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Abstract

Background: MHC class II binding predictions are widely used to identify epitope candidates in infectious agents,
allergens, cancer and autoantigens. The vast majority of prediction algorithms for human MHC class II to date have
targeted HLA molecules encoded in the DR locus. This reflects a significant gap in knowledge as HLA DP and DQ
molecules are presumably equally important, and have only been studied less because they are more difficult to
handle experimentally.

Results: In this study, we aimed to narrow this gap by providing a large scale dataset of over 17,000 HLA-peptide
binding affinities for a set of 11 HLA DP and DQ alleles. We also expanded our dataset for HLA DR alleles resulting
in a total of 40,000 MHC class II binding affinities covering 26 allelic variants. Utilizing this dataset, we generated
prediction tools utilizing several machine learning algorithms and evaluated their performance.

Conclusion: We found that 1) prediction methodologies developed for HLA DR molecules perform equally well for
DP or DQ molecules. 2) Prediction performances were significantly increased compared to previous reports due to
the larger amounts of training data available. 3) The presence of homologous peptides between training and
testing datasets should be avoided to give real-world estimates of prediction performance metrics, but the relative
ranking of different predictors is largely unaffected by the presence of homologous peptides, and predictors
intended for end-user applications should include all training data for maximum performance. 4) The recently
developed NN-align prediction method significantly outperformed all other algorithms, including a naïve
consensus based on all prediction methods. A new consensus method dropping the comparably weak ARB
prediction method could outperform the NN-align method, but further research into how to best combine MHC
class II binding predictions is required.

Background
HLA class II molecules are expressed by human profes-
sional antigen presenting cells (APCs) and can display
peptides derived from exogenous antigens to CD4+ T
cells [1]. The molecules are heterodimers consisting of
an alpha chain and a beta chain encoded in one of three
loci: HLA DR, DP and DQ [2,3]. The DR locus can
encode two beta chains DRB1 and DRB3-5 which are in
linkage disequilibrium [4]. The genes encoding class II
molecules are highly polymorphic, as evidenced by the
IMGT/HLA database [5] which lists 1,190 known
sequences of HLA class II alleles for HLA-DR, HLA-DP
and HLA-DQ molecules (Table 1). Both alpha and beta
chains can impact the distinct peptide binding specificity

of an HLA class II molecule [6]. HLA class II peptide
ligands that are recognized by T cells and trigger an
immune response are referred to as immune epitopes
[7]. Identifying such epitopes can help detect and modu-
late immune responses in infectious diseases, allergy,
autoimmune diseases and cancer.
Computational predictions of peptide binding to HLA

molecules are a powerful tool to identify epitope candi-
dates. These predictions can generalize experimental
findings from peptide binding assays, sequencing of
naturally presented HLA ligands, and three dimensional
structures of HLA peptide complexes solved by X-ray
crystallography (for a review on MHC class II prediction
algorithms see [8] and references herein). Several data-
bases have been established to document the results of
such experiments including Antijen [9], MHCBN [10],
MHCPEP [11], FIMM [12], SYFPEITHI [13] and the
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Immune Epitope Database (IEDB) [14,15]. IEDB
currently documents 12,577 peptides tested for binding
to one of more of 158 MHC class II allelic variants of
which 114 are human (HLA). It is possible to develop
binding prediction methods for HLA molecules for
which no experimental data are available by extrapolating
what is known for related molecules [16-19]. However,
the quality of these extrapolations decreases for mole-
cules that are very different from the experimentally
characterized ones, and completely ab initio predictions
have not been successful [20]. It is therefore a major gap
in knowledge that little binding data are available for
HLA DP and DQ molecules, which are more difficult to
work with experimentally, but are equally relevant as
HLA DR molecules. Resulting from this lack of data, the
vast majority of HLA class II binding predictions to date
are only available for DR molecules. We here address this
gap by providing a consistent, large scale dataset of bind-
ing affinities for HLA DR, DP and DQ molecules which
we use to establish and evaluate peptide binding predic-
tion tools.
It is our goal to include a variety of binding prediction

algorithms in the IEDB Analysis Resource (IEDB-AR)
[21], identify the best performing ones, and ideally com-
bine multiple algorithms into a superior consensus pre-
diction. In this study, we implemented two methods in
addition to the previously incorporated ones. The first
method is based on the use of combinatorial peptide
libraries to characterize HLA class II molecules. Such
libraries consist of mixtures of peptides of the same
length, all sharing one residue at one position. Deter-
mining the affinity of a panel of such peptide libraries to

an HLA molecule provides an unbiased and comprehen-
sive assessment of its binding specificity. This approach
is also time and cost effective, as the same panel of pep-
tide libraries can be scanned for all HLA molecules of
interest, and has been applied successfully for multiple
applications [22-24], The second method we newly
implemented was NN-align [25]. This neural network
based approach combines the peptide sequence repre-
sentation used in the NetMHC algorithm [26,27] that
was highly successful in predicting the binding specifi-
city of HLA class I molecules [28,29] with the represen-
tation of peptide flanking residues and peptide length
used in NetMHCIIpan method [19]. Both the NN-align
and the combinatorial peptide library method were
evaluated in terms of their prediction performance and
ability to improve a consensus prediction approach.
Finally, we wanted to address the impact of homolo-

gous peptides in our datasets on evaluating prediction
results. The presence of homologous peptides in our
dataset is primarily due to the strategies that were uti-
lized in the peptide selection process. For comprehensive
epitope mapping studies in individual antigens, we typi-
cally utilize 15-mer peptides overlapping by 10 residues
that span entire protein sequences. Another strategy
utilized to define classical binding motifs is to systemati-
cally introduce point mutations in a reference ligand to
map essential residues for peptide:MHC interaction.
Finally, for identified epitopes, additional variants from
homologous proteins are often tested to predict potential
cross-reactivity. All of these strategies introduce multiple
peptides with significant sequence similarity into the
dataset. This could affect the assessment of binding pre-
diction in two distinct manners: 1) peptides in the testing
set for which a homolog is present in the training may be
easier to predict and thereby lead to overestimates of per-
formance compared to real life applications; 2) the pre-
sence of multiple homologous peptides during training
may bias prediction methods leading to reduced predic-
tion performance when testing. To examine these issues,
we compared evaluations with different approaches to
removing similar peptides.

Results
Derivation and assembly of a novel MHC class II binding
affinity dataset
In a previous report, we described the release of 10,017
MHC class II binding affinities experimentally measured
by our group [30]. The data included measured binding
affinities for a total of 17 different mouse and human
allelic variants. This dataset was at the time the largest
collection of homogenous MHC class II binding affi-
nities available to the public and remains a valuable
asset for the immunology research community. How-
ever, it was apparent that this dataset could be expanded

Table 1 Overview of human MHC class II loci, allele and
polymorphism.

Locus Gene Chain # of alleles

HLA-DP HLA-DPA1 alpha 28

HLA-DP HLA-DPB1 beta 138

HLA-DQ HLA-DQA1 alpha 35

HLA-DQ HLA-DQB1 beta 108

HLA-DR HLA-DRA alpha 3

HLA-DR HLA-DRB1 beta 785

HLA-DR HLA-DRB2 beta 1

HLA-DR HLA-DRB3 beta 52

HLA-DR HLA-DRB4 beta 14

HLA-DR HLA-DRB5 beta 19

HLA-DR HLA-DRB6 beta 3

HLA-DR HLA-DRB7 beta 2

HLA-DR HLA-DRB8 beta 1

HLA-DR HLA-DRB9 beta 1

Information was extracted from IMGT database. HLA-DM and HLA-DO
molecules are not included as they are not expressed on cell surface.
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and its utility improved in several regards. First, cover-
age of human HLA DP and DQ molecules was limited
or non-existing. Secondly, for several molecules, rela-
tively few data points existed, in spite of the fact that we
and others [30,31] have shown that several hundred
data points are desirable to derive accurate predictive
algorithms. We have now compiled a new set of 44,541
experimentally measured, MHC class II peptide binding
affinities covering 26 allelic variants (Table 2). This set
includes and expands the previous set, and is the result

of our general ongoing efforts to map epitopes in infec-
tious agents and allergens. These data represent an over
four fold increase in binding affinity measurements and a
~ 60% increase in allelic variant coverage. Importantly,
the alleles included were selected for their high frequency
in the human population (see Table 2). As a result, the
combined allele frequency of this set of 26 MHC class II
molecules results in >99% population coverage (Table 2).
Overall, an average of 1,713 data points and 858 binders
(peptides with measured IC50 < 1000 nM) are included

Table 2 Overview of MHC class II binding dataset utilized in the present study.

Allelic variant # of binding affinities # of binders1 % of binders Allele frequency2

HLA-DPA1*0201-DPB1*0101 1399 702 0.5 16.0

HLA-DPA1*0103-DPB1*0201 1404 635 0.45 17.5

HLA-DPA1*01-DPB1*0401 1337 540 0.4 36.2

HLA-DPA1*0301-DPB1*0402 1407 621 0.44 41.6

HLA-DPA1*0201-DPB1*0501 1410 528 0.37 21.7

HLA-DQA1*0501-DQB1*0201 1658 742 0.45 11.3

HLA-DQA1*0501-DQB1*0301 1689 1023 0.61 35.1

HLA-DQA1*0301-DQB1*0302 1719 670 0.39 19.0

HLA-DQA1*0401-DQB1*0402 1701 731 0.43 12.8

HLA-DQA1*0101-DQB1*0501 1739 687 0.4 14.6

HLA-DQA1*0102-DQB1*0602 1629 974 0.6 14.6

HLA-DRB1*0101 6427 4519 0.7 5.4

HLA-DRB1*0301 1715 553 0.32 13.7

HLA-DRB1*0401 1769 978 0.55 4.6

HLA-DRB1*0404 577 396 0.69 3.6

HLA-DRB1*0405 1582 806 0.51 6.2

HLA-DRB1*0701 1745 1033 0.59 13.5

HLA-DRB1*0802 1520 591 0.39 4.9

HLA-DRB1*0901 1520 815 0.54 6.2

HLA-DRB1*1101 1794 957 0.53 11.8

HLA-DRB1*1302 1580 656 0.42 7.7

HLA-DRB1*1501 1769 909 0.51 12.2

HLA-DRB3*0101 1501 426 0.28 26.1

HLA-DRB4*0101 1521 654 0.43 41.8

HLA-DRB5*0101 1769 992 0.56 16.0

H-2-IAb 660 180 0.27 -

Total 44541 22318

Min 577 180

Max 6427 4519

DP 92.6

DQ 81.6

DRB1 71.0

DRB3/4/5 70.9

Total 99.9

1. Binder defined as IC50 <1000 nM.

2. Average haplotype and phenotype frequencies for individual alleles are based on data available at dbMHC. dbMHC data considers prevalence in Europe, North
Africa, North-East Asia, the South Pacific (Australia and Oceania), Hispanic North and South America, American Indian, South-East Asia, South-West Asia, and Sub-
Saharan Africa populations. DP, DRB1 and DRB3/4/5 frequencies consider only the beta chain frequency, given that the DRA chain is largely monomorphic, and
that differences in DPA are not hypothesized to significantly influence binding. Frequency data are not available for DRB3/4/5 alleles. However, because of
linkage with DRB1 alleles, coverage for these specificities may be assumed as follows: DRB3 with DR3, DR11, DR12, DR13 and DR14; DRB4 with DR4, DR7 and
DR9; DRB5 with DR15 and DR16. Specific allele frequencies at each B3/B4/B5 locus is based on published associations with various DRB1 alleles, and assumes
only limited variation at the indicated locus.
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for each molecule, ranging from a minimum of 577 data
points for HLA DRB1*0404 and 180 binders for H-2-IAb,
to the highest values of 6,427 data points and 4,519 bin-
ders for the HLA-DRB1*0101 molecule. This uniformly
large number of more than 500 affinity measurements
for each included allelic variant was previously found to
be required to consistently generate reliable predictions
[30]. To the best of our knowledge, this is the first pub-
licly available dataset of HLA-DP and HLA-DQ binding
affinities of significant size.

Evaluation of previously reported methods with the new
dataset
In our previous evaluation of MHC class II binding pre-
diction algorithms, we tested the performance of a large
number of publicly available methods. Among those
methods, ARB, SMM-align and PROPRED (based on
the matrices constructed by Sturniolo et al. [16] on
which also the TEPITOPE predictions are based) were
the top performing ones and were incorporated into the
MHC class II binding prediction component of the
IEDB analysis resource [21]. Here, we re-evaluated their
performance on the new dataset. As in the previous eva-
luation, we performed 5-fold cross validation for ARB
and SMM-align and direct prediction for PROPRED
over the entire data set, and quantified the performance
of the various methods by calculating the AUC values
using an IC50 cutoff of 1000 nM, as shown in Table 3
under the “current” columns. On average, the perfor-
mance of the various methods was 0.784 for ARB (range
0.702 to 0.871), 0.849 for SMM-align (range 0.741 to
0.932), and 0.726 for PROPRED (range 0.600 to 0.804).
Importantly, the cross-validated prediction performance
for the newly included allelic variants was comparable
to that of the previously included ones. Thus, the ARB
and SMM-align machine learning approaches can be
successfully applied to HLA DP and DQ allelic variants.
The previously reported prediction performance data

taken from [30] is also shown in Table 3 under the
“old” columns. Compared to the average evaluation
results reported previously, ARB (0.784 vs. 0.706)
and SMM-align (0.849 vs. 0.727) showed markedly
improved performance. As the training algorithms
were unchanged, this most likely can be attributed to
the increase in dataset sizes. In contrast, PROPRED
achieved virtually the same AUC value (0.726 vs.
0.731). As the PROPRED approach is fixed and not
retrained based on additional data, it is not surprising
that the predictive performance on the new dataset did
not differ substantially from the previously reported
performance. Also, as the new data set cannot be uti-
lized to train new PROPRED predictions, its predic-
tions can now be generated for only a minority of the
molecules considered.

Incorporating novel prediction algorithms into the MHC
class II binding prediction arsenal
In addition to the previously implemented prediction
methods, we integrated two new approaches into the

Table 3 Comparison of ARB, SMM-align and PROPRED’s
performance on current and old dataset.

Allelic variant ARB SMM-align PROPRED

Current1 Old2 current1 old2 current1 old2

HLA-DPA1*0103-
DPB1*0201

0.823 0.921

HLA-DPA1*01-
DPB1*0401

0.847 0.930

HLA-DPA1*0201-
DPB1*0101

0.824 0.909

HLA-DPA1*0201-
DPB1*0501

0.859 0.923

HLA-DPA1*0301-
DPB1*0402

0.821 0.932

HLA-DQA1*0101-
DQB1*0501

0.871 0.930

HLA-DQA1*0102-
DQB1*0602

0.777 0.838

HLA-DQA1*0301-
DQB1*0302

0.748 0.807

HLA-DQA1*0401-
DQB1*0402

0.845 0.896

HLA-DQA1*0501-
DQB1*0201

0.855 0.901

HLA-DQA1*0501-
DQB1*0301

0.844 0.910

HLA-DRB1*0101 0.770 0.764 0.798 0.769 0.720 0.738

HLA-DRB1*0301 0.753 0.660 0.852 0.693 0.699 0.652

HLA-DRB1*0401 0.731 0.667 0.781 0.684 0.737 0.686

HLA-DRB1*0404 0.707 0.724 0.816 0.753 0.769 0.789

HLA-DRB1*0405 0.771 0.669 0.822 0.694 0.767 0.750

HLA-DRB1*0701 0.767 0.692 0.834 0.776 0.773 0.776

HLA-DRB1*0802 0.702 0.737 0.741 0.750 0.647 0.768

HLA-DRB1*0901 0.747 0.622 0.765 0.660

HLA-DRB1*1101 0.800 0.731 0.864 0.808 0.804 0.796

HLA-DRB1*1302 0.727 0.787 0.797 0.695 0.600 0.584

HLA-DRB1*1501 0.763 0.700 0.796 0.738 0.743 0.715

HLA-DRB3*0101 0.709 0.590 0.819 0.677

HLA-DRB4*0101 0.785 0.741 0.816 0.713

HLA-DRB5*0101 0.760 0.703 0.832 0.751 0.728 0.790

H-2-IAb 0.800 0.803 0.855 0.746

Average 0.784 0.706 0.849 0.727 0.726 0.731

Min 0.702 0.590 0.741 0.660 0.600 0.584

Max 0.871 0.803 0.932 0.808 0.804 0.796

Best prediction performance for each allelic variant was highlighted in bold.

1. The current AUC values for ARB and SMM-align were derived by cross-
validation. The current AUC values for PROPRED were derived by predicting
affinities for the new dataset.

2. The old AUC values were taken from previous evaluation [30].
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IEDB analysis resource. We used combinatorial peptide
libraries to experimentally characterize the binding spe-
cificity of each HLA molecule for which new assays
were established, including all HLA-DP and HLA-DQ
allelic variants. The affinity of 180 libraries of 13-mer
peptides, each sharing one amino acid residue in one of
the positions from 3-11 was determined. The ability of
these matrices to predict binding of individual peptides
was evaluated with the entire new dataset, and the
resulting AUC values are shown in Table 4 in the “ALL”
column. It was found that the combinatorial library per-
formed with AUC similar or better than the PROPRED

method, which is similarly constructed based on affinity
measurements for a library of single residue substitution
peptides. Similar results were obtained when perfor-
mance was measured with Spearman’s rank correlation
coefficient (Additional file 1, Table S1). This confirms
that combinatorial peptide libraries are an efficient
experimental approach to derive MHC class II binding
profiles. Also, these predictions provide an alternative
for those molecules for which the PROPRED method is
not available.
The second new method we added to the IEDB analy-

sis resource was NN-align [25]. This method differs

Table 4 Cross validation prediction performances of all methods on complete and similarity reduced datasets
measured with AUC.

Allelic variant ARB SMM-align PROPRED combinatorial library NN-align Consensus Consensus-best32

ALL SR1 ALL SR1 ALL SR1 ALL SR1 ALL SR1 ALL SR1 ALL SR1

HLA-DPA1*0103-DPB1*0201 0.823 0.745 0.921 0.767 0.840 0.724 0.943 0.793 0.932 0.809 0.935 0.796

HLA-DPA1*01-DPB1*0401 0.847 0.746 0.930 0.767 0.833 0.704 0.947 0.802 0.938 0.803 0.941 0.794

HLA-DPA1*0201-DPB1*0101 0.824 0.743 0.909 0.786 0.849 0.723 0.944 0.818 0.927 0.818 0.932 0.819

HLA-DPA1*0201-DPB1*0501 0.859 0.709 0.923 0.728 0.867 0.729 0.956 0.787 0.942 0.781 0.946 0.782

HLA-DPA1*0301-DPB1*0402 0.821 0.771 0.932 0.818 0.864 0.756 0.949 0.828 0.938 0.841 0.941 0.830

HLA-DQA1*0101-DQB1*0501 0.871 0.741 0.930 0.783 0.809 0.728 0.945 0.805 0.933 0.809 0.942 0.811

HLA-DQA1*0102-DQB1*0602 0.777 0.708 0.838 0.734 0.765 0.752 0.880 0.762 0.851 0.778 0.859 0.779

HLA-DQA1*0301-DQB1*0302 0.748 0.637 0.807 0.663 0.698 0.616 0.851 0.693 0.823 0.690 0.837 0.692

HLA-DQA1*0401-DQB1*0402 0.845 0.643 0.896 0.761 0.681 0.637 0.922 0.742 0.908 0.749 0.916 0.762

HLA-DQA1*0501-DQB1*0201 0.855 0.700 0.901 0.736 0.586 0.620 0.932 0.777 0.917 0.774 0.923 0.779

HLA-DQA1*0501-DQB1*0301 0.844 0.756 0.910 0.801 0.802 0.745 0.927 0.811 0.917 0.814 0.919 0.816

HLA-DRB1*0101 0.770 0.710 0.798 0.756 0.720 0.692 0.739 0.697 0.843 0.763 0.810 0.759 0.820 0.769

HLA-DRB1*0301 0.753 0.728 0.852 0.808 0.699 0.669 0.887 0.829 0.862 0.823 0.873 0.835

HLA-DRB1*0401 0.731 0.668 0.781 0.721 0.737 0.711 0.813 0.734 0.799 0.735 0.804 0.738

HLA-DRB1*0404 0.707 0.681 0.816 0.789 0.769 0.753 0.823 0.803 0.826 0.800 0.831 0.809

HLA-DRB1*0405 0.771 0.716 0.822 0.767 0.767 0.742 0.870 0.794 0.847 0.797 0.851 0.797

HLA-DRB1*0701 0.767 0.736 0.834 0.796 0.773 0.750 0.762 0.729 0.869 0.811 0.851 0.806 0.858 0.808

HLA-DRB1*0802 0.702 0.649 0.741 0.689 0.647 0.641 0.796 0.698 0.772 0.708 0.778 0.710

HLA-DRB1*0901 0.747 0.654 0.765 0.696 0.572 0.553 0.810 0.713 0.801 0.716 0.796 0.716

HLA-DRB1*1101 0.800 0.777 0.864 0.829 0.804 0.779 0.900 0.847 0.880 0.850 0.885 0.854

HLA-DRB1*1302 0.727 0.667 0.797 0.754 0.600 0.577 0.814 0.732 0.796 0.742 0.811 0.757

HLA-DRB1*1501 0.763 0.696 0.796 0.741 0.743 0.703 0.852 0.756 0.820 0.756 0.827 0.758

HLA-DRB3*0101 0.709 0.678 0.819 0.780 0.655 0.655 0.856 0.798 0.834 0.787 0.844 0.799

HLA-DRB4*0101 0.785 0.747 0.816 0.762 0.697 0.691 0.870 0.789 0.844 0.791 0.846 0.784

HLA-DRB5*0101 0.760 0.697 0.832 0.776 0.728 0.711 0.886 0.795 0.848 0.786 0.851 0.798

H-2-IAb 0.800 0.775 0.855 0.830 0.858 0.847 0.853 0.846 0.866 0.847

Average 0.785 0.711 0.850 0.763 0.726 0.703 0.751 0.691 0.882 0.782 0.864 0.783 0.871 0.786

Min 0.702 0.637 0.741 0.663 0.600 0.577 0.572 0.553 0.796 0.693 0.772 0.690 0.778 0.692

Max 0.871 0.777 0.932 0.830 0.804 0.779 0.867 0.756 0.956 0.847 0.942 0.850 0.946 0.854

1. SR1stands for similarity reduced.

2. The Consensus-best3 method is based on NN-align, SMM-align and combinatorial peptide library. PROPRED was used for allelic variants when combinatorial
peptide library was not available

Best prediction performance for each allelic variant was highlighted. The best performing method for “ALL” dataset was highlighted with underline while the
best performing method for “SR” dataset was highlighted in bold.
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from previous approaches in that NN-align is neural
network based and can hence take into account higher
order sequence correlations. Furthermore, NN-align
incorporates peptide flanking residues and peptide
length directly into the training of the method. This is
in contrast to the SMM-align method, where the pep-
tide flanking residues and peptide length are dealt with
in an ad-hoc manner. We evaluated the performance of
NN-align using the same 5-fold data separations used
for the ARB and SMM-align methods. The AUC values
derived from this cross validation are shown in Table 4
under the “ALL” columns and the Spearman’s rank
correlation coefficients were shown in Additional file 1,
Table S1. The NN-align method stands out as having
by far the best performance, with an average AUC
value of 0.882 and average Spearman’s rank correlation
coefficient of 0.758.

A novel homology reduction approach for
unbiased cross validation
Some peptides in our dataset have significant homology
to each other which could bias the cross-validation
results if similar peptides are present in both the train-
ing and the testing sets. Previous studies have attempted
to address this issue and several strategies have been
proposed to generate sequence similarity reduced data-
sets for cross-validation purpose. One such approach is
to remove similar peptides from the entire dataset [32].
We call this a ‘random selection’ strategy as the order in
which peptides are removed is not defined. We applied
the algorithm to our dataset and for any two peptides
that shared an identical 9-mer core region, or that had
more than 80% overall sequence identity, one peptide
was removed. The results are shown in Additional file 1,
Table S2 and highlight that this strategy selected a dif-
ferent number of peptides in repeated runs. To avoid
this, we applied a Hobohm 1 like selection strategy that
deterministically selects a set of peptides, and also maxi-
mizes the number of peptides included in the data. This
was done by a forward selection procedure described in
the methods section. Briefly, for each peptide the num-
ber of similar peptides was recorded and peptides were
sorted according to this number. Peptides were selected
from this ordered list starting with those with the smal-
lest number of similar peptides. If a peptide was
encountered for which a similar matching one was
already selected, it was discarded. As shown in Addi-
tional file 1, Table S2, this strategy indeed resulted in a
stable selection of peptides and always selected a higher
number of peptides than the random selection
algorithm.
Using the forward selection algorithm, we derived

sequence Similarity Reduced (SR) datasets and used
them in five-fold cross validation to evaluate the

performance of our panel of MHC class II binding
prediction tools. The results are shown in Table 4 under
columns titled SR. Clearly, reducing sequence similarity
had a significant impact on the observed classifier per-
formance, which is consistent with previous findings
[32]. At the same time, the order of performance of the
different prediction methods was unchanged when using
the reduced dataset, with NN-align performing the best,
SMM-align second, ARB third, and PROPRED and the
combinatorial libraries last. The order of performance
determined by Spearman’s rank correlation coefficient
analysis (Additional file 1, Table S1) was largely identical
except that ARB and PROPRED switched position. The
largest drop in performance was observed for NN-align
and SMM-align, where the average AUC value was
reduced by 0.100 and 0.087 (0.151 and 0.130 in terms
of Spearman’s rank correlation coefficient) when tested
with similarity reduced datasets, respectively. The smal-
lest reduction was observed for PROPRED with an aver-
age AUC reduction of 0.023 (0.036 in terms of
Spearman’s rank correlation coefficient) followed by the
combinatorial peptide library with a reduction in AUC
of 0.060 (0.099 in terms of Spearman’s rank correlation
coefficient). As the latter two methods do not utilize
the training dataset to make their prediction, it is
expected that they show less of a drop in performance
than the others. The fact that a reduction in perfor-
mance was observed at all indicates that removing simi-
lar peptides from the testing set alone makes the
prediction benchmark harder. This can be explained by
the fact that homologous peptides removed because
they are single residue substitutions of known epitopes
or reference ligands are often ‘easy’ to predict, as they
carry strong and straightforward signals to discover
binding motifs.

Training with peptides of significant sequence similarity
doesn’t negatively influence the prediction of unrelated
sequences
An important question arising from the sequence
similarity reduction and cross validation evaluation is
whether inclusion of similar sequences will have a nega-
tive impact on the prediction of unrelated sequences.
An excessive amount of peptides with similar sequences
may bias a classifier such that the performances on
sequences without significant similarity to the training
data are negatively influenced. This was demonstrated in
[32] in which a classifier displayed better performance
than others when evaluated on a dataset that contained
similar sequences, but which completely failed when
evaluated on a dataset with no homology between pep-
tides. It is unclear though how relevant this finding is in
practice, specifically as the inclusion of single residue
substitutions can contain particularly useful information
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demonstrated by the fact that this is how the MHC
binding motifs were originally defined [33].
We developed a simple strategy to test if the inclu-

sion of homologous peptides in the training data can
affect the prediction of unrelated peptides. For each
allelic variant, we selected a subset of singular pep-
tides (SP) set, which share no sequence similarity with
any other peptides in the set (Figure 1). The similarity
reduced (SR) set is a superset of the SP set, which in
addition to the SP peptides also contains one peptide
from each cluster of similar peptides. For each peptide
in the SP set, there exist two blinded binding predic-
tions obtained in the previous cross validations: One
where the training set included all peptides including
homologs (the ALL set), the other where only non-
homologous peptides were included in the training
(the SR set). By comparing the performance of the
two predictions, we evaluated if inclusion of homolo-
gous peptides in the training negatively impacts the
prediction of non-homologous peptides. We per-
formed this test on all implemented machine learning
methods with similar results, and are showing the
resulting AUCs for the top performing method NN-
align in Table 5. On average, the performance of
methods trained including homologues was higher
than methods trained leaving out those peptides.
While the difference is not significant (paired two
tailed t-test, p-value = 0.259), this alleviates concerns
for the tested methods that predictions will actually

get worse when including homologous peptides in the
training. Thus, it is advisable that the ultimate classi-
fiers for public use should be trained using all avail-
able binding data.

A consensus approach of selected methods outperforms
a generalized consensus approach and individual
methods
In our previous study, a median rank based consensus
approach gave the best prediction performance. In this
study, we updated the consensus approach with the
new methods (NN-align and combinatorial peptide
library) and evaluated its performance on the similarity
reduced as well as entire dataset (Table 4). The result
showed that while the consensus method remains a
competitive approach, it does not outperform the best
available individual approach NN-align (paired one
tailed t-test, p-value = 0.135) on the similarity reduced
dataset.
We next investigated optimized approaches for

deriving consensus predictions. We reasoned that
simply increasing the number of methods included in
a consensus prediction might not be optimal, espe-
cially if certain methods are underperforming, or sim-
ply if multiple methods are conceptually redundant
(based on identical or similar approaches). To deter-
mine the benefit of including individual methods in
the consensus, we tested the performance of the con-
sensus approach while removing each of the five
methods (Additional file 1, Table S3) using the simi-
larity-reduced dataset. The results indicated that
removing NN-align, SMM-align, the combinatorial
peptide library and PROPRED reduced prediction per-
formance. In contrast, removing ARB actually had a
positive impact on consensus performance. Based on
this, we tested the performance of a consensus
approach on the SR dataset utilizing NN-align, SMM-
align and the combinatorial library, or substituted
PROPRED for the combinatorial library for those
alleles for which it is not available (labeled consensus-
best3). The resulting average AUC on the SR set
(0.786) is significantly improved over consensus using
all methods (paired, one sided t-test, p-value = 0.033).
Also, the prediction performance of consensus-best3
in comparison to NN-align is significantly better in
the SR set (paired, one sided t-test, p-value = 0.0034).
When performance was measured with Spearman ’s
rank correlation coefficient, very similar results were
obtained though the performance of NN-align and
consensus-best3 were virtually identical on the SR set.
Thus, a combination of selected subsets of methods
for a consensus could achieve better performance
than the naïve consensus approach in which all
methods were utilized.

Figure 1 A Venn diagram illustrating the relationship among
“ALL”, “SR’ and “SP” datasets. The simulated dataset illustrated
the superset relationships among the “ALL”, “SR” and “SP” sets. The
“ALL” dataset contains all three peptides. The “SR” dataset contains
two peptides with one of the similar peptide being removed and
the “SP” dataset only contains a single peptide that shares no
similarity with any other peptides.
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Inclusion of the novel dataset into the IEDB and
integration of the algorithms in the IEDB analysis
resource
We have updated the MHC class II portion of the IEDB
analysis resource http://tools.immuneepitope.org/ana-
lyze/html/mhc_II_binding.html to reflect the progress in
data accumulation and algorithm development. There
are now six algorithms available to predict MHC class II
epitope: the previously established ARB, SMM-align and
PROPRED methods, the newly established combinatorial
library and NN-align predictions, and the combined
consensus approach. The ARB algorithm has been re-
implemented in Python to allow better integration with
the website and future development. The machine learn-
ing based approaches (ARB, NN-align and SMM-align)

have been retrained with the complete dataset described
in this article to provide improved performance. The
collection of algorithms has also been implemented as a
standalone command line application that provides
identical functionality as the website. This package can
be downloaded from the IEDB analysis resource along
with the MHC class II binding affinity datasets, the pre-
diction scores, and the combinatorial peptide library
matrices.

Discussion and Conclusions
Computational algorithms to predict epitope candidates
have become an essential tool for genomic screens of
pathogens for T cell response targets [34-37]. The
majority of these algorithms rely on experimental

Table 5 Prediction performance on singular peptide set (SP) using training sets with and without homologs.

Allelic variant SR
AUC

ALL
AUC

AUC reduction1 # peptide reduction2 % peptide reduction3

HLA-DPA1*0103-DPB1*0201 0.787 0.797 0.010 801 0.571

HLA-DPA1*01-DPB1*0401 0.809 0.801 -0.008 797 0.596

HLA-DPA1*0201-DPB1*0101 0.764 0.735 -0.029 795 0.568

HLA-DPA1*0201-DPB1*0501 0.587 0.640 0.053 824 0.584

HLA-DPA1*0301-DPB1*0402 0.744 0.772 0.028 805 0.572

HLA-DQA1*0101-DQB1*0501 0.850 0.821 -0.029 1155 0.664

HLA-DQA1*0102-DQB1*0602 0.667 0.719 0.052 1036 0.636

HLA-DQA1*0301-DQB1*0302 0.569 0.756 0.187 1123 0.653

HLA-DQA1*0401-DQB1*0402 0.632 0.551 -0.081 1116 0.656

HLA-DQA1*0501-DQB1*0201 0.587 0.652 0.065 1069 0.645

HLA-DQA1*0501-DQB1*0301 0.764 0.766 0.002 1087 0.644

HLA-DRB1*0101 0.777 0.781 0.004 2923 0.455

HLA-DRB1*0301 0.782 0.786 0.004 579 0.338

HLA-DRB1*0401 0.682 0.709 0.027 548 0.310

HLA-DRB1*0404 0.805 0.818 0.013 103 0.179

HLA-DRB1*0405 0.765 0.748 -0.017 533 0.337

HLA-DRB1*0701 0.793 0.810 0.017 570 0.327

HLA-DRB1*0802 0.672 0.622 -0.050 503 0.331

HLA-DRB1*0901 0.669 0.651 -0.018 478 0.314

HLA-DRB1*1101 0.809 0.799 -0.010 590 0.329

HLA-DRB1*1302 0.712 0.733 0.021 510 0.323

HLA-DRB1*1501 0.712 0.719 0.007 598 0.338

HLA-DRB3*0101 0.829 0.838 0.009 514 0.342

HLA-DRB4*0101 0.762 0.745 -0.017 510 0.335

HLA-DRB5*0101 0.774 0.798 0.024 571 0.323

H-2-IAb 0.816 0.833 0.017 114 0.173

Average 0.737 0.748 0.011 779 0.444

The “ALL” column indicates 5-fold cross validation performance of this subset trained with entire dataset. The “SR” indicates 5-fold cross validation performance
of this subset trained with sequence similarity reduced dataset.

1. AUC reduction = AUC all - AUC SR

2. # peptide reduction = # peptide all - # peptide SR

3. % peptide reduction = (# peptide all - # peptide SR)/# peptide all
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binding affinities to generate predictive models. The
data presented in this study provides a large scale and
homogenous dataset of experimental binding affinities
for HLA class II molecules, along with a comprehensive
evaluation of prediction performances for a number of
algorithms. The binding dataset made available here is
about four-fold larger than the one in our previous
report [30]. The increased number of peptides per allele
resulted in a significantly improved performance of
machine learning methods, ARB and SMM-align. This
reinforces the idea that the prediction performance of a
machine learning method is greatly dependent on the
amount of learning data available.
This present dataset is not only significantly larger

than what was previously available, but also for the first
time covers HLA-DP and HLA-DQ molecules in depth.
Lack of data for these alleles was identified in previous
studies as one of the challenges facing HLA class II
binding predictions [30,31]. The significant increase (i.e.
over 40%) in the number of allelic variants results in a >
99% population coverage which could be very valuable
for the development of T-cell epitope based vaccine.
This dataset will also be useful in improving pan-like
approaches that take advantage of binding pocket simi-
larities among different MHC molecules to generate
binding predictors for allelic variants without binding
data [19].
We added two new methods to our panel of predic-

tion algorithms. Combinatorial peptide libraries were
used to experimentally characterize HLA class II alleles
for which no PROPRED predictions were available. Data
from such libraries have successfully been used to pre-
dict proteasomal cleavage [22], TAP transport [23] and
MHC class I binding [24]. The performance of the
libraries for class II predictions was comparable to that
of PROPRED, and in general inferior to the machine
learning approaches. The main value of the combinator-
ial library approach lies in its experimental efficiency,
and in that its predictions can be considered completely
independent of those from machine learning algorithms.
The combinatorial library approach increases its value
when combined with machine learning methods for
consensus prediction approaches.
The second method added was NN-align, which

showed a remarkably high prediction performance in
the benchmark. This repeats the dominating perfor-
mance of the related NetMHC prediction methods in a
number of recent MHC class I prediction benchmarks
[28,29,38].
One of the challenges for evaluating the MHC class II

binding prediction performances is how to deal with the
presence of homologous peptides in the available data
[32]. One concern is that peptides in the testing set for
which a homolog is present in the training data may

lead to artificially high prediction performances. To
address this, we generated sequence similarity reduced
dataset from the entire available data using a forward
selection approach such that no homologous peptides
are present in the subset. The prediction performance
on this similarity reduced dataset shows that the abso-
lute AUC values of the compared methods is indeed sig-
nificantly lower than that of the entire dataset. However,
the rank-order of the different prediction methods was
largely unchanged between datasets. This leads us to
conclude that 1) the impact of homologous peptides
shared between training and testing datasets has a
minor impact on rankings of prediction methods at
least for large scale datasets, but should nevertheless be
corrected for. 2) Prediction performance comparisons
between different methods cannot be made based on
absolute AUC values unless both training and testing
datasets are identical.
A second concern when dealing with homologous

peptides in the training dataset is that the presence of a
large number of similar peptides may bias the classifier
such that the prediction performance of unrelated pep-
tides is negatively affected. We performed a direct com-
parison of the predictive performance on novel peptides
based on classifiers trained in the presence and absence
of similar peptides. The comparison showed that there
is a performance gain for classifiers trained with the
larger dataset including similar peptides. Thus we
recommend that classifiers created for end user applica-
tions should be trained with all available data to gain
maximum predictive power for epitope identification.
Constructing meta-classifiers is a popular approach to

improve predictive performance. We previously reported
a median rank based consensus approach that outper-
forms individual MHC class II binding prediction meth-
ods. With the addition of new methods, we found that
consensus methods including all available methods
failed to outperform the best available individual
method. On the other hand, when only methods that
contributed positively to the consensus approach were
included, the consensus approach outperformed the best
individual method (0.786 vs. 0.782) on the “SR” dataset.
The absolute values of improved average AUC is much
smaller than that was reported in our previous study
(0.004 vs. 0.033). This suggested that simple median
rank based approach is less effective as individual meth-
od’s performance improves and more sophisticated con-
sensus approaches are needed to capitalize on a large
array of MHC class II binding prediction methods. Also,
the best individual method (NN-align) still outper-
formed the consensus with selected methods when they
were tested with the “ALL” dataset. Since there are sig-
nificant peptide similarities in the “ALL” dataset, this
could be due to overfitting. We plan to systematically
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examine how to best construct consensus predictions
for MHC binding in the future, building on work done
by us and others in the past [30,39,40].

Methods
Positional scanning combinatorial libraries and peptide
binding assays
The combinatorial libraries were synthesized as pre-
viously described [24,41]. Peptides in each library are
13-mers with Alanine residues in positions 1, 2, 12 and
13. The central 9 residues in the peptides are equal mix-
tures of all 20 naturally occurring residues except for a
single position per library which contains a fixed amino
acid residue. A total of 180 libraries were used to cover
all possible fixed residues at all positions in the 9-mer
core. The IC50 values for an example peptide library
(HLA-DPA1*0103-DPB1*0201) are shown in Additional
file 1, Table S4.
The binding assay methods for MHC class II mole-

cules in general [42,43] as well as HLA-DP [44] and
HLA-DQ [45] molecules have been described in detail
previously.

Deriving scoring matrix for positional scanning
combinatorial peptide libraries
IC50 values for each mixture were standardized as a
ratio to the geometric mean IC50 value of the entire set
of 180 mixtures, and then normalized at each position
so that the value associated with the optimal value at
each position corresponds to 1. For each position, an
average (geometric) relative binding affinity (ARB) was
calculated, and then the ratio of the ARB for the entire
library to the ARB for each position was derived. The
final results are a set of 9 × 20 scoring matrices were
used to predict the binding of novel peptides to MHC
molecules by multiplying the matrix values correspond-
ing to the sequence of 9-mer cores in the peptide of
interest. An example scoring matrix (HLA-DPA1*0103-
DPB1*0201) is shown in Additional file 1, Table S5.

Generation of similarity reduced datasets for cross
validation
Several previous studies have proposed measurements
to determine peptide similarity [32,46-49]. Here we
adopted the similarity measure described by El-Manza-
lawy et al. [32]. Two peptides were defined as similar
if they satisfied one of the following conditions: (1)
The two peptides share a 9-mer subsequence. (2) The
two peptides have more than 80% sequence identity.
The sequence identity was calculated as follows. For
peptide p1 with length L1 and peptide p2 with length
L2, all non-gap alignments between p1 and p2 were
examined. The number of identical residues in each
alignment was compared and the maximum M was

taken as the number of identical residues between the
two peptides. The sequence identity was then calcu-
lated as M/min(L1, L2).
In order to derive the similarity reduced (SR) dataset,

we first partitioned the dataset into binder and non-bin-
der using an IC50 cutoff of 1000 nM. The cutoff of 1000
nM was chosen for its biological relevance as a previous
study showed that a cutoff of 1000 nM captured near
97% DR-restricted epitopes [50]. For each peptide in a
partition, we first determined its similarity with the rest
of peptides in the dataset and the number of peptides
sharing similarity with each peptide (Nsimilarity) was
recorded. We then sorted the peptides according to
their Nsimilarity in ascending order and stored the sorted
peptides in a list Lall. The forward step-wise Hobohm 1
algorithm [51] consisting of the following three steps
was next applied to generate a similarity reduced:
1. Start with an empty dataset, SetSR,.
2. The peptide on top of Lall (Ptop) is removed from

Lall and compared with all peptides in SetSR. If the pep-
tide Ptop is not similar with any peptide in SetSR, then
Ptop is stored in SetSR otherwise Ptop is discarded.
3. Repeat step 2 until Lall is empty.
The peptides selected by this procedure for the binder

and non-binder partitions were then combined to gener-
ate the final SR dataset.
In order to test whether the inclusion of homologous

peptides in the training data can affect the prediction of
unrelated peptides, we generated a singular peptides
(SP) set. For each allelic variant, we selected a subset of
peptides, which share no sequence similarity with any
other peptides in the set.
The three sets of peptides used in the study have a

simple superset relationship in that the “ALL” set is a
superset of “SR” set and the “SR” set is a superset of the
“SP” set. The relationship was further illustrated in
Figure 1.

Cross validation and performance evaluation with ROC
Two types of performance evaluation were carried out.
For the combinatorial library and the PROPRED predic-
tions which are not trained on peptide binding data, the
entire dataset was used to measure prediction perfor-
mance. For the ARB, SMM-align and NN-align predic-
tions which require peptide binding data for training,
five-fold cross validations were performed to measure
classifier performance. For the consensus approach, the
predictions were generated for each method as
described above and then combined to generate the
consensus.
Receiver operating characteristic (ROC) curves [52]

were used to measure the performance of MHC class II
binding prediction tools. For binding assays, the
peptides were classified into binders (experimental IC50
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< 1000 nM) and nonbinders (experimental IC50≥1000
nM) as described previously [30]. For a given prediction
method and a given cutoff for the predicted scores, the
rate of true positive and false positive predictions can be
calculated. An ROC curve is generated by varying the
cutoff from the highest to the lowest predicted scores,
and plotting the true positive rate against the false posi-
tive rate at each cutoff. The area under ROC curve is a
measure of prediction algorithm performance where 0.5
is random prediction and 1.0 is perfect prediction. The
plotting of ROC curve and calculation of AUC were car-
ried out with the ROCR [53] package for R [54]. In
addition, the predictive performance was also evaluated
via Spearman’s rank correlation coefficient.

Additional material

Additional file 1: Supplementary Tables. Description: five
supplementary tables that contain additional analysis described in the
paper.
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