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Abstract

Background: Investigation of metagenomes provides greater insight into uncultured microbial communities. The
improvement in sequencing technology, which yields a large amount of sequence data, has led to major
breakthroughs in the field. However, at present, taxonomic binning tools for metagenomes discard 30-40% of
Sanger sequencing data due to the stringency of BLAST cut-offs. In an attempt to provide a comprehensive
overview of metagenomic data, we re-analyzed the discarded metagenomes by using less stringent cut-offs.
Additionally, we introduced a new criterion, namely, the evolutionary conservation of adjacency between
neighboring genes. To evaluate the feasibility of our approach, we re-analyzed discarded contigs and singletons
from several environments with different levels of complexity. We also compared the consistency between our
taxonomic binning and those reported in the original studies.

Results: Among the discarded data, we found that 23.7 + 3.9% of singletons and 14.1 + 1.0% of contigs were
assigned to taxa. The recovery rates for singletons were higher than those for contigs. The Pearson correlation
coefficient revealed a high degree of similarity (0.94 + 0.03 at the phylum rank and 0.80 + 0.11 at the family rank)
between the proposed taxonomic binning approach and those reported in original studies. In addition, an
evaluation using simulated data demonstrated the reliability of the proposed approach.

Conclusions: Our findings suggest that taking account of conserved neighboring gene adjacency improves

taxonomic assignment when analyzing metagenomes using Sanger sequencing. In other words, utilizing the
conserved gene order as a criterion will reduce the amount of data discarded when analyzing metagenomes.

Background

The investigation of metagenomes, which sequences
DNA from mixed environmental samples directly, has
provided insights into microbial communities, and is
now widely used to study various living microorganisms
as a system [1-4]. The major goal of metagenomic stu-
dies is to determine the systemic properties of a micro-
bial community, including the genetic, metabolic,
ecological, physiological and behavioral aspects of all
community members [5-8]. Some high-throughput pipe-
lines have been constructed for high-performance com-
putational analysis of metagenomic data [9,10]. The
pipelines facilitate taxonomic binning of huge amounts
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of sequencing data by referring to databases of known
microbial genomes [11-14]. Based on the above
approaches, recent investigations have revealed enor-
mous variations among the microbiomes of diverse
environments, such as human intestinal and salivary
microbiota [15-17], microbial communities growing on
sunken whale skeletons [18], and open ocean commu-
nities [19,20].

To study genetic materials from natural environmental
samples, Sanger sequencing technologies have been used
for generating DNA sequences [15,16,20]. Yet, much
more metagenomic datasets were conducted using next
generation sequencing (NGS) technologies (e.g., Roche
GS-FLX, Illumina 1G analyzer, and Applied Biosystems
SOLiD) which yield shorter fragments ranging from 30
bp to 350 bp [21]. As huge amount of sequencing data
were produced, analysis tools have become a critical
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player in data interpretation [22]. For example, when
scaffolds and contigs are assigned to phylogenetically
related groups, GLIMMER [23], GeneMark.hmm [24],
and MetaGene [25] are widely used to identify putative
coding sequences (CDSs). Subsequently, the taxonomic
assignment of CDSs is performed using BLAST [26] or
other homology search tools [27] with sequence data-
bases. Recently, some advanced taxonomic assigning
tools like MEGAN [28], Phymm [29], PhyloPythia [30]
were published. However, the majority of the reads only
contain partial coding regions. Thus, they were usually
unidentified because of the limited match length. For
example, in two distal gut microbiomes, approximately
40% of 139,521 high-quality reads were discarded after
sequence assembly. Moreover, approximately 40% of
50,164 CDSs predicted by using the GLIMMER package
were excluded from further analysis due to insignificant
BLAST scores [15]. In 13 healthy Japanese individuals,
33% of 1,065,392 shotgun reads failed to assemble, and
25% of 662,548 CDSs (identified by MetaGene) were
excluded from further analysis [16]. It is estimated that
existing analytical methods discard approximately
30-40% of metagenomic data from Sanger approaches
[11,15,16,18,19,31]. Considering the drawback, we were
motivated to re-analyzed the discarded reads of meta-
genomes generated using Sanger sequencing.

To overcome the limitations of current binning
approaches, which rely heavily on the BLAST hit score,
we propose a method for assigning reads discarded by
the original studies (Figure 1). The new approach com-
bines the BLAST search scores (two or more CDSs in a
read) and the concept of conserved gene adjacency. The
rationale is based on the theory that genomes are
shuffled, so local gene-order conservation reflects the
specificity of microbial organisms [32]. For example, the
conservation of the gene order in prokaryotes is known
to be an important feature; hence, it has been used in
function inference [33,34]. Since gene order conserva-
tion is a genomic feature that is extensively conserved
between closely related species [35,36], the trend should
be universal in prokaryotic genomes [37]. Furthermore,
it is known that overlapping gene pairs are frequently
observed in microbial chromosomes [38] and conserved
across species [39] in all three transcriptional directional
classes: unidirectional (——), convergent (—<«), and
divergent («——) [40,41]. Therefore, we argue that, if a
genomic fragment contains two or more adjacent CDSs
that are identified by BLASTYX, it is reasonable to assign
the sequence by using the proposed strategy, which
combines two BLASTX hit scores and the adjacency of
the two genes.

A recent study showed that the average gene density
in prokaryotic genomes is one gene per 1,000 nucleo-
tides [41], which is close to the sequence length yielded
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by whole genome shotgun sequencing. Thus, we were
aware that the read length would be the limitation of
this approach. In our study, we only applied the analyses
to conventional Sanger reads, which have higher poten-
tial to contain adjacent gene information than NGS. We
first used simulated metagenomes to estimated the ratio
of discarded singletons that may contain at least two
neighboring genes [42]. We found that approximately
49% of discarded singletons contained gene pairs in all
three transcriptional directional classes. Subsequently,
we collected data from conventional metagenome pro-
jects that were generated via Sanger sequencing, and re-
analyzed the fragments that were discarded from two
types of metagenomic data, 13 healthy Japanese indivi-
duals [16] and the skeletons of whale carcasses (whale
fall) [18]. Two types of genomic fragments, assembled
contigs and raw single reads (singletons), were analyzed
separately. The results showed that between 12.9% and
31.4% of the discarded data were assigned to taxa.
Furthermore, the microbial compositions using dis-
carded data and those reported in previous studies
[15,16,18] were highly consistent in the family and phy-
lum ranks. Therefore, we conclude that the proposed
metagenomic sequencing approach provide a more com-
prehensive overview of the functional and taxonomic
content of a microbiome.

Results and Discussion

NGS technology facilitates the investigation of microbial
communities. Because of the enormous number of short
DNA fragments in metagenomic datasets, some bioin-
formatics tools, such as MEGAN [28], PhymmBL [29]
and TACOA [43], have been developed for phylogenetic
classification. However, current taxonomic binning
methods have to discard a large number of sequences
due to low homology scores. To address this problem,
we developed a method that assigns discarded genomic
fragments by combining the BLAST search scores and
the criterion of gene adjacency. First, to assess the feasi-
bility of our approach, we used simulated metagenomes
to analyze the distribution of the number of CDSs in
discarded singletons. In the simulated data sets, which
had different levels of complexity (simLC, simMC and
simHC, see Methods), we found that nearly half of the
discarded singletons contained two or more partial
CDSs (Table 1), suggesting that some of the discarded
datasets could still be assigned to taxa.

Binning discarded metagenomic fragments

We used two kinds of metagenomes from whale fall
samples (contigs) and healthy Japanese individuals (sin-
gletons) respectively (see Methods). Since the singletons
were not available in the public domains, we repeated
the assembly strategies and obtained similar datasets.
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Table 1 Number (and ratio) of discarded singletons that did not contain any CDS and those that contain one, two and

three or more CDSs in the simulated metagenomes.

Number of CDS on singleton simLC simMC simHC
Singletons % Singletons % Singletons %
0 2575 6.2 2637 6.5 3986 6.0
1 18219 44.0 18072 44.8 29926 45.0
2 17549 424 16832 4.7 27874 419
3 or more 3081 74 2838 7.0 4738 7.1
Total singletons 41424 100 40379 100 66524 100

As shown in Table 2, between 4,990 and 7,660 discarded
contigs were collected from three whale fall micro-
biomes; and for the Japanese individuals, between 7,078
and 28,244 discarded singletons were collected after the
assembly process. Under the proposed approach,
between 12.9% and 14.9% of the discarded contigs in
the whale fall samples were assigned to taxa. In the
group of Japanese individuals, we were able to assign
between 16.9% and 31.4% of the discarded singletons
(see Table 3) to taxa. Based on the results, we suggest

Table 2 Summary of collected metagenomic fragments.

that the proposed binning strategy can be applied for
re-analyzing the discarded reads of metagenomic data.

The consistency of binning with discarded fragments
compared to the strategies in previous studies

To validate our approach, we compared the proposed
taxonomic binning strategy using discarded datasets
with the strategies in previous studies [15,16,18]. We
used Pearson correlation coefficient to evaluate the simi-
larity of the two groups. For taxonomic assignments

Data type | (contigs) Assigned Unassigned
Location Position Total contigs  CDSs? Contigs®  Average length (bp)
whale fall sub. 1 Pacific Ocean, Santa Cruz Basin  section of rib bone 35975 33139 7039 1167
(N33.30 W 119.22)
whale fall sub. 2 Pacific Ocean, Santa Cruz Basin bone 32459 32395 7660 1199
(N3330 W 119.22)
whale fall sub. 3 West Antarctic Peninsula Shelf bone 27130 26841 4990 1357
(S65.10 W64.47)
Our duplication®
Data type Il (singletons) Assigned Unassigned
Sex Age Total reads CDSs®  Singletons Average length (bp)
Japanese In-A Male 45 years 76434 29247 13399 1057
Japanese In-B Male 6 months 80617 14718 7078 1058
Japanese In-D Male 35 years 84237 48033 28244 1034
Japanese In-E Male 3 months 80852 27860 10838 1124
Japanese In-M Female 4 months 89340 26350 8456 1008
Japanese In-R Female 24 years 85787 45438 21661 998
Japanese F1-S Male 30 years 78452 40427 15378 1005
Japanese F1-T Female 28 years 81348 46487 21780 958
Japanese F1-U Female 7 months 82525 27332 11791 969
Japanese F2-V Male 37 years 80772 49411 19733 1006
Japanese F2-W Female 36 years 79163 42750 16961 1039
Japanese F2-X Male 3 years 80858 41337 19351 1040
Japanese F2-Y Female 1.5 years 79754 49315 20061 990

@ Genes with best hits at 30% identity or higher in Archaea and Bacteria kingdoms from JGI.
P Genes with best hits less than 30% identity in Archaea and Bacteria kingdoms from JGI.

€ Phred and PCAP assembly package for Japanese samples.

9 The number of predicted open-reading frames showing similarity to genes in the “in-house NR database”.
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Table 3 Summary of reassignments using discarded metagenomic data.
Data type | (contigs) Re-assigned
Contigs Contigs Average length (bp) Rate (%) r (phylum) r (family)
whale fall sub. 1 7039 1050 1388 149 098 092
whale fall sub. 2 7660 995 1295 129 0.98 0.77
whale fall sub. 3 4990 720 1400 144 097 0.79
Data type Il (singletons) Re-assigned
Singletons Singletons Average length (bp) Rate (%) r (phylum) r (family)
Japanese In-A 13399 3542 1074 264 0.95 0.85
Japanese In-B 7078 2050 1073 289 0.99 0.90
Japanese In-D 28244 5542 1061 16.9 0.89 0.72
Japanese In-E 10838 2888 1129 26.6 0.99 0.95
Japanese In-M 8546 2159 1057 252 0.93 0.86
Japanese In-R 21661 3993 1020 184 0.96 0.80
Japanese F1-S 15378 3216 1018 209 0.95 0.82
Japanese F1-T 21780 4395 971 20.1 0.93 0.59
Japanese F1-U 11791 3711 983 314 0.99 0.99
Japanese F2-V 19733 4007 1020 203 0.90 061
Japanese F2-W 16961 4011 1052 236 0.89 0.77
Japanese F2-X 19351 4402 1054 22.7 0.92 0.66
Japanese F2-Y 20061 4766 1002 23.7 0.96 0.82

The consistency between binning with discarded fragments and that in the original studies was tested by the Pearson correlation coefficient (r).

using homology search tools, reads were assigned
down to the class, order, family, and genus ranks
[3,5,11,14,16,29,43]. Therefore, we separated the com-
parison into phylum and family ranks to describe the
similarity between the original results and our binning
results. We found that the results derived by our taxo-
nomic binning strategy and those reported in previous
studies were consistent. The correlation coefficients
were 0.94 + 0.03 in the phylum rank and 0.80 + 0.11 in
the family rank (Table 3). For example, the composi-
tional view of Japanese individual F1-U showed a high
degree of similarity between the two binnings (Figure 2).
The correlation coefficient was 0.99 in both the phylum
rank and the family rank. The consistency between the
two datasets indicates that taxonomic binning using dis-
carded data is as representative as the binning strategies
used in previous studies.

To further evaluate our approach, we used 10,000
simulated singletons (simMC) for taxonomic binning to
quantify the performance of our analysis. As shown in
Table 4, the discarded singletons with the length of
~1 kb (Table 2) were correctly assigned with sensitivity
between 36.8-25.9% and specificity between 93.3-79.0%
between phylum and genus (using E-value 1072, hits
numbers 250). The hit number is positively correlated
with the sensitivity but is negatively correlated with spe-
cificity, while the E-values do not seem to affect accu-
racy. In comparison with same method but without
considering the gene adjacency, our approach showed a
slight decrease in specificity but increased in sensitivity.

For example, in family and genus ranking, the sensitivity
is approximately four times higher than the method that
does not consider gene adjacency (Table 4). Further-
more, because of the lack of similar analysis for dis-
carded reads, here, we referred to previous studies using
whole metagenomic data. For example, in TACOA [43],
which reportedly performed better than PhyloPythia
[44], the average sensitivity for binning 1 kb singletons
ranged from 71% in the superkingdom rank to 22% in
the class rank; and the average specificity ranged from
73% in the superkingdom rank to 64% in the class rank.
Although our dataset sources (discarded dataset) were
different from TACOA (whole dataset), the results indi-
cate that with suitable filters and criteria, reliable infor-
mation in the discarded data can be retrieved.

It has been observed that HGT (horizontal gene trans-
fer) occurs frequently in prokaryotes [45]. Such a
mechanism of genetic variability within a species may
create bias in taxonomic binning based on a traditional
homology search method. However, not all genes are
equally itinerant, and they do not exhibit the same HGT
behavior [46,47]. Preferential HGT correlates strongly
with the functions of different types of genes. For exam-
ple, informational genes (those involved in transcription,
translation, and related processes) are far less likely to
be transferred horizontally than operational genes (e.g.
housekeeping functions) because they are complex sys-
tems [46]. In genome wide studies using 116 prokar-
yotes [48], the authors reported 46,759 HGT events in a
total of 3,245,653 ORFs, but the horizontal transfer
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coefficient (Table 3).

Figure 2 Compositional View of 16 microbiomes in the phylum rank. The bars depict the detailed contribution of microbiomes with 22
phyla represented on two types of genomic fragments, contigs and singletons. For each microbiome, the similarity of binning between our re-
assignments and that of the original studies was compared. The consistency of the two datasets is represented by the Pearson correlation

clusters (more than one gene) were relatively low (only
1,357 cases). Our approach considers the BLAST search
scores and the criterion of conserved gene adjacency.
Hence, the bias resulting from HGT should be relatively
low compared to that of other approaches using a
single hit.

Conclusions

Since a large amount of metagenomic data generated
using Sanger sequencing fails to satisfy the cut-off for
taxonomic binning, we introduce a criterion based on a
genomic feature, namely, the conservation of gene adja-
cency between prokaryotes. Our analysis suggests that
considering the conserved neighboring gene adjacency
reduces the amount of data discarded by current meth-
ods. In fact, a latest update of MEGAN software has
incorporated similar analysis for pair reads, and the
assignment for LCA-gene has been improved consider-
ing the conserved adjacency [49]. In addition, we are
aware that the vast majority of recent metagenomic
datasets were produced by NGS technologies (e.g.,
Roche GS-FLX, Illumina 1G analyzer, and Applied Bio-
systems SOLID), and our analysis can only be applied to

datasets with longer reads, such as Sanger. Yet, Roche’s
first-generation instrument, 454 GS 20 (released in
2005), yielded 100-bp reads, the latest version GS Junior
System (released in 2009, Roche) already yielded demon-
strably higher read lengths, exceeding 500 bp. Hopefully,
the limitations of sequence length will be resolved in
the near future, and our study will provide a basis for
analyzing metagenomic data.

Methods

Collection of metagenomes and microbial genome
sequence

Figure 1 shows an overview of our methodology. We
used two kinds of metagenome samples: sunken whale
skeletons (whale fall) and human distal guts. Three inde-
pendent whale fall samples were collected in 2005 [18].
The assembled sequence data was downloaded from
NCBI ftp://ftp.ncbinih.gov/genbank/wgs/ with accession
numbers AAFY01000001-AAFY01028151 (whale fall 1),
AAFZ01000001-AAFZ01029934 (whale fall 2), and
AAGA01000001-AAGA01026232 (whale fall 3). The
microbiomes of distal guts were collected from 13
healthy Japanese individuals (six individuals and
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Table 4 Sensitivity and specificity of taxonomic binning
at different taxonomic ranks using discarded dataset of
simMC.

Accuracy
Criteria P (o} F G
adjacency E-value hits Sn Sp Sn Sp Sn
with le-2 50 318 972 283 908 276 848 241 888
150 349 945 308 862 300 793 253 820
250 368 933 317 840 307 770 259 790
350 379 927 320 830 30.7 758 257 776
le-4 50 297 974 278 91.1 274 851 237 892
150 34.1 949 303 87.1 295 802 255 831
250 360 937 314 849 303 778 257 802
350 37.1 932 317 839 305 767 258 787
le-6 50 291 975 273 912 268 851 234 892
150 33.1 949 297 87.1 288 802 247 83.1
250 350 937 308 849 298 778 255 802
350 362 932 313 839 302 767 258 787
without le-2 50 313 996 96 978 59 891 41 933
150 200 99.7 73 940 52 881 45 920
250 175 996 73 940 52 881 45 923
350 163 995 73 940 52 881 45 923

Sp Sn Sp

Criteria considering gene adjacency and without considering gene adjacency
were tested separately. P: phylum, O: order, F: family, G: genus. Sn and Sp
denote sensitivity (%) and Specificity (%).

members of two unrelated families) [16]. The data was
downloaded from the Human Metagenome Consortium,
Japan (HMG]J, http://www.metagenome.jp/). Table 2
summarizes the metagenomic fragments that we
collected.

To obtain information about gene adjacency, we down-
loaded microbial genomes from the NCBI ENTREZ
Genome Project database http://www.ncbi.nlm.nih.gov/
genomes/lproks.cgi. A total of 3,072,893 protein
sequences were obtained from 939 complete microbial
genomes and 576 plasmids in August 2009. The
sequences had to be processed by formatdb before they
could be used by the BLAST program.

Collection of discarded genomic fragments
We analyzed two types of discarded genomic fragments:
contigs that failed to meet the criteria in the original
studies and singletons that were left for analysis. The
discarded contigs, which were obtained from the DOE
Joint Genome Institute (JGI, http://www.jgi.doe.gov/),
contained genes that failed to pass the 30% BLAST
identity cut-off, or they had no hits in the Archaea and
Bacteria kingdoms of each microbiome.

To collect the discarded singletons, we followed the
assembly strategy described in Kurokawa K et al. [16].
For the 13 Japanese samples, the original trace archives
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(chromatogram files) were downloaded from the DNA
Data Bank of Japan (DDBJ, http://www.ddbj.nig.ac.jp/).
To read the DNA sequence chromatogram files, we
adopted the Phred program [50,51], which is widely
used for base-calling and characterizing the quality of
DNA sequences. Finally, the shotgun reads from the 13
samples were assembled using the PCAP software [52]
with the default parameters. The number and average
length of the remaining singletons from the Japanese
individuals are shown in Table 2. The slight differences
between our statistics and those reported in previous
studies may be due to different parameter settings.

Collection of simulated datasets

To estimate the proportion of discarded singletons that
contain at least two genes from real metagenomes, we
downloaded three simulated metagenomic data sets of
varying complexity as benchmarks and calculated the
number of CDSs in each singleton. The three simulated
datasets, a low-complexity community (simLC), a mod-
erate-complexity community (simMC) and a high-
complexity community (simHC), were compiled by
combining sequencing reads randomly selected from
113 genomes [42]. After assembling the simulated data-
sets using Phrap (v3.57), all remaining singletons were
published by the Department of Energy (DOE) Joint
Genome Institute. They are available through the Inte-
grated Microbial Genome (IMG) system. In addition, we
also used simMC to evaluate the performance of our
taxonomic assignment method. In total, there are 15,197
contigs and 40,379 singletons that Phrap assembler
failed to assemble. We randomly selected 10,000 non-
redundant singletons from simMC for analysis.

Taxonomic assignment of discarded genomic fragments
To incorporate the conservation of gene order into the
taxonomic classification, each discarded genomic frag-
ment was screened for protein encoding genes via a
BLASTX search against the NCBI ENTREZ Genome
Project database. An expected cut-off value (E) of 107
was used to select the top 250 potential coding elements
as the default settings. (We discuss the selection criteria
in Accuracy evaluation using simulated datasets).
Normally, the best hits are selected from BLAST
results, but best hits do not provide information on
adjacent genes. Therefore, the top 250 hits were selected
instead. In our strategies, adjacent gene pair is a pair of
genes that are directly next to each other in a given
chromosome. Thus, each hit was grouped with its corre-
sponding species. These hits were then compared in a
pair-wise fashion in order to identify adjacent CDSs.
The transcriptional direction (unidirectional (——), con-
vergent (—<), and divergent («<——)) of all identified
adjacent CDSs should be consistent with the genomic
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arrangement of reference genomes. Next, the pairs with
inconsistent genomic arrangement were removed. Sub-
sequently, among the remaining pairs, we ran the lowest
common ancestor (LCA) algorithm used in MEGAN
[28] to analyze the data. The source code is provided in
the supplementary material (see [Additional file 1]). It
requires perl and Basic Local Alignment Search Tool
(BLAST) on the work station. The program has been
tested by using several resources listed in Collection of
discarded genomic fragments and in Collection of
simulated datasets.

Comparison of binning discarded fragments in the
proposed approach and the original studies

To assess the consistency of binning results using the
discarded dataset and the binning results reported in
original studies, we compared the quantitative contribu-
tion of microorganisms in discarded data set and origi-
nal data set. Contigs and singletons were performed
separately. Because the phylogenetic taxonomies con-
structed by the NR database (used in previous studies)
and the NCBI ENTREZ Genome Project database (used
in our study) were not consistent, we selected 22 phyla
and 166 families that were consistent in both databases
to estimate the similarity of the binning results (see
[Additional file 2]). To quantify the similarity, we calcu-
lated Pearson correlation coefficient. We found that, in
each environment, the taxonomic binning was domi-
nated by a limited number of phylotypes; and the
remaining phylotypes only made a small contribution.
To avoid over-estimation resulting from the latter, all
phylotypes less than five were combined before calculat-
ing Pearson correlation coefficient in both datasets.

Accuracy evaluation using simulated datasets

The selection of appropriate criteria may have a critical
effect on our system’s performance. In Table 4, the rela-
tionships between the criteria (E-value threshold (1072,
10 and 10°) and BLAST hits numbers (50, 150, 250
and 350)) and the accuracy of our system were evalu-
ated using a simulated discarded dataset. Twelve combi-
nations (3 E-values * 4 BLAST hits numbers) were
tested for the performance evaluation.

Taxonomic reassignment for simulated data was eval-
uated by comparing the assignments made by our
method to those of the real corresponding taxa in differ-
ent taxonomic ranks (i.e., species, genus, family, order,
class, phylum and superkingdom). In this study, we
employed the adapted definition of sensitivity and speci-
ficity [43,53]. The accuracy was evaluated for each taxo-
nomic class. Let the i-th taxonomic class of taxonomic
rank r be denoted as class i. The true positives (TP;) are
defined as the number of genomic fragments correctly
assigned to class i; the false positives (FP;) are defined as
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the number of fragments from any class j # i that is
wrongly assigned as i. The false negatives (FN;) are
defined as the number of fragments from class i that is
erroneously assigned to any other class j # i. For a geno-
mic fragment whose taxonomic class cannot be inferred,
the algorithm classifies it as “unclassified”. The unclassi-
fied (U;) are the numbers of fragments from class i that
cannot be assigned to a taxonomic class.

The sensitivity (Sn,) for a taxonomic class i is defined
as the percentage of fragments from class i correctly
classified. It is computed by:

TP;

1

Snyj=— b
TP, + FN, + U,

The reliability (expressed in percentage) of the predic-
tions made by the classifier for class i is denoted as spe-
cificity (Sp;). It is measured using the following
equation:

TP;

— 1
SPi TP; + FP;

To select appropriate E-value threshold, the data in
Table 4 were examined. Since the results indicated that
the E-values do not affect the performance of taxonomic
binning, we selected a loose criterion (E-value 10°) as
default. The hit number is positively correlated with the
sensitivity but is negatively correlated with specificity,
(Table 4), the hit number 250 was selected as default
considering the sensitivity, specificity and also the run-
time required.

Additional material

Additional file 1: Reassignment_using_gene_adjacency.pl. Perl script
for reassignment using gene adjacency.

Additional file 2: Supplemental Table S1. The phylotypes used to
estimate the binning similarity.
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