed consent was
used in all studies. Using blood samples collected sequen-
tially over time, we have access to gene-expression data at
pre-inoculation, just after inoculation, and at many addi-
tional time points up to the point of full symptoms (such
data were collected on all subjects, although not all
became symptomatic). Using these data, we may investi-
gate time-evolving factor scores of samples, to examine
how the response to the virus evolves with time. Of parti-
cular importance is an examination of the factors of
importance for individuals who became symptomatic rela-
tive to those who did not. In the factor analysis we con-
sider data individually for each of the three viruses (at all
times), as well as for all three viruses in a single analysis
(seeking pan-viral factors). Results are generated based on
nonparametric Bayesian approaches to factor analysis,
employing the Beta Process, the Indian Buffet Process, and
a related sparseness-constrained pseudo-SVD construction
(a Bayesian construction of sparse-PCA [12]). We also
make comparisons to the non-Bayesian Penalized Matrix
Decomposition (PMD) [13].

II. Results
A. Brief summary of models
We first provide a brief intuitive explanation of the
workings of the different Bayesian models considered.
These models are built around the Indian buffet process
(IBP) [19], so named for the following reason. In the
factor model of (1), the columns of A represent factor
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loadings in which the gene-expression values for sample
j are expressed: xi = Asj + ej . One construction of the
IBP constitutes a set of candidate columns of A, and
these are termed “dishes” at an Indian “buffet”. Each of
the n samples {xj}j = 1,n correspond to “customers” at
the buffet; each customer selects a subset of dishes from
the buffet (i.e., selects a subset of candidate columns of
A). The IBP is constructed such that the more a particu-
lar dish (column of A) is used by a subset of customers
{xj}j = 1,n, the more probable it is that it will be used by
other customers. Thus, the IBP imposes the idea that
many of the samples {xj}j = 1,n will utilize the same sub-
set of columns of A, but each sample may also utilize
idiosyncratic factor loadings, representing unique char-
acteristics of particular samples. The IBP construction
does not impose a total number of factors for the data
{xj}j = 1,n, with this number inferred by the analysis.
Thus, the IBP is a natural Bayesian method for inferring
the number of factors appropriate for representing all
observed data {xj}j = 1,n. A convenient means of imple-
menting the IBP employs the Beta process (BP) [21].
There are multiple ways in which one may utilize the

IBP/BP within the factor model, with three such meth-
ods considered here: (i) the BP is applied to the factor
scores S (termed below the BP construction), (ii) the
IBP is employed on the factor loadings A [8] (termed
below the IBP construction), and (iii) a BP-like con-
struction is employed to implement a Bayesian con-
struction of a singular-value decomposition of X
(termed below the pseudo-SVD construction). To realize
the approximate posterior density function for the para-
meters of these models, we have considered both
MCMC and VB computational methods. The specifics
of the BP, IBP and pseudo-SVD methods, as well as
computational details, are provided in Section IV.

B. Synthesized Data
The first validation example we considered was taken
from [8]. In this example the gene-factor connectivity
matrix of an E-coli network is employed to generate a
synthetic dataset having 100 samples of 50 genes and 8
underlying factors. The data had additive white Gaussian
noise with a signal-to-noise-ratio of 10. For this very
small-scale example we considered all three Bayesian
methods (BP, IBP and pseudo-SVD); in each case we
considered both MCMC and VB methods for inferring
the posterior density function. We also considered the
non-Bayesian PMD and sparse-PCA [13], [24]. All meth-
ods performed well in uncovering the proper number of
factors, and in capturing the proper genes associated
with each factor. For brevity we do not provide further
details on this example. While it is worthy of considera-
tion because it was considered in related published
research [8], its small-scale nature (only 50 genes)

makes it less relevant for the large-scale real application
we consider below. Therefore, in the next synthetic
example we consider a much larger-scale problem, and
consequently for that problem we were unable to test
against the IBP method.
The synthetic data were generated as follows. A total of

p = 10, 000 features (“genes”) are employed, and the
expression value for these p genes was constituted using
five factors (r = 5) plus a noise term E (i.e., via the model
in (1)). For each of the five factors, a unique set of 50
genes were selected and were given a factor-loading value
of one. In addition, ten more genes were selected, with
these shared among all five factors (again with unit-
amplitude contribution to the factor loadings). Thus, a
total of 260 genes contributed non-zero loadings to at
least one of the five factors. For all other genes the fac-
tor-loading contribution was set to zero. The above con-
struction defines the sparse matrix A in (1). The
components of S Î ℝr×n, for n = 150 samples, are drawn
i.i.d. from  (0, 1). The elements of the noise matrix E
are drawn i.i.d. from  ( , )0 0

1 − . The data X were then
utilized within the various factor-analysis models, with
the data-generation process repeated 100 independent
times (100 different X), with mean and standard-devia-
tion results presented on the inferred model parameters
(discussed below), based on the 100 runs.
We consider a range of noise variances 1/a0 to consti-

tute E, to address model performance as a function of
the signal-to-noise ratio (SNR). As one definition of
SNR, one may consider the average energy contributed
from a non-zero gene to a particular factor, relative to
the energy in the noise contribution for that gene, from
E. Based on the fact that the non-zero components of A
have unit amplitude, and the components of S are
drawn from  (0, 1), on average (across many sam-
ples) the energy contributed by a non-zero gene to a
particular factor is one. The average noise energy con-
tributed to each gene is 1/a0. Hence, the ratio of these
two quantities, a0, may be considered as a measure of
SNR. Other measures of SNR may be defined with
respect to this model, each of which will be defined in
terms of a0.
In Figure 1 are presented the average number of

inferred factors and the associated standard deviation on
this number, for the BP and pseudo-SVD models. We
also compare to the sparse-PCA model in [12]. The
integer K represents the truncation level in the models,
defining the maximum number of columns of A consid-
ered for analysis, from which r ≤ K columns are inferred
as needed to represent the data X. This is discussed in
detail in Section IV. In these examples the models were
each truncated to K = 30 factors. Consequently, when
30 factors are used, the models have effectively failed,
since the true number of factors is 5 and 30 is the
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maximum allowed within the model, given the trunca-
tion level under consideration. The MCMC results are
based upon 2000 burn-in iterations and 1000 collection
iterations (the results are similar when 10,000 collection
iterations are employed). Results are shown as a func-

tion of the standard deviation of the noise, 1 0/  .

The sparse-PCA model works well up to the point that
the noise variance equals the amplitude of the non-zero
values in A (approximate SNR of one), while most of
the Bayesian methods infer the proper number of fac-
tors to a higher level of noise.
In Figure 2 we examine how meaningful the inferred

factor loadings are. Specifically, recall that the data are
based upon 260 unique genes that contribute to the fac-
tor loadings. Based on the inferred factor loadings, we
rank the genes based upon their strength in the load-
ings. We then rank the genes from 1 to 260, based on
the above strength, and examine the percentage of the
top 260 inferred genes are consistent with truth. Consid-
ering Figure 2, all of the Bayesian methods perform well
in this task, up to a noise standard deviation of approxi-
mately 1.3, while sparse-PCA performs degrades quickly
beyond standard deviations of one (for SNR values
below one). Note that we also consider the Bayesian fac-
tor analysis model in [11]; we did not consider this

method in Figure 1 because it does not have a mechan-
ism for estimating r-we simply set r = K in this analysis,
using the same K = 30 as employed for the other Baye-
sian methods. In [11] the authors only considered an
MCMC implementation, where here we consider both
MCMC and VB inference for this model; further, here
we have employed a Student-t prior on the components
of the factor loading matrix A, where in [11] a spike-
slab prior was employed.
Concerning sparse-PCA [12] (and PMD, not shown),

every effort was made to optimize the model parameters
for this task. Our experience is that, while sparse-PCA and
PMD [13] are very fast algorithms, and generally quite
effective, they are not as robust to noise as the Bayesian
methods (the Bayesian methods are also less sensitive to
parameter settings). It is possible that the sparse-PCA and
PMD results could be improved further if the model para-
meters are optimized separately for each noise level (and
the Bayesian results may also be improved with such tun-
ing). However, the model parameters were fixed for all
noise variances considered (since the noise variance is
often not known a priori, with the sparse-PCA carefully
tuned to achieve the best results in such a circumstance.
We also performed additional simulated examples of

the type discussed above, the details of which are
omitted for brevity. In those experiments the different

Figure 1 Number of inferred factors for various algorithms, as applied to synthesized data (for which there are five factors used to
generate the data). The data were generated randomly 100 times, with mean and standard deviation depicted. The horizontal axis denotes

1 0/  .
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genes did not have the same noise variance. The Baye-
sian methods, which as indicated above infer the noise
variance separately for each gene, performed as well as
in Figures 1 and 2. However, the sparse-PCA and PMD
models performed relatively poorly in this case, since
they assume the same noise variance for all genes. The
assumption of a constant noise variance for each gene
may not be as appropriate for real data.

C. Details on Data Collections for Three Viral Challenge
Studies
We considered three cohorts of healthy volunteers
experimentally infected with either rhinovirus, respira-
tory syncytial virus (RSV) or influenza A; these three
challenges were performed separately, with no overlap
in the subjects. All exposures were approved by the
Duke University institutional review board and con-
ducted according to the Declaration of Helsinki. The
three challenges are briefly summarized here, with
further details provided in [25].
Human Rhinovirus cohort
We recruited 20 healthy volunteers via advertisement to
participate in the rhinovirus challenge study through an
active screening protocol at the University of Virginia
(Charlottesville, VA). On the day of inoculation, 106

TCID50 GMP rhinovirus (Johnson and John-son) was
inoculated intranasally. Subjects were admitted to the

quarantine facility for 48 hours following rhinovirus
inoculation and remained in the facility for 48 hours fol-
lowing inoculation. Blood was sampled into PAXGen-
e™blood collection tubes at pre-determined intervals
post inoculation. Nasal lavage samples were obtained
from each subject daily for rhinovirus titers to accu-
rately gauge the success and timing of the rhinovirus
inoculation. Following the 48th hour post inoculation,
subjects were released from quarantine and returned for
three consecutive mornings for sample acquisition and
symptom score ascertainment.
Human RSV cohort
A healthy volunteer intranasal challenge with RSV A
was performed in a manner similar to the rhinovirus
intranasal challenge. The RSV challenge was performed
at Ret-roscreen Virology, Ltd (Brentwood, UK) using 20
pre-screened volunteers who provided informed con-
sent. On the day of inoculation, a dose of 104 TCID50
respiratory syncytial virus (RSV; serotype A) manufac-
tured and processed under current good manufacturing
practices (cGMP) by Meridian Life Sciences, Inc. (Mem-
phis, TN USA) was inoculated intranasally per standard
methods. Blood and nasal lavage collection methods
were similar to the rhinovirus cohort, but continued
throughout the duration of the quarantine. Due to the
longer incubation period of RSV A, subjects were not
released from quarantine until after the 165th hour and

Figure 2 Considering the same data as in Figure 1, for which 260 genes had non-zero contributions to the factor loadings used for
data generation, we plot the percentage of the inferred most important 260 genes that are consistent with the true genes used for
data generation. A value of 100% implies that all of the inferred top-260 genes are consistent with those used for data generation. The data
were generated randomly 100 times, with mean and standard deviation depicted.
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were negative by rapid RSV antigen detection (Binax-
Now Rapid RSV Antigen; Inverness Medical Innova-
tions, Inc).
Influenza cohort
A healthy volunteer intranasal challenge with influenza
A/Wisconsin/67/2005 (H3N2) was performed at Retro-
screen Virology, LTD (Brentwood, UK), using 17 pre-
screened volunteers who provided informed consent.
On the day of inoculation, a dose of 106 TCID50 Influ-
enza A manufactured and processed under current good
manufacturing practices (cGMP) by Bayer Life Sciences,
Vienna, Austria was inoculated intranasally per standard
methods at a varying dose (1:10, 1:100, 1:1000, 1:10000)
with four to five subjects receiving each dose. Due to
the longer incubation period of influenza as compared
to rhinovirus, subjects were not released from quaran-
tine until after the 216th hour. Blood and nasal lavage
collection continued throughout the duration of the
quarantine. All subjects received oral oseltamivir (Roche
Pharmaceuticals) 75 mg by mouth twice daily prophy-
laxis at day 6 following inoculation. All patients were
negative by rapid antigen detection (BinaxNow Rapid
Influenza Antigen; Inverness Medical Innovations, Inc)
at time of discharge.
For each viral challenge, subjects had samples taken

24 hours prior to inoculation with virus (baseline),
immediately prior to inoculation (pre-challenge) and at
set intervals following challenge. For the rhinovirus chal-
lenge, peripheral blood was taken at baseline, then at 4
hour intervals for the first 24 hours, then 6 hour inter-
vals for the next 24 hours, then 8 hour intervals for the
next 24 hours, and then 24 hour intervals for the
remaining 3 days of the study. For the RSV and influ-
enza challenges, peripheral blood was taken at baseline,
then at 8 hour intervals for the initial 120 hours, and
then 24 hours for the remaining 2 days of the study. All
results presented here are based on gene-expression
data from blood samples. For the RSV and Rhino virus
cases not all blood samples were converted to gene
expression values, as a cost-saving measure. Hence, for
these two cases the gene expression data are not
sampled as finely in time as are the influenza data.
In the statistical analysis, the matrix X in (1) has col-

umns that correspond to the n samples; n = nsnt, with
ns representing the number of subjects and nt the num-
ber of sample time points. We do not impose a prior on
the time-dependence of the factors scores, and uncover
this time dependence via the inferred posterior distribu-
tion of factor scores S.

D. Analysis of influenza data
The gene-expression data consisted of over p = 12, 000
genes, and consequently we found that the IBP
approach developed in [8] was computationally

intractable. We found that the VB and MCMC results
were generally in good agreement for this real data, and
therefore the two very distinct computational tools
served to cross-validate each other. The VB and MCMC
computations also required similar CPU time (for the
number of Gibbs iterations considered); while the VB
analysis required far fewer iterations to converge, each
iteration is significantly more expensive than that asso-
ciated with the Gibbs sampler.
For brevity, we here focus exclusively on MCMC solu-

tions when considering Bayesian analysis. Results are
presented using the BP and pseudo-SVD methods, as
well as via PMD [13] (similar results were computed
using sparse-PCA [24]). We note that the design of each
the experiments involves samples from the same sub-
jects observed at multiple time points (with different
subjects for the three viruses). Therefore, the assump-
tion within the models that the samples at different
times are statistically independent may warrant reconsi-
dering in future studies. This subject has been consid-
ered in related work [26], although that research
assumes a known factor structure and Gaussian latent
factors.
We first consider results based on the BP as applied to

the factor scores. In these results we set K = 30 (recall
this is the truncation level on the number of factors),
and inferred approximately r = 13 important factors (see
Figure 3); although only approximately r = 13 factors
are used, we show the factor scores for all K = 30 possi-
ble factors such that the sparseness of the unused fac-
tors is evident, as inferred via the posterior. The results
in Figure 3 correspond to one example (representative)
collection sample from the Gibbs sampler; Factor 1,
which is most closely tied to the symptomatic/asympto-
matic response, is employed by all data, while other fac-
tors are used more idiosyncratically (e.g., Factors 3 and
14 are only used by a small subset of the data samples;
see the detailed discussion of the model in the Methods
section).
At each time point, there are data from 17 subjects

(the same individuals were sampled at a sequence of
times). The horizontal axis in Figure 3 corresponds to a
sequence of groups of data, proceeding in time from
inoculation, with generally 17 samples per time point
(all data will be released for other investigators to
experiment with). The blue points correspond to sam-
ples of individuals who eventually became symptomatic,
and the red points to asymptomatic individuals.
The vertical axis in these plots corresponds to the fac-

tor score associated with the respective sample. We
observe in Figure 3 that Factor 1 (the factor indexing is
arbitrary) provides a clear discriminator of those who
will become symptomatic, particularly as time proceeds
(note that the model is completely unsupervised, and
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therefore this discriminating power was uncovered with-
out using label information).
Having introduced the form of the data presentation,

we now present results using the pseudo-SVD method
and PMD; for the pseudo-SVD method we again show
one (typical) sample from the Gibbs collection samples,
while for PMD the results are the single solution. In

Figures 4 and 5 we present results, respectively, for the
Bayesian pseudo-SVD model and for PMD [13]. For the
Bayesian methods we again set K = 30. Both methods
uncover a relatively small (less than K) number of rele-
vant factors.
Note that in each case there appears to be one factor

that clearly distinguishes symptomatic vs. asymptomatic,

Figure 3 Factor-analysis of Flu data with BP applied within design of factor scores, as discussed in Section IV-B. The MCMC inference
was based on 2000 burn-in iterations and 500 collection iterations, and factor scores are depicted for one (typical) collection sample from the
Gibbs sampler. Approximately thirteen factors were inferred with non-zero factor scores (shown at right), and at left is a blow-up of the factor
that most separates symptomatic (blue) from asymptomatic (red) samples. The horizontal axis denotes time in hours. The data were collected in
groups, at discrete times; the results at a given time are shifted slightly along the horizontal axis with respect to one another, to enhance
readability.

Figure 4 Factor-analysis of Flu data with Bayesian pseudo-SVD applied within design of factor scores, applied to the Flu data. Results
are presented in the same form as Figure 3.
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particularly as time increases. Upon examining the impor-
tant genes in each of these factors, one recognizes a high
level of overlap (suggesting consistency between the differ-
ent methods). Further discussion of the associated genes
and their biological significance is provided in [25].

E. Pan-viral factors
We now consider a “pan-viral” analysis, in which data
from all three viruses are analyzed jointly. For further con-
ciseness, for this example we only present results for the
BP applied to the factor scores; similar results were
obtained with the Bayesian pseudo-SVD framework and
by PMD.
Since three viruses are now considered jointly, we

have increased K to K = 60 in this example, and now
approximately 46 factors were inferred (with non-zero
factor scores). Considering Figure 6, we note that Factor
20 provides good discrimination between the sympto-
matic (blue) and asymptomatic (red) samples, with this
factor examined more closely in Figure 7. This same fac-
tor is able to distinguish the samples of each virus, at
sufficient time after inoculation (a single “pan-viral” fac-
tor has been inferred, able to separately distinguish
symptomatic vs. asymptomatic for each of the three
viruses considered). Factor 19 in Figure 6 also appears
to provide separation between symptomatic and asymp-
tomatic samples; however, this is manifested because it
contains two genes that are highly discriminative (SERP-
ING1 and TNFAIP6), with most of the other genes in
Factor 19 not discriminative. When addressing biologi-
cal significance in [25], the focus is on Factor 20 in
Figure 6, as it contains numerous discriminative genes.
In these figures we are again showing one (typical) sam-
ple from the Gibbs collection.

It is also of interest to consider Factors 1 and 2 in
Figure 6. Each of the samples from the individual
viruses is offset by a distinct amplitude, almost entirely
independent of whether the sample was symptomatic
or asymptomatic. This phenomenon associated with
Factors 1 and 2 in Figure 6 is attributed to challenge-
study-dependent offsets in the data (the gene-expres-
sion values were obtained separately for each of these
studies, and the data normalized separately), which
account for different normalizations of the data
between the three distinct viral challenges. This under-
scores that not all factors have biological significance,
with some a consequence of the peculiarities of gene-
expression data (study-dependent offsets in normaliza-
tion). The other factor-analysis methods (omitted here
for brevity) produced very similar normalization-
related factors.
In Figure 8 are depicted the important genes asso-

ciated with the discriminative pan-viral Factor 20 in Fig-
ure 6. It is a subject of further research, but based on
the data analyzed thus far, it appears the FA model
applied to gene-expression data cannot distinguish well
between the different viruses. However, we have applied
FA jointly to our pan-virus data and to bacterial data
available from related but distinct studies [27]. From
that analysis we are able to distinguish between viral-
based phenotypes and bacteria-based phenotypes; this is
discussed in greater detail in [25].
We have here identified many genes that are inferred

to be connected with the viruses under study. It has
been observed, by the medical doctors on our research
team, that the inferred genes are closely aligned with
relevant known pathways, with this discussed in detail
in [25].

Figure 5 Factor-analysis of Flu data with PMD [13]applied within design of factor scores, applied to the Flu data. Blue points correspond
to samples of individuals who ultimately become symptomatic, and the red points correspond to asymptomatic samples.
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III. Conclusions
We have examined two distinct but related objectives.
First, in the context of Bayesian factor analysis, we have
examined three ways of inferring an appropriate number
of factors. Each of these methods is based on a different
means of leveraging the utility of the Beta Process, and
the closely related Indian Buffet Process (IBP). In the
context of such models, we have examined inference
based on variational Bayesian analysis, and based on a
Gibbs sampler. We have also compared these Bayesian
approaches to state-of-the-art non-Bayesian factor
models.
The second contribution of this paper is the introduc-

tion of a new set of gene-expression data, from three
time-evolving viral challenge studies. These data allow
one to examine the time-evolution of Rhino virus, RSV
and Influenza-A. In addition to the gene-expression
data, we have also recorded clinical symptom scores, to
which the gene-expression analysis may be compared.

With the limited space available here, we have presented
results on the Influenza data alone, and for all three
viruses together (a “pan-viral” analysis).
Based on this study, we may make the following obser-

vations. For the number of Gibbs iterations deemed
necessary, the VB and MCMC inference approaches
required comparable computation time (VB was slightly
faster, but not substantially). Although VB requires far
fewer iterations (converges typically in 50 iterations),
each VB iteration is significantly more expensive than
that associated with MCMC. The advantage of using
these two very distinct computational methods on the
models considered is that they serve to cross-validate
each other (providing confidence in the results, when
these two very different methods agree, as they generally
did in the studies considered).
Of the three methods of inferring the number of fac-

tors, the IBP applied to the factor loadings works well
for small-scale problems, but it is computationally

Figure 6 Factor-analysis performed jointly to the Flu, RSV and Rhino data, with BP applied within design of factor scores, as discussed
in Section IV-B. Results are presented in the same form as Figure 3; the first 220 samples correspond to the Flu data, the next 210 samples
correspond to Rhino virus, and the remaining samples correspond to RSV.
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intractable for the large-scale viral data considered here.
Applying the Beta Process to the factor scores, or to the
singular values of a pseudo-SVD construction, yields
reliable and high-quality results.
It is not our purpose to provide a detailed (perhaps

philosophical) discourse on the relative merits of Baye-
sian and non-Bayesian approaches. However, we
observed that the non-Bayesian Penalized Matrix
Decomposition (PMD) yielded very high-quality results,
as long as the model parameters were set carefully via
cross-validation; very similar phenomenon was observed
for the closely related sparse-PCA. Both PMD and
sparse-PCA infer an appropriate number of factors, but
one must very carefully set the stop criterion. Since
PMD and sparse-PCA are much faster than the Bayesian
approaches, perhaps a good compromise is to use the
output of these models to initialize the Gibbs sampler in
a Bayesian solution (this is a subject for future research).
Concerning the viral data, it was observed that all

methods were able to infer a factor that was capable of
distinguishing those subjects who would become symp-
tomatic from those who would not. It was possible to
infer a “pan-viral” factor, that was discriminative for all
viruses considered.

The evolution of the factor scores tracked well the
recorded clinical symptom scores. Further, for the dis-
criminative factor, there was a good association between
the genes inferred as important and the associated biol-
ogy [25] (with interpretation provided by the medical
doctors on our research team).

IV. Methods
A. Basic sparse factor model
Recall the factor model in (1); r defines the number of
factors responsible for the data X, and it is not known in
general, and must be inferred. Within the analysis we will
consider K factors (K columns of A), with K set to a
value anticipated to be large relative to r. We then infer
the number of columns of A needed to represent the
observed data X, with this number used as an estimate of
r. Since we will be performing a Bayesian analysis, we will
infer a posterior density function on r. Henceforth we
assume A has K columns, with the understanding that
we wish to infer the r <K columns that are actually
needed to represent the data.
Let ak represent the kth column of A, for k = 1, . . . ,

K, and ej and sj represent respectively the jth columns
of E and S (with j = 1, . . . , n). Within the imposed

Figure 7 Detailed view of factor 20 in Figure 6; blue points correspond to symptomatic subjects, and red to asymptomatic. Influenza
results are top-left, Rhino top-right, and RSV at bottom. The horizontal axis denotes time in hours. The data were collected in groups, at discrete
times; the results at a given time are shifted slightly along the horizontal axis with respect to one another, to enhance readability.
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prior, vectors ej and sj are generated as sj ~  (0, IK),
and e j p~ ( , ( , , )) 0 1

1 1diag  − −… ; IK is the identity
matrix and the precisions (ψ1, . . . , ψp) are all drawn i.i.
d. from a gamma prior.
One may consider many alternative means of defining

sparseness on the ak, with the choice often dictated by
convenience; we discuss two such methods here. In one
approach [11] one may employ a spike-slab prior:

A w w

w Beta a b Gamma
lk lk lk k

lk k

~ ( ) ( , )

~ ( , ) ~ (

 


0
11 0+ − −  , 

   ,   cc d, )
(2)

where (a, b) are selected as to strongly favor wlk ® 1,
δ0 is a distribution concentrated at zero, and l = 1, . . . ,
p. The advantage of (2) is that sparseness is imposed
explicitly (many components of ak are exactly zero).
An alternative to (2) is to employ a Student-t prior

[6], implemented via the hierarchical construction

A a Gamma e flk lk lk~ ( , ) ~ ( , ) 0 1 −  ,    (3)

but now with (e, f) selected as to constitute a Student-
t sharply peaked about zero. One may employ a similar
construction to impose a double-exponential (Laplace)
sparseness-promoting prior [4].

B. Beta process for inferring number of factors
The Beta Process (BP) was first developed by Hjort for
survival data [28], and more recently it has found
many other applications and extensions [19-21]. We
here seek to provide a simple discussion of how this
construction may be of interest in inferring an appro-
priate number of factors in factor modeling [22]. Our
goal is to use the BP construction, which is closely
related to the Indian buffet process (IBP) [19-21], to
infer the number of factors r based on the observed
data X.
Consider a measure drawn H ~ BP(a, b, H0) and con-

structed as

H K K Hk
k

K

a k kk
= −

=
∑    

1
01, Beta K  ~ ( / , ( ) / ), ~ (4)

We seek to link our construction explicitly to the fac-
tor model, and therefore ak is the kth candidate factor
loading (column of A), and H0 is defined by the con-
struction in (2) or (3), depending upon which model is
used. The expression πk represents the probability that
ak is used to represent any particular data sample,
defined by the columns of X. The expression δak repre-
sents a unit point measure concentrated at ak.

Figure 8 Set of important genes inferred for combined analysis of Flu, RSV and Rhino data, associated Factor 20 from the BP applied
to the factor scores (Figure 6). Blue points correspond to samples of individuals who ultimately become symptomatic, and the red points
correspond to asymptomatic samples. The first 220 samples correspond to the Flu data (encompassing a total of 108 hrs), the next 210 samples
correspond to Rhino virus (encompassing a total of 96 hrs), and the remaining samples correspond to RSV (encompassing a total of 165.5 hrs).
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The BP is closely linked with a Bernoulli Process BeP
(H) [21]. Specifically, for the jth column of X, we per-
form a draw from the Bernoulli process

B z z z jj kj

k

K

a kj kj kk
= ∈ =

=
∑

1

1 0 11 1 , { , }, ~ ( ) , ,  Bernou i   . . .  ,, n (5)

where the H in BeP(H) is drawn H ~ BP(a, b, H0), as
defined in (4). As discussed further below, if zkj = 1 then
ak is used as a factor loading to represent xj, the jth col-
umn of X; if zkj = 0, ak is not used to represent xj. In
other words, Bj is a sum of point measures (δak is a unit
point measure concentrated at ak), and the binary vari-
ables zkj denote whether specific δak are employed
within Bj. More details on such constructions may be
found in [21].
To make a connection to the introductory comments

in Section II-A, and to relate the model to the IBP [19],
we consider the above construction in the limit K ® ∞.
Further, we marginalize (integrate) out the probabilities
(π1, . . . , πK ) used to constitute the BP draw H; we
retain the K candidate factor loadings {ak}k = 1,K used to
define A, as drawn from the BP. Recall that xj represents
the jth data sample (jth column of X). We assume that
the data samples (“customers”) select from among
“dishes” at a “buffet”, with the dishes defined by {ak}k =

1,K . Data sample x1 enters the buffet first, and selects
the first ν1 dishes a1, . . . , aν1 , where ν1 is a random
variable drawn from Possion(a/b). Therefore, the first
column of S has the first ν1 elements as non-zero, with
the remaining elements in that column set to zero. The
second “customer” x2 then enters the buffet, and selects
from among the first ν1 dishes; the probability that x2
selects ak, for each of k Î {1, . . . , ν1}, is 1/(b + 1); i.e.,
zk2 ~ Bernoulli(1/(b + 1)), for k Î {1, . . . , ν1}. Customer
x2 also selects ν2 new dishes {aν1+1 . . . , aν1+ν2 }, with ν2
~ Possion(a /(b + 1)). Hence, zk2 = 1 for k Î {ν1 + 1, . .
. , ν1 + ν2}, and unless stated explicitly otherwise, all
other components of zjare zero. This process continues
sequentially, with each xj entering the buffet in ascend-
ing order of j. Sample xJ , with J Î {1, . . . , n} selects

dishes as follows. Let C vJ jj

J
− =

−= ∑1 1

1
represent the

cumulative number of dishes selected off the buffet,
among the previous customers {x1, . . . , xJ−1}. Further,
let mJ−1,k ≥ 1 represent the total number of times dish
ak has been selected by previous customers {x1, . . . , xJ
−1}, for k Î {1, . . . , CJ−1}. Then xJ selects dish ak, k Î
{1, . . . , CJ−1}, with probability mJ−1,k/(b + J − 1); i.e.,

z
m

Jk J
J k

,
,~ Bernoulli −

+ −
⎛
⎝
⎜

⎞
⎠
⎟

1

1 for k Î {1, . . . , CJ−1}.

Note that the more “popular” ak among the previous J −
1 customers (i.e., larger mJ−1,k), the more probable it is

that it will be selected by xJ . Additionally, xJ selects
new dishes ak for k Î {CJ−1 + 1, . . . , CJ−1 + νJ}, where

v
JJ ~ Poisson 

 + −
⎛
⎝⎜

⎞
⎠⎟1
. Therefore we have zk, J = 1

for k Î {CJ−1 +1, . . . , CJ−1 + νJ}. Thus, each new custo-
mer selects from among the dishes (factor loadings)
already selected by at least one previous customer, and
the more “popular” one of these dishes is, the more
probable it is that the new customer will select it.
Further, a new customer will also select additional
dishes (factor loadings) not selected by any of the pre-
vious customers. However, note that as J increases, the

draws v
JJ ~ Poisson 

 + −
⎛
⎝⎜

⎞
⎠⎟1

are likely to be

decreasing in size, since 
 + −J 1 is getting smaller

with increasing J. Therefore, although K ® ∞, a finite
subset of the candidate dishes (factor loadings) {ak}k = 1,

K will be used among the n customers, defined by the
columns of X, thereby imposing sparseness in the use of
factor loadings. This model is also fully exchangeable, in
that the order of the columns of X may be permuted,
with no change in the properties of the prior [19]. The
model imposes that many of the n samples will share
the same set of factors, but the model is flexible enough
to allow idiosyncratic (sample-dependent) factor usage.
In practice K is finite, and therefore it is also if inter-

est to consider the properties of this prior for finite K.
For finite K, one may show that the number of non-
zero components of zj is drawn from Binomial(K, a /(a
+ b(K − 1))), and therefore one may set a and b to
impose prior belief on the number of factors that will be
important. The expected number of non-zero compo-
nents in zj is aK/[a + b(K − 1)].
To complete the model specifications, note that ak

from the Beta-Bernoulli construction above defines the
kth column of the factor-loading matrix A. The factor-
score matrix S utilizes the binary vectors zj = (z1j , . . . ,
zKj)

T defined in (5), for j Î {1, . . . , n}. Specifically, we

define the jth column of S as s s zj j j= ˆ  (∘ represents a

point-wise, or Hadamard product), with ˆ ~ ( , )s j K 0 I .

The vector product ŝ zj j selects a subset of the com-

ponents in s j
∧ , setting the rest to zero, and therefore

the columns of S are sparse.

C. Sparse factor modeling with BP/IBP placed on factor
loadings
In the above discussion the Beta-Bernoulli and IBP pro-
cesses were presented for a specific construction of the
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factor-analysis model, with the goal of making the con-
nection to the model explicit and hence clearer. How-
ever, there are alternative ways of utilizing the IBP for
design of factor models. Specifically, rather than using
the binary vectors to construct S, as above, they may
alternatively be used to define A, with factor scores
designed as in traditional factor models. This approach
was considered in [8], using an Indian Buffet Process
(IBP) construction (explicitly using the marginalization
discussed above). A limitation of this approach is that
one must perform p draws from the IBP to construct A,
and typically p is very large for the gene-expression pro-
blems of interest. When presenting results in Section
II-B, we discuss our experience with this model on
small-scale problems, although this approach was found
computationally intractable for the motivating virus stu-
dies considered in Section II-D.

D. Constructing pseudo singular values
The final Bayesian construction considered for inferring
r is closely related to the non-Bayesian sparse-PCA [12]
and penalized matrix decomposition (PMD) [13] mod-
els. We generate the vectors {ak}k = 1,K as before, using a
sparseness-promoting prior like that discussed in Sec-
tion IV-A. Further, the factor scores ξk for factor loading

k is drawn ξk ~  (0, In), for k K k
T= …1, , ; constitu-

tes the kth row of S, and we consider K such rows, for
large K (relative to the anticipated r). Finally, the vector
of pseudo singular values l = (l1, . . . , lK ) is generated

   

  Bernoulli  ,   

  Beta K

=
= …

−

z w

z k K

K K
k k

k


~ ( ) , ,

~ ( / , / (


  

1

1))) , ,

~ ( , )

 ,   

 I

k K

K

= …1

0w 

(6)

The matrix product AS in (1) is now constituted as

k k k
T

k

K
a =∑ 1

. The non-zero components of l select

the columns of A used across all columns of X. As dis-
cussed in Section IV, the number of non-zero compo-
nents of l is drawn Binomial(K, a/(a + b(K − 1))), and
the posterior on the number of such components pro-
vides desired information on the number of factors r.
Note that this construction is like the Beta-Bernoulli
process discussed above, in that it utilizes πk ~ Beta(a/
K, bK/(K − 1)) and the Bernoulli distribution; however,
it only draws the binary vector z once, and therefore
there is not the idea of multiple “customers”, as in the
two IBP-related formulations discussed above.

E. Computational issues, model quality and hyper-
parameter settings
The MCMC results presented here correspond to using
5000 collection samples, after a burn-in of 2000 itera-
tions. However, with 2000 burn-in iterations and 500
collection samples, the average results of the factor
scores and factor loadings are almost identical to those
found with 5000. For all MCMC results, we employed a
singular value decomposition (SVD) of the data matrix
to initialize the factor loading and factor score matrix in
the FA model, as well as the right-and left-singular
matrix in the matrix decomposition model. For each
iteration of the Gibbs sampler a particular number of
factors r are employed, and based upon all collection
samples one may infer an approximate posterior distri-
bution for r. Running on a typical modern PC, the com-
putation times are summarized in Table 1 for the
different models, as applied to the influenza data (using
100 VB iterations).
To be explicit, we provide detailed hyper-parameter

settings for the model in (7)-(14); the other models are
set similarly. Specifically, a = 1, b = 1, c = 1, and d = g
= h = e = f = 10−6. These parameters were not opti-
mized, and were set in the same manner for all experi-
ments. Although the PMD model is a non-Bayesian
method, it also has parameter settings that must be
addressed carefully; two hyper-parameters need adjust-
ing: the sparseness threshold and the stop condition
[13]. In all PMD experiments, we set the sparseness
threshold as 4, and the PMD iterations were terminated
when the reconstruction error was smaller than 5%.
All calculations were performed on PCs with Intel

Pentium Dual E2200 processors and 2.00 GB memory,
and all software was written in Matlab. For the large-
scale analysis performed on the real data discussed
above, MCMC required approximately 4 hours of CPU,
while VB required 3 hours (per analysis).

Appendix: Gibbs and Variational Bayesian
Analysis
We here provide a concise summary of the inference
methods applied to one of the Bayesian FA models dis-
cussed above, with this representative of the analysis
applied to the rest. Specifically, we consider the model

Table 1 Relative CPU times of the different models,
implemented on a pc, as applied to the influenza data.
the pmd method required a few minutes

CPU Time VB
(hours)

CPU Time MCMC
(hours)

BPFA 0.5 4.87

Bayesian Pseudo-
SVD

0.11 3.47

FA in [11] 0.11 4.87
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discussed in Section IV-B, in which the BP is applied
within the factor-score matrix. The complete model
may be expressed as

x Ai i i pz s diag~ ( ( ), ( , , ))   1
1 1− −… (7)

zki k~ ( )Bernoulli  (8)

  k K K  Beta K~ ( / , ( ) / )− 1 (9)

A jk jk ~ ( , ) 0 1 − (10)

s i K I~ ( , ) 0 1 − (11)

 jk Gamma c d~ ( , ) (12)

 j Gamma g h~ ( , ) (13)

 ~ ( , )Gamma e f (14)

where i = 1, . . . , n, j = 1, . . . , p and k = 1, . . . , K.

Gibbs sampler
The full likelihood of the model is

p x A z s s
i

n

i i i i K( , , , , ) ( ; ( ( )), ) ( ; , )X Z A S   =

×

=

− −∏ 
1

1 10 diag( ) I


k

K

j

p

jk jk jk

k

K

i

n

A c d
==

−

==

∏∏

∏∏×

11

1

11

0

11

( ; , ) ( ; , ) Gamma

Bernou ii Beta( )

Gamma Gamma

( ; ) ; ,
( )

( ; , ) ( ;

z
K

K

K

g h e

ki k k

j

p

j

 
 

 

−

××
=

∏

1

1

,, )f

The sequential update equations of the Gibbs sampler
are as follows.
• Sample each entry of the binary matrix, zki. The

probability of zki = 1 is expressed as

p z

A A s A

ki ki k

k
T

k ki k
T

( | , , , , ) ln( )

( ( ) (

= ∝

− −

−1

1
2

22

X Z A S  

diag diag  ) ).X i
k

kis−

• Sample πk from p(πk|-) = Beta(πk;a’,b’) where

 ′ = +=∑ z
Kkii

n

1
and  ′ = + − − =∑n

K
K

zkii

n( )1
1

.

• Sample each entry of factor loading matrix, Ajk from

p(Ajk|−) =  (Ajk; μjk, Σjk) where

Σ Σjk ji

n
ki ki jk jk jk ji

n
ki ki ji

ks z z s= +⎡
⎣⎢

⎤
⎦⎥

=
=

−

=
−∑ ∑   

1
2 2

1

1
, ( X )) , and

X ji
k

ji jl li lil l k

K
x A z s−

= ≠= − ∑ 1,
.

• Sample each column of factor score matrix,
si, from p(si|−) =  (si; ξi, Λi) where

Λ Λi
T

i i
T

K i i i idiag x= + =−[( ) ( )( ) ] , ( ) ( )A A AZ Z Z        I diag1 , and

Z i i iz z= …[ , , ] with the K-dimensional vector,zi,

repeated p times, 1 ≤ i ≤ n.

• Sample ψj from p g hj j j j( | ) ( ; , ) − = ′ ′Gamma

where ′ = +g g n
j 2

and

′ = + −=∑h h x A z sj jii

N
j i i

1
2 1

2(|| ( ) || ) .

• Sample gjk from p(gjk|-) = Gamma (gjk; c’, d’) where

c’ = c+1/2 and d d A jk′ = + 1
2

2 .

• Sample δ from p(δ|-) = Gamma (δe’, f’) where e’ = e

+ nK/2 and f f s si
T

i
i

n
′ = +

=
∑1

2 1
( ) In the above equations

expressions of the form p(gjk|−) represent the probability
of gjk conditioned on all other parameters.

Variational Bayesian inference
We seek a distribution Q(Θ; Γ ) to approximate the
exact posterior p(Θ|X), where in Θ ≡{A,S,Z,a,π,ψ,g,δ}
Our objective is to optimize the parameters Γ in the
approximation Q(Θ; Γ). Toward that end, consider the
variational expression

F d Q
Q

p p
p Q p( ) ( ; ) ln

( ; )
( ) ( | )

ln ( ) ( ( ; ) || ( |Γ Θ Θ Γ Θ Γ
Θ

Θ Γ Θ= = − +∫ X X
X XKL ))) (15)

Note that the term p(X) is a constant with respect to

Γ, and therefore F( )Γ is maximized when the Kullback-

Leibler divergence KL(Q(Θ; Γ)||p(Θ|X)) is minimized.
However, we cannot explicitly compute the KL diver-
gence, since p(Θ|X) is unknown. However, the denomi-

nator term in F( )Γ may be computed, since p(X)p(Θ|X)

= p(X|Θ)p(Θ), and the prior p(Θ) and likelihood func-
tion p(X|Θ) are available. To make computation of
F( )Γ tractable, we assume Q(Θ|Γ) has a factorized form

Q(Θ; Γ) = ΠiQi(Θi; Γi). With appropriate choice of Qi,

the variational expression F( )Γ may be evaluated analy-

tically. The update equations are as follows.
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• For zki we have Q z zki ki ki( ) ( ; )= ′Bemou i11  where

′ ki is the probability of zki = 1. We consider the follow-

ing two conditions:
discussion below, the symbol < • > represents the

expectation of the argument.
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exp

exp
( ))

exp( ) ( ))
1

1 2
. Above, and in the discussion

below, the symbol < • > represents the expectation of
the argument.
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• For Ajk we have Q A Ajk jk jk jk( ) ( ; , )=  … Σ with

Σ jk j ki ki jki

n
s z= 〈 〉〈 〉〈 〉 + 〈 〉⎡

⎣⎢
⎤
⎦⎥=

−

∑  2
1

1
and

 jk jk i

n
j ki ki ji

kz s= 〈 〉=
−∑Σ (

1
X

, where X ji
k

ji l l k

K

jl li lix A z s−
= ≠= − ∑ 1;

.

• For si we have Q s si i i i( ) ( ; , )=   Λ , with

Λ i
T

i i
T= 〈 〈 〉 〉 + 〈 〉 −[ ( ) ( )( ) ]A Z A Z I  diag   1 and

 i i
T

i ix= 〈 〉 〈 〉 〈 〉Λ (( ) ( ) )A Z  diag , where

Z i i iz z= …[ , , ] is a K-dimensional vector of all zi

repeated p times. In order to exactly calculate the
expectation,

B A AZ Z= 〈 〉( ) ( )( )T
i i

T   diag 

, we have to consider it as two parts. Specifically, the
off-diagonal elements of B are

( ) ( )( )〈 〉 〈 〉 〈 〉 〈 〉 〈 〉A Z A ZT
i i

T   diag  , and the diagonal

elements, B A zkk jk jk j kij

p= 〈 〉 + 〈 〉 〈 〉=∑( ( ) )2
1

Σ  , since

〈 〉 = 〈 〉 +A Ajk jk jk
2 2 Σ and 〈 〉 = 〈 〉 +A Ajk jk jk

2 2 Σ , where

1 ≤ k ≤ K, 1 ≤ j ≤ p and 1 ≤ i ≤ n.

• For ψj we have Q g hj j j j( ) ( ; , ) = ′ ′Gamma ,

where g g n h h x A z sj j i

n
ji j i i

′ ′
== + = + 〈 − 〉∑2

1
2 1

2, ( ( ) .

• For gjk we have Q c djk jk jk( ) ( , ) = ′ ′Gamma , with

c cjk
′ = + 1 2/ and d d Ajk jk

′ = + 〈 〉1
2

2 .

• For δ we have Q(δ) Gamma (e’,f’), where e’ = e + Kn/

2 and f f s si
T

ii

n′ = + 〈 〉=∑1
2 1

.
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