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Abstract

Background: The binding of regulatory proteins to their specific DNA targets determines the accurate expression
of the neighboring genes. The in silico prediction of new binding sites in completely sequenced genomes is a key
aspect in the deeper understanding of gene regulatory networks. Several algorithms have been described to
discriminate against false-positives in the prediction of new binding targets; however none of them has been
implemented so far to assist the detection of binding sites at the genomic scale.

Results: FITBAR (Fast Investigation Tool for Bacterial and Archaeal Regulons) is a web service designed to identify
new protein binding sites on fully sequenced prokaryotic genomes. This tool consists in a workbench where the
significance of the predictions can be compared using different statistical methods, a feature not found in existing
resources. The Local Markov Model and the Compound Importance Sampling algorithms have been implemented
to compute the P-value of newly discovered binding sites. In addition, FITBAR provides two optimized genomic
scanning algorithms using either log-odds or entropy-weighted position-specific scoring matrices. Other significant
features include the production of a detailed genomic context map for each detected binding site and the export
of the search results in spreadsheet and portable document formats. FITBAR discovery of a high affinity Escherichia

coli NagC binding site was validated experimentally in vitro as well as in vivo and published.

Conclusions: FITBAR was developed in order to allow fast, accurate and statistically robust predictions of
prokaryotic regulons. This feature constitutes the main advantage of this web tool over other matrix search
programs and does not impair its performance. The web service is available at http://archaea.u-psud fr/fitbar.

Background

In every living organism, the binding of regulatory pro-
teins to their specific DNA targets accounts for the accu-
rate transcription modulation and expression of the
neighboring genes. The prediction, in silico, of new tran-
scription factor binding sites (TFBSs) is a key aspect of
the deeper understanding of gene regulation. The discov-
ery of regulons, sets of functionally related and co-
regulated genes scattered throughout the genome, is of
great importance for the geneticist. However, the expo-
nentially growing number of fully sequenced genomes,
especially prokaryotic, has turned the prediction of regu-
lons into a daunting task. Several reviews compare the
algorithms that have been developed to address the iden-
tification of TFBSs [1-5]. These programs can be subdi-
vided into two main classes. In the first class, DNA
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binding sites are predicted in a limited amount of short
sequences where a particular regulation is known to
occur but without prior knowledge on the binding site
sequence itself. These de novo search algorithms detect
over-represented or non-random information pertaining
to binding sites by the means of probabilistic approaches
such as Gibbs sampling, hidden Markov models and their
variations. In the second category of programs, binding
sites can be predicted on DNA sequences of any length.
The only prerequisite in this case is a list of known bind-
ing sites sharing the same biological properties, deter-
mined experimentally. These properly aligned sequences
define the position-specific scoring matrix (PSSM), a flex-
ible representation of the binding motif [6]. PSSMs have
been widely used to detect motifs in DNA or protein
sequences [7]. Unlike probabilistic de novo approaches,
PSSM search programs are not limited by the size or the
number of the DNA sequences and are therefore particu-
larly well suited to scan entire genomes and predict
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regulons. The program ScanAce constituted the initial
implementation of a PSSM DNA search tool; it involved
the manual handling of DNA sequence files and required
program execution on the local system shell exclusively
[8]. Novel scanning algorithms such as QPMEME [9] or
OPENFILL/SCANGEN [10] based on the estimate
sequence-specific binding energy of a given transcription
factor have been reported. However, these computing
techniques do not seem to solve the problem of the false
negatives [10]. Furthermore, QPMEME fails to find a
solution on datasets containing many low affinity
sequences [11]. More recently, the availability of a large
and growing number of completely sequenced prokaryo-
tic genomes triggered a regain in interest for PSSM
searches. These genomic databases permitted the devel-
opment of web services such as MAST [12], RSA Tools
[13], PredictRegulon [14], PRODORIC Virtual Footprint
[15] and RegPredict [16] to grant easier access to gen-
ome-wide regulon prediction. Unfortunately, the results
of existing PSSM genomic scanning programs rely on the
choice of an arbitrary threshold value. A low threshold
may detect a large number of false positive sites whereas
a high threshold may fail to produce any meaningful
result. The MAST web service can produce TFBS P-
values but only analyzes intergenic regions; furthermore,
its results are not computed in real time. Despite the fact
that a considerable progress has been made in assessing
the statistical significance in biological sequence analysis
[17], the interactive prediction of regulons using prob-
abilistic methods remains a computationally intensive
task and appropriate computer programs are not avail-
able. To address this problem, I have developed FITBAR
(Fast Investigation Tool for Bacterial and Archaeal Regu-
lons), a real-time PSSM scanning web tool for completely
sequenced prokaryotic genomes. FITBAR is designed as a
high-performance workbench providing two algorithms
for the detection of new binding sites in combination
with two methods to calculate their P-values. This web
service aims to assist the experimentalist with the discov-
ery and characterization of new prokaryotic regulons.

Implementation

Web service and database implementation

The FITBAR web service is developed in the C# language
and ASP.NET web scripting language. The application is
deployed on a server equipped with two quad-core AMD
Opteron 8378 processors clocked at 2.4 Ghz and 8 GB of
RAM. The operating system is Windows Server 2008
RC2. The service is freely accessible from any operating
system/internet browser combination at the URL http://
archaea.u-psud.fr/fitbar. All computations and predic-
tions are executed interactively in real time. The server
stores over 200 consensus prokaryotic binding sites
matrices collected from Harvard University http://arep.
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med.harvard.edu/ecoli_matrices/ and from RegTransBase
http://regtransbase.lbl.gov/cgi-bin/regtransbase. Alterna-
tively, user-defined matrices in Fasta or raw format can
be submitted as well. FITBAR genomic databases are
stored on the server and provide access to the publicly
available complete genomes of Bacteria and Archaea. An
accessory program enables the daily automated update of
the database from the repository of the National Center
for Biotechnology Information (NCBI) ftp://ftp.ncbi.nih.
gov/genbank/genomes/Bacteria using the FTP protocol.
Newly sequenced genomes are therefore available within
24 hrs of their public release. Genomes are downloaded
in the GenBank format and parsed to extract the infor-
mation relevant to FITBAR. These flat file genomic data-
bases are shared with the BAGET web server http://
archaea.u-psud.fr/bin/baget.dll and were described
previously [18]. In addition, for every represented prokar-
yotic chromosome, the database contains a table of
cumulative mono-, di-, tri- and tetranucleotide frequen-
cies used to generate the Markov models. This table is
computed once, each time a new chromosome is added
to the database. The generation of reports in Portable
Document Format (PDF) is achieved using the open-
source PDFsharp library http://www.pdfsharp.net/

PSSM scanning algorithms

Two methods have been described to score candidate
sequences for their similarities to known binding sites
using position specific scoring matrices. The nucleotide
distribution frequencies at each position are computed
from an aligned series of biologically defined binding
sites. These frequencies can then be transformed using
either the log-odds [19] or the entropy-weighted [20]
algorithms to generate the PSSM. Query sites are then
matched against the PSSMs by summing up the score at
each corresponding position. In this work, both log-
odds and entropy-weighted search algorithms have been
implemented as optimized multithreaded routines in
order to scan both DNA strands simultaneously and to
take advantage of multi-core processors. For compatibil-
ity purposes, the scores obtained with the two scanning
algorithms are normalized to 1.0 according to the best
theoretical binding site deduced from the PSSM.

Compound Importance Sampling

The methodology to calculate P-values using the com-
pound importance sampling has been described [21].
This variance-reduction technique of Monte Carlo esti-
mators can be used as an efficient alternative to naive
direct simulation [17]. Briefly, each genomic query
requires the generation of 10 compounds containing
respectively 9986, 7732, 5987, 4636, 3590, 2780, 2153,
1667, 1291 and 1000 samples. The samples consist of
Markov chains generated using the null model and
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mixed with samples from the consensus sites, in a mix-
ing ratio that varies linearly from O to 1. Each sample is
scored against the consensus motif and the results are
compiled to generate a distribution. The cumulated fre-
quencies of this distribution allow the calculation of the
P-value, for each score. Since the compounds contain
samples from the user-specified consensus sites, they
need to be computed at query time. The background
model is constituted by third-order Markov chains gen-
erated at query time using the pre-calculated chromo-
some-specific mono- to tetranucleotide frequencies from
the database. The Bonferroni correction for multiple
comparisons was not be used in this implementation
due the large number of repetitions involved in the
scanning of entire genomes. The CIS algorithm
was implemented in FITBAR according to the descrip-
tion in the original article and additional information
(T. Kaplan, pers. comm.).

Local Markov Model

The Local Markov Model uses an efficient algorithm
based on probability-generating functions to compute the
P-value of candidate binding sites [22]. Briefly, the candi-
date binding site sequences are first scored by PSSMs then
submitted to filtering. For this implementation, a different
filtering heuristics was developed (Figure 1). It takes into
account the distribution of predicted TFBS score values
which is more dispersed for the log-odds than for the
entropy-weighted method. The same behavior was
observed for all PSSM tested (data not shown). The
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P-value of the pre-selected sites are computed against a
null model based on the local genomic context. This null
model or background distribution is constituted by a sec-
ond-order Markov chain computed on the basis of a 1000
nucleotide segment surrounding the predicted binding
site, excluding the actual binding sequence. This P-value
algorithm is limited to PSSMs with an informational con-
tent > 12 bit. The LMM algorithm in FITBAR consists of
a C# implementation based on the original C++ source
code [22].

Sequence logo

A PSSM can be represented under the form of a
sequence logo pictogram showing the consensus
sequence, the relative frequency of bases and the infor-
mational content (measured in bit) [23]. Sequence logos
were originally developed with the PostScript descrip-
tion language and fonts. In the present implementation,
the processing overhead imposed by the PostScript lan-
guage was eliminated by using a more efficient Open-
Type font rendering. This implementation includes a
small sample correction to avoid underestimation of the
entropy for query datasets composed of a limited
amount of sequences [24].

Results and Discussion

In spite of the number of existing software tools to iden-
tify specific DNA binding sites for regulatory proteins
[25,26], the continuous development of new programs
illustrate the fact that the optimal TFBS prediction

/*
Site_score filtering algorithm
input: - worst_score:consensus site with lowest score
- average: consensus sites average score
- standard_dev: consensus sites standard deviation
- scan_method: log-odds or entropy-weighted
*/

function ValidSite(site_score, worst_score, average, standard_dev , scan_method)

found = false

1

2 min_val = min(worst_score, (average - standard_dev))
3 max_val = max(worst_score, (average - standard_dev))
4 if screen_method = log_odds then

5 if site_score > min_val then

6 found = true

7

8

end if
else // entropy weighted
9 if site_score > max_val then
10 found = true
11 end if
12 end if
13 return found

Figure 1 Algorithm for the Local Markov Method filtering heuristics formulated in pseudocode.
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system is not available yet. The prediction of regulons
remains a non-trivial and time consuming task for the
experimentalist, especially for the analysis of the large
and growing number of completely sequenced prokaryo-
tic genomes. A common limitation of the existing PSSM
search programs reside in the selection mechanism for
the newly detected binding sites. It is achieved mainly by
discarding sites presenting a PSSM similarity score below
an arbitrary threshold value. With the naive assumption
that prediction errors accumulate proportionally to the
length of the scanned DNA sequence, the validity of
PSSM searches over an entire genome is questionable in
the absence of a proper statistical analysis. On the other
hand, the elimination of false positives by classical statis-
tical methods is inadequate for real time analysis. For an
average sized prokaryotic chromosome, this correction
would exceed, by two to three orders of magnitude, the
computing time required for the initial genome scan [21].
The FITBAR web service was developed to bring a solu-
tion to this problem by providing an interactive and sta-
tistically significant prediction of DNA binding sites at
the genomic scale.

General features

The FITBAR web tool was developed in C# and the
choice of this particular language was motivated by its
performance over other commonly used programming
languages. Memory usage and the reading of large
sequence files is more efficient in C# than Java; the
speed of execution is nearly as fast as C and C++ and
6 x faster than Perl and Python [27]. The web service
consists of dynamic web pages compatible with all cur-
rent internet browsers and operating systems. FITBAR
relies on the same genomic databases as the BAGET
web tool [18]. The data files are stored locally to
increase performance and undergo a daily automated
update from the National Center for Biotechnology
Information (NCBI) repository (see Implementation). In
order to select individual chromosomes, the user is pro-
vided with a list of bacterial and archaeal species names.
Organism names have been appended the C1, C2, etc,
suffixes when they harbor multiple replicons. The only
external data required by FITBAR consist of an aligned
series of known binding sites which can be copy-pasted
directly in the appropriate text area. Alternatively, bind-
ing sites can be selected from the local database provid-
ing over 200 known prokaryotic matrices. FITBAR will
generate a PSSM consensus and search a selected chro-
mosome for additional sites using the log-odds or
entropy-weighted algorithms. Queries can be conducted
on entire chromosomes or restricted to intergenic
regions. The statistical significance of potential binding
sites can be assessed either by the Local Markov Model
or Compound Importance Sampling algorithms (see
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next section). If the query is successful, FITBAR will
provide a graphically-rich report composed of four
parts. (1) The first panel details chromosome and query
sites statistics in addition to the user-selected scanning
and P-value methods (Figure 2A). (2) A sequence logo
permits a visual quantization of the informational con-
tent at every nucleotide of the query PSSM [23] (see
Implementation). (Figure 2B). (3) A map drawn to scale
permits to evaluate rapidly the predicted binding sites
distribution on the entire chromosome (Figure 2C). (4)
The binding site list details, for every predicted target,
its chromosomal position, orientation, score, P-value,
DNA sequence and detailed genomic context graphical
map over 10 KB; in addition it provides, for each poten-
tial regulated gene, a link to the encoded function at the
NCBI database (Figure 2D). FITBAR search results can
be either printed or exported in Excel. CSV format for
further elaboration and in portable document format for
storage or device-independent high-resolution printing.

Statistical significance of the newly predicted sites:
P-value algorithms

The principal objective of FITBAR is to predict statisti-
cal significant TFBSs. This significance is commonly
assessed by computing a P-value which measures the
probability of its stochastic occurrence. P-values can be
calculated either with analytic expressions describing the
score distributions or alternatively by simulation; several
efficient algorithms have been proposed for both
approaches [17]. For the present work, two P-value algo-
rithms were retained: the Compound Importance Sam-
pling (CIS) [21] and Local Markov Model (LMM) [22]
(see Implementation for a description). The first criteria
that motivated this choice was the background model
used by the algorithms. Both rely on Markov (of order
m > 2) models for the null distribution which have been
shown to represent accurately biological DNA sequences
[22,28]. This observation is particularly relevant to
prokaryotic genomes where the sequence composition
varies considerably. It has been reported that the GC-
content ranges from 23.7% in Mycoplasma bovoculi to
69.5% in Pseudomonas pseudomallei [29]. The second
criteria was the speed of execution since fast algorithms
would be better suited for an interactive web service.
Finally, it seemed worthwhile to compare the efficiency
of analytical and simulation methods. The two algo-
rithms were adapted to the FITBAR web service as
follows. The implementation of CIS was straightforward:
it is executed once per genome/query and a unique
P-value is assigned to each possible PSSM score before
the actual genome scan. FITBAR therefore evaluates the
PSSM significance at each genomic position and retains
the candidate sites below a cutoff P-value (see next sec-
tion). The LLM algorithm is based on the local genomic
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Figure 2 FITBAR report for the Escherichia coli LexA repressor binding sites. (A) The site statistics panel displays numerical information on
the selected chromosome and consensus binding site. (B) The sequence logo permits to evaluate visually the information content of the
consensus motif. (C) The site distribution panel indicates the distribution of the new sites on both DNA strands of the chromosome. (D) The
binding site list shows FITBAR results for each newly discovered site such as position, sequence, orientation, score, P-value, gene product

context and requires therefore the calculation of a speci-
fic background distribution for each potential site. In the
original description, this computation-intensive task is
restricted to the top 0.1% candidate sites based on their
PSSM similarity scores [22]. This filtering method is
impractical for complete genomes as it could require an
excess of 10* individual background calculations for
large chromosomes. FITBAR uses a different LLM sort-
ing heuristics as shown in Figure 1. It is based on the
query binding site statistics and on the difference in
score distribution between the entropy-weighted and
log-odds screening algorithms (see next section). A
further restriction has been imposed on degenerated
PSSMs with a sequence logo informational content < 12

bit which are not considered for the LMM algorithm.
The accuracy of the predictions is also assessed in FIT-
BAR by the calculation of the Receiver Operating Char-
acteristic Curve (ROC) which visualizes the components
of the false discovery rate. More precisely, the Area
Under the Receiver Operating Characteristic Curve
(AUROC), a common summary statistic proportional to
the quality of a predictor in a binary classification task
[30], is provided for each PSSM search.

Benchmarking and experimental validation

The principal aim of FITBAR is to predict and rank
TEBSs by their P-value. This feature is not found in
other PSSM scanning programs and it was therefore
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important to contribute to its development. Since the
two selected P-value algorithms were developed origin-
ally to analyze short sequences, their performance was
tested extensively for genomic scanning and one of
these experiments is detailed below. Necessary adjust-
ments were performed to allow the prediction of stati-
cally significant TEBS on complete chromosomes.

Benchmarking tests were conducted as follows to illus-
trate the performance and functionality of FITBAR and
to compare it to other available genomic PSSM scanning
tools. The Escherichia coli K12 MG1655 genome was
screened for potential binding sites for the transcriptional
regulator NagC involved in N-acetylglucosamine metabo-
lism. The query sites are shown in Table 1 and consisted
of known NagC operator sequences compiled from [31]
and J. Plumbridge (pers. comm.).

Since FITBAR allows two user-selectable DNA scan-
ning algorithms (log-odds or entropy-weighted) and two
user-selectable P-value algorithms (LMM or CIS), the
four combinations were analyzed and the results are
detailed in Table 2. It can be seen that globally, the
entropy-weighted and log-odds screening methods
yielded similar results even if the score values were
more dispersed for the log-odds algorithm. A simulation
was carried out to verify this behavior with a collection
of 10® random sites modeled with third-order Markov
chains. The distribution of log-odds scores was nearly
symmetrical whereas the entropy-weighted distribution
showed a positive skew (Figure 3A). The observed dif-
ference in score dispersion is therefore due to the PSSM
scanning algorithms. Interestingly, the entropy-weighted
scanning was able to find additional sites not detected
by log-odds. They correspond to a strong site between
ddIA and iraP, and weaker sites such as those upstream
tdk, hns, aer, patA and others.

FITBAR was then compared to other available web
servers such as RSA Tools [13], PRODORIC Virtual
Footprint [15] and RegPredict [16]. The PredictRegulon
web service was taken offline during this work and

Table 1 List of E. coli NagC binding sites used for
benchmarking

Binding sites E. coli genes
CTTATTTTATCATTCAAAAAATC nagB
TTTAATTTGCGATACGAATTAAA nagk
CTTAATTATCTTCGCGAATTATT chbB distal
GATATTTTACCTTTCGAAATTTC man distal
CATAATTCTCATCATGAAATATG fimB2
GTTTATTCATTGATCGAAATAAG glmU distal
TGCAATTCGTGTCACAAAATATG fimB1
CTTATTTCTCTTCGTAAAATTAC ydeNT proximal
GTTGTTTATCGGCGAGAAATTAC ydeN2 middle

GATAATTCGCGTCGCGAAAAATA ybfM proximal
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could not be tested. It appears that the results obtained
by Virtual Footprint closely resemble FITBAR log-odds
predictions (Table 2). Surprisingly, the highly ranking
site located between nanC and fimB was not detected
by RSA Tools and RegPredict. Another site, upstream
galP, was detected by FITBAR, Virtual Footprint and
RegPredict but was absent from RSA Tools predictions.
Experimental data from several reports corroborate the
regulatory role of these particular sites. First, repression
of nanC and fimB divergent transcripts by NagC has
been observed both iz vivo and in vitro [32]. More
recently, we were able to demonstrate by in silico gen-
ome screening followed by a combination of biochem-
ical and genetic approaches that galP transcription is
strongly repressed by NagC [33]; this finding provides a
rationale for the better growth of E. coli nagC mutants
on galactose [34]. These results show that the detection
sensitivity of FITBAR equals or surpasses that of exist-
ing tools.

The use of two independent P-value algorithms, in
combination with the biological data described above
was instrumental in the reciprocal validation of the cut-
off P-values. In the original descriptions of the CIS [21]
and LLM [22] algorithms, the elimination of false posi-
tives is recommended for sites with a theoretical P-value
above 107 and 2 x 10 respectively. The benchmarking
test shows that the LMM and CIS P-values differed sig-
nificantly for each predicted site, up to several orders of
magnitude (Table 2). Such variations in P-values for
each predicted site were expected: they are due to the
method used to model randomness in the P-value esti-
mation procedures [17]. In this particular situation, they
reflect presumably the impact of general versus local
background distribution models. At this stage, it was
important to compare the P-values obtained with CIS
and LMM to those computed using a classical but
slower method. Separate P-values were calculated for
the 10® random samples in the above mentioned simula-
tion using the log-odds and entropy-weighted scanning
algorithms. Similarly to the PSSM scores, the P-values
varied notably according to the genome scanning algo-
rithm (Figure 3B). Simulated P-values could therefore be
assigned to each predicted NagC operator in Table 2 to
allow comparison between the different methods. Inter-
estingly, all simulated entropy-weighted P-values were
comprised between the corresponding LMM and CIS P-
values and always within two orders of magnitude from
LMM,; on the other hand simulated and CIS P-values
differed by five logs or less (Figure 4A). The difference
between the simulated log-odds P-values and the LMM
or CIS P-values never exceeded two orders of magnitude
(Figure 4B). These results enabled the determination of
the cutoff P-values to discriminate against false positives.
In general, it was necessary to retain higher cutoff values



Table 2 Benchmarking results

# Position Gene(s) Sequence FITBAR (this work) Simulation PRODORIC Virtual RSA RegPredict
Footprint [15] Tools [16]
[13]
Entropy-CIS Entropy-LMM Log odds-CIS Log odds-LMM  Entropy Log- PWM Score Score Score
odds
Score  P-value Score  P-value Score  P- Score  P-value
value
1 4538216 nanC fimB  cataattctcatcatgaaatatg 0.95026 0.01634 0.95026 4.6 E-09 081891 0.01012 0.81891 0.00006 2.0 E-07 0,00052 17.84 - -
2 1819873 chbB cttaattatcttcgcgaattatt 093979 0.01898 093979 7.5 E-09 0.83231 0.00710 083231 69 E-06 44 E-07 0,00035 17.59 1.0 558
3 707425 chiP gataattcgegtcgcgaaaaata 0.93979 0.01898 093979 2.8 E-08 0.71507 0.02168 - - 44 E-07 001746 17.50 1.0 571
4 1899865 yoafk manX gatattttacctttcgaaattte 0.92147 0.02905 092147 1.1 E-07 0.80400 0.01257 0.80400 0.00008 13 E-06 000110 1729 1.0 548
5 400463 iraP ddlA aataattacccacacaaaatata 0.90052 0.04027 0.90052 8.1 E-07 - - - - 35 E-06 - - - -
6 1580605 ydeN cttatttctcttegtaaaattac 0.89921 0.04076 0.89921 6.6 E-07 0.84788 0.00414 0.84788 44 E-06 35E-06 000015 16.85 10 553
7 3537939 feoA ggtaattcactattcgaattata 0.89660 0.04179 0.89660 7.9 E-07 0.67381 0.03302 - - 3.5 E-06 0,05546 16.85 - 5.15
8 703020 nagB nagk  tttaatttgcgatacgaattaaa 0.89660 0.04179 0.89660 4.9 E-07 069745 0.02567 069745 0.00198 35 E06 002854 16.83 1.0 521
9 3086266 galP cttaattcacaataaaaaataac 0.89267 0.04363 0.89267 5.7 E-07 0.72356 001813 0.72356 0.00121 35E-06 001746 16.85 - 5.09
10 3718336 unknown tttatttgttttcaggaaataaa 0.88482 0.05522 0.88482 1.9 E-06 - - - - 5.6 E-06 - - - -
11 703043 nagE nagB  tttaattcgtatcgcaaattaaa 0.87827 0.05835 0.87827 1.6 E-06 065996 0.03449 - - 9.0 E-06 006789 - - 5.15
12 3913456 glmuU gtttattcattgatcgaaataag 0.87304 0.06097 087304 14 E-06 068260 0.03175 0.68260 0.00097 14 E-05 0,04487 1645 10 5.01
13 707448 chiP tatttttcgcgacgcgaattatce 0.86780 0.06372 0.86780 5.6 E-06 - - - - 14 E-05 - - - -
141292271 tdk hns atttattggcggcacaaaataaa 086649 0.06450 0.86649 5.2 E-06 - - - - 14 E-05 - - - -
15 2531523 ptsH attattttgatgcgcgaaattaa - - 0.86387 3.2 E-06 - - - - 2.1 E-05 - - - -
16 3217267 aer patA gttaattatcttgcccaaaaatc - - 0.86518 3.6 E-06 - - - - 2.1 E-05 - - - -
17 4633489 rob creA gttatttaccgtgacgaactaat - - 0.86518 4.2 E-06 - - - - 2.1 E-05 - - - -
18 1120757 dinl gttattttacctgtataaataac - - 086126 82 E-06 - - - - 2.1 E-05 - - - -
19 2573887 eutS gttatttactctgacgaaaaatt - - 0.86126 8.7 E-06 - - - - 2.1 E-05 - - - -
20 3086289 galP gttattttttattgtgaattaag - - - - 069755 0.02567 069755 0.00155 - 0,02854 - - -
21 702949 nagk nagB  cttattttatcattcaaaaaatc - - - - 068969 0.02876 0.68969 0.00095 - 0,03596 16.06 1.0 -
22 1580729 ydeN gttgtttatcggcgagaaattac - - - - 0.65082 0.03846 - - - 0,08240 - - -
23 1584727 ydeP cttattttttatattgaaaaata - - - - - - - - - - 16.21 1.0 4.82
24 2628932 unknown  gttttttatcttcaagaattata - - - - - - - - - - 16.11 - -
Time (s) 58 £1.13 1058 + 0.27 6.61 + 034 6.14 + 047 74925 £ 1222 510 £ 038 233 £+ 4.6 + 0.09
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Figure 3 Simulation-based P-value estimation. A collection of 10° sites 23 nt-long were generated as third-order Markov chains using the
E. coli nucleotide frequencies. The sites were then matched to the consensus shown in Table 1 with the entropy-weighted and log-odds
algorithms. The respective score distribution are shown in Panel A. The P-values were estimated on the basis of the cumulated score
distributions as shown in Panel B.

than those recommended in the original CIS and LMM
descriptions. The CIS cutoff P-values for the CIS
method were set to 0.04 for the log-odds and 0.065 for
the entropy-weighted algorithms. Corresponding
P-values of 0.018 and 0.044 for the NagC operator
upstream galP fit quite well within the cutoff values. A
LMM cutoff P-value of 2 x 10" was retained for the
log-odds scanning method which accommodates the
value for 0.0012 for galP. In the case of the entropy-
weighted method, the observed LMM P-values after fil-
tering were all lower than the recommended cutoff of
2 x 10™, It would be interesting to analyze the biology

of some of the weaker detected sites such as upstream
tdk or hns to verify these findings.

The efficiency of FITBAR was compared to that of
existing PSSM search web tools by measuring the
respective response times from a network address out-
side the servers domains. The results indicated that
FITBAR performance equals or exceeds to that of com-
parable tools and most importantly, that the calculation
of the P-values does not impair significantly the general
performance (Table 2). Finally, it is worth mentioning
that the time required to calculate P-values by simula-
tion exceeds by two to three orders of magnitude the

A Ocis
0.1 7 O Lmm
Oooo goy A SIM
o
O o
0.01 1
1x10-3%
[
2 1x1041
g A A
o -5
1x108 o A 3 Ak
-6 00 A
1x10 o> &
A
11071
. 0
1x10° o o
1x10°9 T T T
0.88 0.92 0.96
Score
A) or log-odds (Panel B) genome scanning algorithms.

B O cis
0.1 9 O LM
A SIM
A
DA .
. o
0.01 =
o
o
S ]
T 1x1077 oo © A
> A
a A
A
1x1047 3PN
1x105
9 a
1x10© v v w
0.72 0.80 0.88

Score

Figure 4 Comparison between the simulated, LMM and CIS P-values as a function of the PSSM scores for the entropy-weighted (Panel




Oberto BMC Bioinformatics 2010, 11:554
http://www.biomedcentral.com/1471-2105/11/554

time required by the CIS and LMM algorithms (Table
2).

Conclusions

Current genomic TBFSs scanning programs do not pro-
vide P-values for the predicted sites and existing P-value
computing algorithms have not been applied to the scan-
ning of entire genomes in real time. In response to the
gap in the available bioinformatics software, FITBAR was
implemented as a performing workbench to assist experi-
mentalists with the identification of regulons in prokar-
yotic genomes. The prediction of novel protein binding
sites is achieved by a user-selectable combination of opti-
mized sequence scanning and P-value calculation algo-
rithms. In addition, this web tool presents a number of
improvements. A rich user-friendly graphical interface
presents a sequence logo for the query sites and precise
genomic context map for each TFBS. The manual hand-
ling of large sequence files and cryptic parameter tweak-
ing are eliminated. General performance equals or
exceeds that of existing score-based PSSM scanning
resources. Recently, FITBAR has been used to identify, in
the E. coli genome, new high affinity targets for the N-
acetylglucosamine repressor, NagC; the validity of the in
silico predictions was confirmed by exhaustive genetic
and biochemical evidence [33]. The effortless access to
the prokaryotic genomes database, updated daily, permits
the analysis of phylogenetically related organisms to vali-
date regulon predictions. Finally, the annotation of new
genomes and transcriptomic projects might benefit from
this tool as well.

Availability And Requirements
Project name: FITBAR
Project home page: http://archaea.u-psud.fr/fitbar
Operating system(s): platform independent
Programming language: C# and ASP.NET
Other requirements: Internet connection
License: none required
Any restrictions to use by non-academics: no
restriction
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