
METHODOLOGY ARTICLE Open Access

Reticular alignment: A progressive corner-cutting
method for multiple sequence alignment
Adrienn Szabó1,2, Ádám Novák3,4*, István Miklós1,5, Jotun Hein3

Abstract

Background: In this paper, we introduce a progressive corner cutting method called Reticular Alignment for
multiple sequence alignment. Unlike previous corner-cutting methods, our approach does not define a compact
part of the dynamic programming table. Instead, it defines a set of optimal and suboptimal alignments at each
step during the progressive alignment. The set of alignments are represented with a network to store them and
use them during the progressive alignment in an efficient way. The program contains a threshold parameter on
which the size of the network depends. The larger the threshold parameter and thus the network, the deeper the
search in the alignment space for better scored alignments.

Results: We implemented the program in the Java programming language, and tested it on the BAliBASE
database. Reticular Alignment can outperform ClustalW even if a very simple scoring scheme (BLOSUM62 and
affine gap penalty) is implemented and merely the threshold value is increased. However, this set-up is not
sufficient for outperforming other cutting-edge alignment methods. On the other hand, the reticular alignment
search strategy together with sophisticated scoring schemes (for example, differentiating gap penalties for
hydrophobic and hydrophylic amino acids) overcome FSA and in some accuracy measurement, even MAFFT. The
program is available from http://phylogeny-cafe.elte.hu/RetAlign/

Conclusions: Reticular alignment is an efficient search strategy for finding accurate multiple alignments. The
highest accuracy achieved when this searching strategy is combined with sophisticated scoring schemes.

Background
The multiple sequence alignment problem is still the
Holy Grail of bioinformatics [1]. There are 517100
sequences in the UniProtKB/Swiss-Prot release of the
18th of May 2010 http://expasy.org/sprot/, while on the
other hand, there are only 65802 known structures in
the last PDB database relase of the 8th of June 2010
http://www.pdb.org/pdb/home/home.do. Therefore, the
in silico prediction of protein structures is still demand-
ing, and the majority of the protein structure prediction
methods need accurate alignments. There are two major
technical hurdles in the multiple sequence alignment
problem. The first is the scoring problem: how to score
the alignments such that the best scored alignment is
the most accurate one. The second is the algorithmic
problem: how to find the best scored alignment.

Significantly more effort has been put into the
research for solving the second challenge. Although the
number of possible alignments of two sequences grows
exponentially with the length of the sequences, finding
the best scoring alignment of two sequences is computa-
tionally feasible, since such an alignment can be found
by iteratively comparing the prefixes of the two
sequences [2]. The optimal alignment of longer prefixes
can be calculated quickly from shorter prefixes, and
hence, the algorithm needs only memory and running
time that both are proportional to the product of the
lengths of the sequences. This dynamic programming
algorithm can be extended to many sequences [3], how-
ever, it becomes computationally infeasible, since analys-
ing all possible combinations of prefixes requires O(LN)
memory and running time. It has been proven that
finding the best scoring multiple alignment under the
sum-of-pairs scoring scheme is NP-hard [4], therefore it
is very unlikely that any fast algorithm exists for the
exact multiple sequence alignment problem.

* Correspondence: novak@stats.ox.ac.uk
3Department of Statistics, University of Oxford, 1 South Parks Road, OX1 3TG
Oxford, UK
Full list of author information is available at the end of the article

Szabó et al. BMC Bioinformatics 2010, 11:570
http://www.biomedcentral.com/1471-2105/11/570

© 2010 Szabó et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://phylogeny-cafe.elte.hu/RetAlign/
http://expasy.org/sprot/
http://www.pdb.org/pdb/home/home.do
mailto:novak@stats.ox.ac.uk
http://creativecommons.org/licenses/by/2.0

The memory requirement and running time can be
reduced by corner-cutting methods. Corner-cutting
algorithms define a narrow strip in the dynamic pro-
gramming table which contains the optimal alignment.
Some methods use an a priori estimated upper limit for
the score of the optimal alignment to define such a strip
[5-7]. Hein et al. obtained a strip around the parsi-
mony-based optimal alignment for HMM-based calcula-
tions [8]. The strip can also be defined on the y using
the so-called diagonal extension method [9]. The cor-
ner-cutting method has been extended to multiple
sequence alignment, too [10,11], with which the optimal
alignment of 4-10, each 200-300 long sequences can be
found in reasonable time [12]. However, even the size of
the narrowest possible strip - which has a unit hyper-
cube transverse section - grows exponentially with the
number of sequences to be aligned, hence, this approach
eventually becomes unfeasible for large number of
sequences.
Above exact methods, approximation methods for the

multiple sequence alignment problem are also wide-
spread. The most commonly used approximation to
multiple sequence alignment is the progressive align-
ment approach [13-17], which builds multiple sequence
alignments bottom-up along a guide tree, through a ser-
ies of pairwise alignments of two sequences (leaves of
the guide tree), two alignments (inner nodes), or a
sequence and an alignment. The guide tree is typically
constructed from the pairwise distance matrix of the
sequences that is computed using pairwise sequence
alignments. These methods apply the “once a gap,
always a gap” rule [14]: gaps inserted into an alignment
at an inner node of the guide tree cannot be removed
or modified further up in the guide tree. Although one
can trust more in gaps introduced at the lower nodes of
the guide tree, there is no guarantee that these gaps are
correct, and a gap that has incorrectly been inserted
into a subalignment based on local information cannot
be corrected later on.
There have been successful attempts in other direc-

tions to reduce the computational time required to align
sequences. MAFFT employs the Fast Fourier Transfor-
mation (FFT) technique to rapidly identify homologous
regions by converting the amino acid sequence into a
sequence of volume and polarity values [18]. The two
basic optimisation heuristics (progressive and iterative
alignment) have been substituted by more advanced
iterative methods in the most recent version of the soft-
ware where pairwise alignment information is incorpo-
rated into the objective function, thus making MAFFT
one of the most accurate alignment tools available.
One artifact shared by all of the previously mentioned

methods is that evolutionary events are scored using
user-specified values (gap penalties and substitution

matrices). The accuracy of the alignments largely
depends on the selection of these parameter values. To
overcome these difficulties the statistical alignment
approach has been introduced where evolutionary mod-
els describe the type of events that transform the
sequences and provide a means of calculating the prob-
ability of a sequence of events. The alignment is then
produced in an optimisation framework such as maxi-
mum likelihood or Markov chain Monte Carlo by finding
the set of events explaining the evolution of the
sequences with a high probability and the parameters of
the evolutionary model are estimated from the data. This
approach is taken by computationally expensive methods
such as BAli-Phy [19] and StatAlign [20] that integrate
over all possible tree topologies. To make this more prac-
tical, FSA uses only pairwise comparisons in a statistical
alignment framework and so reduces the running time
drastically while sacrificing some of the accuracy [21].
In this paper, we introduce a novel corner-cutting

method combined with progressive sequence alignment.
Unlike former corner-cutting methods, our method does
not define a compact part of the dynamic programming
table to be filled in. The rationale behind the idea is
the following. It is easy to see that any high-scored
alignment is surrounded by a large set of low-scored
alignments, and the number of low-scored alignments
increases exponentially with the number of sequences.
Indeed, a high-scored alignment contains several align-
ment columns containing homologous amino-acids.
There are 2k -2 ways to split an alignment column con-
taining k characters into two columns with gaps. Any
alignment containing such pair of alignment columns
will be a neighbour of the high-scored alignment in the
dynamic programming table. Furthermore, the score of
these alignments will be Significantly lower than the
score of the high-scored alignment, since the scores
differ in two gap scores and the scores missing due to
not aligning homologous amino-acids.
Instead of defining a compact part of the dynamic pro-

gramming table, our approach stores a set of optimal and
suboptimal alignments at each step of the progressive
alignment procedure. At an internal node of the guide
tree, the two sets of alignments of the two children nodes
are aligned against each other. We use a special data struc-
ture for both representing the alignments and aligning the
set of alignments against another set of alignments. The
common parts of the alignments are represented only
once, and aligned only once, thus saving a large amount of
memory and running time. The alignments in our repre-
sentation form a reticulated network (see for example
Figure 1.), hence the name of the method. Previous works
showed that the convex hull of the optimal and subopti-
mal alignments might be relatively large (see, for example,
Figure 2. in [22]). The volume of this convex hull grows

Szabó et al. BMC Bioinformatics 2010, 11:570
http://www.biomedcentral.com/1471-2105/11/570

Page 2 of 19

exponentially with the number of alignments. On the
other hand, our method maintains only the reticulated
network instead of the entire convex hull thus saving a
large amount of memory.

The method has been implemented in the Java
programming language, tested on the BAliBASE data-
base [23], and compared with ClustalW [16], MAFFT
[18] and Fast Statistical Alignment (FSA) [21]. Several
scoring schemes have been implemented and assessed
in the Reticular Alignment algorithm. We show that
Reticular Alignment outperforms ClustalW even if a
simple scoring scheme is applied. When sophisticated
scoring models are applied (like sequence weighting in
sum-of-pairs scoring, decreasing gap penalties for runs
of hydrophilic amino-acids, etc.) Reticular Alignment
outperformes FSA and even MAFFT in some accuracy
measurement.

Methods
In this section, we describe the algorithms and theorems
which are the theoretical background of the Reticular
Alignment algorithm.

The Waterman-Byers algorithm and x-networks
Let A and B be two sequences over an alphabet Σ, of
lengths n and m, respectively. Let Ai denote the i long
prefix of sequence A, and let Ai denote the suffix of A

Figure 1 Example alignment network. This network shows three
different alignments of the sequences ALLGVGQ and AVGQ.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

RetAlign (thr=800) Clustal MAFFT FSA

A
cc

u
ra

cy
 o

n
 B

A
liB

A
S

E
 v

2.
01

 R
ef

 1
-5

.

All-column SP

All-column TC

Feature SP

Feature TC

Figure 2 Comparison of alignment software on BAliBASE v2.01 Refs [1-5]. Alignment accuracy of multiple alignment programs compared to
that of RetAlign as measured on BAliBASE v2.01 Reference sets [1-5] using the provided bali_score tool (SP and TC scores calculated on all of the
columns versus on columns containing features are all shown). RetAlign was run with sequence weighting on, a single guide tree iteration and with a
reticular threshold of 800. FSA was run in maximum sensitivity mode. MAFFT was run with the -auto switch and ClustalW with the default settings.

Szabó et al. BMC Bioinformatics 2010, 11:570
http://www.biomedcentral.com/1471-2105/11/570

Page 3 of 19

starting in the i + 1st position. In this way, Ai ◦ A
i = A,

where ◦ denotes concatenation. Let ai denote the char-
acter of A in position i.
Let s : Σ × Σ ® R be a similarity function. go will

denote the gap opening and ge will denote the gap
extension penalty. The score of any alignment, and thus
all introduced concepts based on the alignment scores
depend on the choices on similarity function, gap open-
ing and gap extension penalty. However, for sake of
simplicity, we omit to denote this dependence.
The Waterman-Byers algorithm [24] produces all

alignments that have a score no less than the score of
the optimal alignment minus some constant value. Here
we show a variant of the algorithm that our method is
based on. The algorithm is built up of 3 parts: a for-
ward-align algorithm, a backward-align algorithm, and
the alignment search algorithm that finds all alignments
above a given score using the scores calculated by the
forward and backward algorithms.
The forward-align algorithm calculates the score of

the best alignment of prefixes Ai and Bj within the fol-
lowing 3 subsets of alignments:

• alignments ending in two aligned (matched) char-
acters. The score of the best alignment of prefixes Ai

and Bj in this set is denoted by Mf (i, j).
• alignments ending in an insertion of character bj.
The score of the best alignment of prefixes Ai and Bj

in this set is denoted by If (i, j).
• alignments ending in a deletion of character ai.
The score of the best alignment of prefixes Ai and Bj

in this set is denoted by Df (i, j).

The score of the optimal alignment of prefixes Ai and
Bj is then max{Mf (i, j), If (i, j), Df (i, j)}. Mf , If and Df

can be efficiently calculated using dynamic program-
ming. The DP tables are initialised as:

Mf (,)0 0 0= (1)

I Df f(,) (,)0 0 0 0= = −∞ (2)

M i I i if f(,) (,)0 0 0= = −∞ > (3)

D i g i g if e(,) ()0 1 00= + − ∗ > (4)

M j D j jf f(,) (,)0 0 0= = −∞ > (5)

I j g j g jf eo(,) ()*0 1 0= + − > (6)

The dynamic programming recursion then goes from
shorter prefixes towards larger prefixes in the following
way:

M i j M i j

I i j D i j s a b
f f

f f i j

(,) max{ (,),

(,), (,)} (,)

= − −

− − − − +

1 1

1 1 1 1
(7)

I i j M i j g

i j g D i j gI
f f o

f e f o

(,) max{ (,) ,

(,) , (,) }

= − +

− + − +

1

1 1
(8)

D i j M i j g

I i j g D i j g
f f

f f e

o

o

(,) max{ (,) ,

(,) , (,) }

= − +

− + − +

1

1 1
(9)

The backward-align algorithm is more sophisticated.
Let ai/-j denote the alignment column showing deletion
of ai in an alignment in which the first character in
sequence B to the left of this alignment column is bj.
Similarly, let -i/bj denote the alignment column showing
the insertion of character bj in an alignment in which
the first character in sequence A to the left of this align-
ment column is ai. The backward algorithm calculates
the following three types of entries:

1. Mb(i, j) denotes the score of the best alignment of
suffixes Ai and Bj whose score is calculated as if the
ai/bj alignment column was before it. Namely, if the
alignment starts with a gap, it will be scored with
the gap opening penalty.
2. Ib(i, j) denotes the score of the best alignment of
suffixes Ai and Bj whose score is calculated as if the
-i/bj alignment column was before it. Namely, if the
alignment starts with an insertion, it will be scored
with the gap extension penalty.
3. Db(i, j) denotes the score of the best alignment of
suffixes Ai and Bj whose score is calculated as if the
ai/-j alignment column was before it. Namely, if the
alignment starts with a deletion, it will be scored
with the gap extension penalty.

These backward alignment scores can also be computed
using a dynamic programming approach similar to the for-
ward case. The initialisation of the backward DP tables is:

M n m I n m D n mb b b(,) (,) (,)= = = 0 (10)

M n m I n m gb b o(,) (,)− = − =1 1 (11)

M i m I

g n i g i n

i mb b

eo

(,)

()*

,=
+ − − < −

() =
1 1

(12)

Szabó et al. BMC Bioinformatics 2010, 11:570
http://www.biomedcentral.com/1471-2105/11/570

Page 4 of 19

D i m n i g ib e(,) ()*= − > 0 (13)

M n j D n j

g m j g j m
b b

e

, ,

()*

() = () =
+ − − < −0 1 1

(14)

M n m D n m gb b o(,) (,)− = − =1 1 (15)

I n j m j g jb e(,) ()*= − > 0 (16)

The DP tables are then filled from the shorter suffixes
towards the longer suffixes, that is, backward on the
indices. The recursions:

M i j M i j s a b

I i j g D i j
b b i

b b

j

o

(,) max{ (,) (,

(,) , (,

),= + + +

+ + +
+ +1 1

1 1
1 1

)) }+ go
(17)

I i j M i j s a b

I i j g D i j
b b i j

b e b

(,) max{ (,) (,),

(,) , (,

= + + +

+ + +
+ +1 1

1 1
1 1

)) }+ go
(18)

D i j M i j s a b

I i j g D i j
b b i j

b bo

(,) max{ (,) (,),

(,) , (,

= + + +

+ + +
+ +1 1

1 1
1 1

)) }+ ge
(19)

Using the forward and the backward scores it is possi-
ble to find all alignment columns that appear in an
alignment with a score above a given threshold. This is
based on the following theorem:
Theorem 1
The score of the best alignment containing alignment col-
umn ai/bj (or -i,/bj, ai/-j,respectively) is Mf (i, j) + Mb(i, j)
(If (i, j) + Ib(i, j), Df (i, j) + Db(i, j))

.

Proof
We give a proof for the first case, the proof for the
other two cases goes in the same way. If an alignment
contains ai/bj, then cutting the alignment after this
alignment column will create two alignments. The left
one is an alignment of prefixes Ai and Bj in which the
last alignment column is ai/bj. The right one is an align-
ment of suffixes Ai and Bj whose score is calculated by
adding the alignment column ai/bj before it. The best
scored alignment containing ai/bj are cut into the best
scored left and right alignment, by definition, with
scores Mf (i, j) and Mb(i, j). The score of the alignment
is the sum of these two values.
Theorem 1 provides the means to collect the align-

ment columns that participate in an alignment hav-
ing score above a given threshold. The best score of
the alignment column will be denoted by b(a). We
define the x-network of the alignments in the follow-
ing way.

Definition
For any sequences A and B, x ≥ 0, the x-network of the
alignments of A and B is a directed graph G(V, E). The
vertex set consists of alignment columns a for which b
(a) ≥ opt - x, where opt is the score of the optimal
alignment of A and B; plus two auxiliary vertices, repre-
senting the beginning and the end of the alignment.
These two auxiliary vertices are denoted by Start and
End. An edge is going from vertex a1 to vertex a2 if
there is an alignment in which a1 is followed by a2. The
outgoing edges from the Start vertex go to the align-
ment columns with which the alignment might start,
and the incoming edges of the End vertex come from
the alignment columns that might be at the end of an
alignment.
The following theorem states that an x-network never

contains dead ends.
Theorem 2
For any sequences A, B, x ≥ 0, and a vertex of the x-net-
work, there is a directed path from Start to a and also
from a to End.
Proof
Since a is in the x-network, b(a) ≥ opt - x. Consider an
alignment containing a with score b(a). Any a’ of this
alignment has a best score greater or equal than b(a),
hence they are all in the vertex set of the x-network.
This alignment defines one possible directed path from
Start to a and also from a to End.
An x-network can be constructed using an algorithm

that first runs the forward and backward algorithm to
calculate b(a) for each possible alignment column a,
selects those columns for which b(a) ≥ opt - x, and
builds the network from them.

Aligning a network of alignments to a network of
alignments
We are going to extend the Waterman-Byers algorithm
to align a network of alignments to another network of
alignments. First we define the network of alignments.
Definition
A network of alignments of sequences A1, A2, . . . Ak,
k ≥ 1 is a directed acyclic graph whose vertices are
alignment columns of the set of sequences together with
a unique source (denoted by Start) and a unique sink
(denoted by End). The vertices along any path from the
source to the sink form a multiple sequence alignment
of the set of sequences.
Obviously, an x-network is a network of alignments.

Moreover, any single sequence (meaning k = 1) can be
considered a simple, formal network. In that case, the
formal alignment columns contain only one character,
and the network is a single line containing only one
alignment. We can generalise the definition of the x-net-
work of two sequences to the x-network of two

Szabó et al. BMC Bioinformatics 2010, 11:570
http://www.biomedcentral.com/1471-2105/11/570

Page 5 of 19

networks of alignments. For this, we first have to define
the alignment of alignments.
Definition

An alignment of two alignments  and ℬ of sequences
A1, A2, . . . Ak and B1, B2, . . . Bl is a multiple sequence
alignment of these k + l sequences such that the non
all-gap columns of the first k rows gives back  , and
the non all-gap columns of the last l rows gives back ℬ.
When we take an alignment column containing all-gap

characters in the first k rows or in the last l rows, we indi-
cate what was the previous non all-gap alignment column
from  or ℬ. For example, ai/-j indicates an alignment
column in which the first k row is the ith alignment column
from  , the last l rows contain only gaps, and the first
alignment column to the left of this alignment column in
which the last l rows contain not only gaps is the jth align-
ment column from ℬ. In the next definition when we talk
about alignment columns from the multiple alignment of
all As and Bs sequences, we always mean alignment col-
umns containing this additional information. Similarly,
from now on, we always assume that the alignment is an
alignment of two alignments, the first containing k lines,
the second containing l lines.
Definition
For any two networks of alignments A and B and x ≥ 0,
the x-network of A and B is a directed graph G(V, E).
The vertex set consists of two auxiliary vertices, repre-
senting the beginning and the end of the alignment and
all alignment columns a for which b(a) ≥ opt - x, where
b(a) is the maximal score of the alignment that can be
achieved by aligning an alignment  Î A to an align-
ment ℬ Î B so that it contains the column a. opt is
the maximal score that can be achieved by aligning any
alignment  Î A to any alignment ℬ Î B. An edge is
going from a1 to a2 if there is an alignment in which a1

and a2 are neighbour columns. The outgoing edges
from Start go to the vertices that might be the first
alignment column in an alignment, and the incoming
edges of the End vertex come from the vertices that
might be the last alignment column in an alignment.
When we align a network to a network using a

dynamic programming algorithm, it is important to visit
the alignment columns of the network in an order such
that the entries are already calculated by the time we
want to use them in the dynamic programming recur-
sion. Therefore we introduce the linear extension of net-
works that can be used for traversing the network.
Definition
A linear extension of a directed acyclic graph is a total
ordering, <, on the vertices such that for any two ver-
tices v and u, if there is a directed path from v to u
then v < u.

Furthermore, the forward-align and the backward-
align algorithms work with prefix-alignments and suffix-
alignments defined in the following way.
Definition
A prefix-alignment is a prefix of an alignment achievable
by aligning an alignment  Î A to an alignment ℬ Î
B. Similarly, a suffix-alignment is a suffix of an align-
ment achievable by aligning an alignment  Î A to an
alignment ℬ Î B.
The generalisation of the Waterman-Byers algorithm

is the following. The input consists of a threshold value
x ≥ 0 and a couple of networks of alignments, A and B,
together with a linear extension for each network. The
output is the x-network of A and B together with a lin-
ear extension of it.
The algorithm uses a forward and a backward dynamic

programming algorithm. The forward align algorithm
calculates the score of the best prefix-alignment in which
the last non all-gap columns in the first k lines is ai and
in the last l lines is bj for each subset of alignments:

• alignments ending with ai/bj. The score will be
denoted by Mf (i, j).
• alignments ending with -i/bj. The score will be
denoted by If (i, j).
• alignments ending with ai/-j. The score will be
denoted by Df (i, j).

The initialisation is:

Mf (,)0 0 0= (20)

I Df f(,) (,)0 0 0 0= = −∞ (21)

The dynamic programming algorithm visits the ver-
tices of the two networks in their linear order. The
recursions are:

M i j M i j

I i j D i

f
i N i j N j

f

f f

(,) max max { (,),

(,), (,
() ()

= ′ ′

′ ′ ′ ′
′∈ ′∈+ +

jj s a bi j)} (,)+
(22)

I i j M i j g a b b

I i j g

f
j N j

f i i j j

f i

(,) max { (,) (, , ,),

(,) (
()

= ′ + −

′ + −
′∈

′+

,, , ,),

(,) (, , ,)}

−
′ + − −

′

′

i j j

f i i j j

b b

D i j g a b

(23)

D i j M i j g a a b

I i j g

f
i N i

f i i j j

f

(,) max { (,) (, , ,),

(,) (
()

= ′ + −

′ + −
′∈

′

′

+

ii i j j

f i i j j

a b

D i j g a a

, , ,),

(,) (, , ,)}

−
′ + − −′

(24)

Szabó et al. BMC Bioinformatics 2010, 11:570
http://www.biomedcentral.com/1471-2105/11/570

Page 6 of 19

where  + (i) is the set of indices of vertices sending

an edge to the vertex indexed by i, and g(a, b, c, d) is
the gap penalty function for alignment column b/d
preceded by alignment column a/c. We assume that the
gap penalty for a given alignment column can be calcu-
lated from the alignment column in question and its
preceding alignment column. See details in the subsec-
tion Gap penalties below. The maximum of an empty
set is defined to be - ∞.
The backward algorithm calculates the following

scores:

• Mb(i, j) denotes the score of the best suffix-align-
ment that can follow the alignment column ai/bj.
Furthermore, the gap score of the first alignment
column is calculated as if ai/bj was inserted before
the first alignment column.
• Ib(i, j) denotes the score of the best suffix-align-
ment that can follow the alignment column -i/bj.
Furthermore, the gap score of the first alignment
column is calculated as if -i/bj was inserted before
the first alignment column.
• Db(i, j) denotes the score of the best suffix-align-
ment that can follow the alignment column ai/-j.
Furthermore, the gap score of the first alignment
column is calculated as if ai/-j was inserted before
the first alignment column.

The initialisation of the dynamic programming
algorithm is

M n m I n m D n m

n End m End

b b b(,) (,) (,)

(), ()

= = =

∀ ∈ ∈+ +

0

 A B

(25)

where  + (EndA) and  + (EndB) are the sink vertex

of networks A and B, respectively.
The dynamic programming algorithm visits the

vertices of the two networks backward in their linear
extension. The recursions are

M i j M i j

s a b I i

b
i i j j

b

i j b

(,) max max { (,)

(,), (,
() ()

= ′ ′

+ ′
′∈ ′∈

′ ′

− −N N

jj g a b b

D i j g a a b
i i j j

b i i j j

) (, , ,),

(,) (, , ,)}

+ −
′ + −

′

′

(26)

I i j M i j

s a b I i

b
i i j j

b

i j b

(,) max max { (,)

(,), (,
() ()

= ′ ′

+ ′
′∈ ′∈

′ ′

− −N N

jj g b b

D i j g a b
i i j j

b i i j j

) (, , ,),

(,) (, , ,)}

+ − −
′ + − −

′

′

(27)

D i j M i j

s a b I i

b
i i j j

b

i j b

(,) max max { (,)

(,), (,
() ()

= ′ ′

+ ′
′∈ ′∈

′ ′

− −N N

jj g a b

D i j g a a
i i j j

b i i j j

) (, , ,),

(,) (, , ,)}

+ − −
′ + − −

′

′

(28)

where  − (i) is the set of indices of vertices to which

an edge is going from the vertex with index i. Similarly
to Theorem 1., it is true that the best score of align-
ments containing ai/bj, -i/bj and ai/-j is Mf (i, j) + Mb(i,
j), If (i, j) + Ib(i, j) and Df (i, j) + Db(i, j), respectively.
Therefore, the pair of indices (i, j) is visited in lexicogra-
phical order, and those alignment columns a = ai/bj or
-i/bj or ai/-j are selected for which b(a) ≥ opt -x. The
maximal score, opt, can be calculated from the following
equation

opt M n m

I n m D n m

n N End m N End
f

f f

=
∈ ∈+ +
max max { (,),

(,), (,)}
() ()A B (29)

Similarly to Theorem 2., it is easy to show that there
are no dead ends in the so constrained network. The
following theorem states that visiting the alignment col-
umns in lexicographical order will provide a linear
extension for the constructed x-network.
Theorem 3
The lexicographical ordering of alignment columns
together with arbitrary ordering of ai/bj, -i/bj and ai/-j is
a linear extension for the x-network of networks A and B
if the indices i’s and j’s are linear extensions for the net-
works A and B, respectively.
Proof
The preceding alignment columns for ai/bj might be

ai ’/bj ’, -i ’/bj ’ or ai ’/-j ’ for some i’ Î  + (i) and j ’ Î

 + (i). Since indices in A are linear extensions, i’ < i

for any i’ Î  + (i), and thus, in the lexicographical

order, all possible preceding alignment columns are
smaller than ai/bj

.

The preceding alignment columns for -i/bj might be

ai/bj’, -i/bj’ or ai/j’ for some j’ Î  + (j). Since indices in

B are linear extensions, j’ < j for any j’ Î  + (j), and

thus, in the lexicographical order, all possible preceding
alignment columns are smaller than -i/bj
The preceding alignment columns for ai/-j might be

ai’/bj, -i’/bj or ai’/-j for some i’ Î  + (i). Since indices in

A are linear extensions, i’ < i for any i’ Î  + (i), and

thus, in the lexicographical order, all possible preceding
alignment columns are smaller than ai/-j.

Szabó et al. BMC Bioinformatics 2010, 11:570
http://www.biomedcentral.com/1471-2105/11/570

Page 7 of 19

The Reticular Alignment algorithm
The Reticular Alignment algorithm is the following:

1. Build or load a guide tree for the sequences
2. Transform the sequences at the leaves of the
guide tree into simple ‘linear’ networks
3. Visit the internal nodes of the guide tree in
reverse traversal order. For each internal node v
with children u1 and u2, labelled with the networks
of alignments A1 and A2, respectively, calculate the
xv-network of A1 and A2 using the generalised
Waterman-Byers algorithm
4. Return the best scored alignment from the x-net-
work calculated at the root of the guide tree.

When x is set to 0, only the (locally) optimal multiple
alignments are stored in the x-network. In this case, the
Reticular Alignment algorithm mimics a standard progres-
sive alignment method. When x is set to ∞, the Reticular
Alignment method performs an exhaustive search in the
space of multiple alignments, namely, it finds the best
scored alignment. As x increases, the size of the network
also increases, having a similar effect on the running time
and memory usage. Along with the x value the Reticular
Alignment algorithm can be parameterised in a list of ways:

• guide tree construction method
• similarity scoring of alignment columns
• gap scoring model and gap penalties
• strategy to select threshold values at the internal
nodes

Here we briefly describe the choices we had and the
decisions we made considering these aspects of the
algorithm.

Building the guide tree
Standard methods for constructing a guide tree using
pairwise comparisons of the input sequences include
UPGMA and Neighbour Joining (NJ) [25,26]. We imple-
mented both and allow the user to choose between the
two algorithms or to provide their own guide tree.
The NJ algorithm generates an unrooted tree. Because

RetAlign requires a rooted tree that can be traversed
from the leaves upwards, we root the tree using the
‘mid-point’ method as described in [16]. The computa-
tionally most expensive step of the guide tree construc-
tion process is the calculation of the pairwise distances
between the sequences. For increased accuracy, we
opted to perform a full dynamic programming align-
ment between each pair of sequences and transform the
similarity scores into distances using the formula:

D S S Sij ii jj ij= + − 2 (30)

In a future version of RetAlign we plan to implement
a basic optimisation such as the Hirschberg algorithm
[27] to reduce the memory usage of this initial align-
ment phase from Θ(L2) to Θ(L) where L is length of the
longest sequence.
Gap penalties
It is well known that affine gap penalties (having gap
opening and gap extension penalties) generate Signifi-
cantly more accurate pairwise alignments than linear gap
penalties. Therefore it seems reasonable to define similar
gap penalties for multiple sequence alignments. One nat-
ural way is the sum-of-pairs scoring with affine gap pen-
alty, when one generates all pairwise alignments from the
multiple alignment, removes all-gap columns, scores the
so-obtained alignment using affine gap penalty, and sums
these scores over all pairwise alignments. Surprisingly,
finding the best sum-of-pairs scored multiple alignment
between two multiple alignments is NP-complete [28].
The heuristic explanation is that the question whether a
gap-opening or a gap-extension penalty should be calcu-
lated for an alignment column can be answered only after
removing the all-gap alignment columns from the pairwise
alignment taken from the multiple alignment. Rarely can
the question be answered by looking back at the previous
alignment column only. The exact sum-of-pairs scoring
problem is generally hard to solve, but in some cases it
can be solved unambiguously by looking back at the pre-
vious alignment column. Furthermore, it can always be
solved this way when aligning only two sequences. We
developed a gap scoring scheme that approximates the
sum-of-pairs gap score and can be calculated efficiently by
looking at adjoining alignment columns only. We assign a
score to each combination of patterns that any two rows
from two adjoining columns can form. These scores then
need to be summed for all sequence (row) pairs to obtain
the indel score for the two columns. The full indel score
for a multiple alignment is then the sum of the indel
scores of the consecutive alignment columns. The indel
matrix on Table 1. shows the score value used for each
pattern combination. The goals in mind when filling up
this matrix were to make the resulting scoring

• consistent in that it does not depend on the order
of the sequences within the selected pairs (the indel
matrix is symmetric)
• symmetric - the reverse of a multiple alignment has
the same score (the score of a pattern and its
horizontally flipped variant is the same)
• best approximate the sum-of-pairs scores

The simplest case to consider is when there is an

insertion in one of the sequences:
* *
* * * * *

− − −

Szabó et al. BMC Bioinformatics 2010, 11:570
http://www.biomedcentral.com/1471-2105/11/570

Page 8 of 19

The sum-of-pairs indel score of this alignment is OP +
2EX where OP and EX are the gap opening and exten-
sion penalty. This - and any similar cases where the
length of the insertion is different - can be mimicked

precisely if (and only if) the score of the pattern
− −
* *

is EX while the score of
*
* *

−
and

− *
* *

is both OP/2

due to the symmetric property. The score of
*

*

−
−

is

OP for similar reasons as it starts a new sequence of
gaps in both directions. With this choice cases such as

* * * *
* * * *

− −
− − are handled properly. To avoid Sig-

nificant overestimation of the score of
* *
* *

− − −
− − −

which is 0 in the sum-of-pairs scheme, a score of 0

must be assigned to both
− −
− −

and
−
−

*

*
Then the

only pattern left to assign a score to is * −
− −

(and its 3

mirror images). The problem with this one is that the

score should depend on whether the gap in
*

−
is

extended in the next non-gap-only column to the right.

The three possibilites are (1) * *− −
− − − −

, (2)

*

*

− − −
− − −

and (3)
* *

*

− −
− − −

so it is easy to see

that a score of EX/2 suffices for (1) and OP/2 does for
(2,3) (note that the pattern in question repeats twice in
(1,2) so the total scores of EX, OP and OP/2 are obtained
that match the scores of the corresponding patterns
formed by removing the gap-only columns). We resolved
the ambiguity by choosing OP/2 as the score because we
expected this to provide the best approximation of the
sum-of-pairs scores with a systematic overscoring in
cases such as (1). Other alternatives include EX or EX/2,

both of which have been later shown to yield slightly
lower overall accuracy as measured on the BAliBASE
reference database.
In addition to RetAlign’s default pairwise indel score

model presented above we also implemented the simpli-
fied, non-pairwise indel scoring method used in Clus-
talW. In this scheme, when two sets of sequences are
aligned, each insertion or deletion of a full alignment
column receives a single gap penalty - even if the align-
ment column contains several gaps. This score can be
computed considerably faster (although we implemented
tricks allowing the calculation of the pairwise indel
scores in linear time in the number of sequences) but
creates anomalies when suboptimal alignments are
inserted or deleted: the gaps ‘hidden’ in the columns of
the suboptimal alignments are not penalised and these
columns become overly represented in the final align-
ment (see results). Unlike the pairwise indel scoring this
score cannot be used as an accuracy measure of multi-
ple alignments because it depends on which sets of
sequences are being aligned in the last step.
Scoring similarities
We score substitutions in accordance with the sum-of-
pairs scoring scheme. A similarity score is computed for
each alignment column as the sum of similarity values
for each pair of non-gap characters in the column (in all
experiments, the BLOSUM62 matrix was used for scor-
ing pairwise character similarities [29]). The similarity
score is also computed for columns where an insertion
or deletion occurs and creates a stack of gaps in the
ongoing alignment step. The total similarity score of an
alignment is simply the sum of similarity scores for all
columns.
This pairwise scoring method is slightly different from

ClustalW’s approach where the substitution score is
dependent on what the two sets of sequences are that
are being aligned: only ‘cross-scores’ are taken into
account (scores for pairs of non-gap characters where
the first element of the pair is from a sequence in the
first set and the second from the second set). The simi-
larity score of columns with insertion or deletion in the
ongoing alignment is thus zero. We also implemented
this modified similarity scoring method and combined it
with the non-pairwise indel scoring shown in the pre-
vious section to imitate ClustalW’s scoring model.
Internal score and sequence weighting
We introduced the indel and similarity scoring models
of RetAlign in the last two sections. The total (internal)
score of a multiple alignment as produced by RetAlign
is the sum of the indel and similarity scores, both of
which are calculated pairwise. Though very similar, this
score slightly deviates from the sum-of-pairs score as a
result of the approximation of the indel score using
adjoining alignment columns only - this is explained in

Table 1 Insertion-deletion score matrix used by RetAlign

- - - * * - * *

- - - OP/2 OP/2 EX

- * OP/2 - OP OP/2

* - OP/2 OP - OP/2

* * EX OP/2 OP/2 -

Row: indel pattern formed by two consecutive columns of the 1st sequence,
column: that of the 2nd sequence. OP and EX are the gap opening and
extension penalty.

Szabó et al. BMC Bioinformatics 2010, 11:570
http://www.biomedcentral.com/1471-2105/11/570

Page 9 of 19

detail above. In practice we did not encounter any situa-
tion where the difference was Significant and the opti-
misation targeted to maximise the internal score
efficiently boosted the sum-of-pairs score, too. Both
scores are completely independent from the phyloge-
netic tree connecting the sequences and can be used as
an accuracy measure.
One inherent weakness of the sum-of-pairs scoring,

though, is that evolutionary events separating a distant
sequence from a number of closely related (overrepre-
sented) sequences are overscored - one evolutionary
event in time might be penalised several times in the
alignment score. To overcome this, we introduced
sequence weighting, based on principles set out in Clus-
talW. First, a list of weights is calculated and assigned
to sequences using the topology and edge lengths of the
guide tree, precisely as described in [16]. The weight of
a sequence is calculated from the edge lengths of the
branches leading to the sequence from the root node,
and edge lengths of branches that are shared by two or
more sequences are divided up equally between them.
The weights are the sums of these partial lengths. Once
the weights are available, the pairwise scoring method
can be applied with the modification that whenever a
score is calculated for a pair of sequences it is multiplied
by both sequence weights. The sum of these weighted
scores gives rise to an overall score that is much less
biased by the overrepresented sequences.

Threshold values
The size of the alignment space that is being explored by
the Reticular Alignment algorithm and consequently, the
accuracy of the alignments created depends on the strategy
for choosing an x value for each alignment step at the
internal nodes. We chose to set the x value dynamically
such that the final size of the alignment network is at most
(t + 100)% of the length (number of columns) of one of the
best scored multiple alignments, where t is a threshold
parameter set by the user. Note that this is the “Threshold
to be passed for computation” value on the GUI of our
application. The slider underneath is just for convenience,
with a log transformation. For any such t value, the corre-
sponding x value can be found by building the network
gradually: at first, alignment columns are placed in a prior-
ity queue where the key is the score of the best alignment
they appear in; then groups of columns having equal score
are removed from the queue iteratively, starting with the
ones having the highest score, and added to the growing
network en masse while the size limit permits.
This approach is more advantageous than if the x was

constant or set to a fixed proportion of the optimum
score because the later would have an unpredictable
effect on the running time and memory usage and could
also cause the alignment networks to vary considerably

in relative size at the internal nodes. In contrast, with
our method, the memory requirement can be estimated
from t and the proportion of the number of suboptimal
alignment columns to optimal columns is uniform over
the whole tree.
Efficient score calculation
The scoring scheme of RetAlign involves summing simi-
larity values and gap penalties for all sequence pairs.
These pairwise summations are carried out repeatedly
on alignment columns (for similarity) and pairs of col-
umns (for gap scores) to fill each element of the
dynamic programming tables. The straightforward
implementation can thus have a huge impact on the
running time when many sequences are aligned. For this
reason we developed techniques to speed up these
calculations.
The two problems are essentially the same: given a

list of pattern values v1, . . . vn, pairwise
pattern scores must be summed for all pairs:

S M v v v p pi j ij

n
ki

n= ∈== ∑∑ (,), { , }
1 11

 . In the

similarity score case, the patterns are the residues (of
20 different types when aligning proteins) and the
matrix is the similarity matrix, while in the indel score
case there are 4 different patterns formed by two suc-
cessive characters, both either gap or non-gap. The
trick is simple: first count how many of each pattern
type is present in the column, then sum the score
value for the pair of types multiplied by the counts:

c j kj v pji

n

i
= = …=∑  , (,)

1
1 so that now

S c c M p pi j i jj

k

i

k= == ∑∑ (,)
11

. One distinct bonus of the

idea is that it can be naturally adapted to sequence
weighting: if w1, . . . wn are given in addition to the pat-

terns then S w w M v vw
i j i jj

n

i

n= == ∑∑ (,)
11

can be calcu-

lated as S M p ps sw
i j i jj

k

i

k= == ∑∑ (,)
11

where

s w j kj i v pji

n

i
= = …=∑  , (,)

1
1 I.e. the count for each pat-

tern type must simply be substituted by the sum of
sequence weights for patterns of each type to obtain the
scoring scheme with sequence weighting. It is an impor-
tant implementation consideration how the list of
counts or weight sums is represented. For the indel
case, we opted to use an array of fixed length of 4 that
means the calculation of a column score requires n + 16
steps. In the similarity score case, however, we chose to
store a list of (character, count/weight sum) pairs so
that the calculation takes only n + l2 steps where l is
number of different character types present in the col-
umn. Though this requires one or two additional table

Szabó et al. BMC Bioinformatics 2010, 11:570
http://www.biomedcentral.com/1471-2105/11/570

Page 10 of 19

lookups per iteration, the savings are huge when there
are conserved columns made up of just a few different
characters.

Results and Discussion
We implemented the Reticular Alignment method in
the Java programming language with all features for the
choices of parameters as described in the previous sec-
tion. The method was tested on the BAliBASE database
[23], and compared with ClustalW [16], MAFFT [18]
and Fast Statistical Alignment (FSA) [21]. BAliBASE is a
database of manually-refined multiple sequence
alignments specifically designed for the evaluation and
comparison of multiple sequence alignment programs.
The alignments are categorised by sequence length,
similarity, and presence of insertions and N/C- terminal
extensions. Core blocks are identified excluding non-
superposable regions.
BAliBASE provides a scoring tool (bali_score.c) to

measure the accuracy of sequence alignments based
on the reference alignments in the database. This
tool offers two accuracy measures (SP and TC) and
allows assessment based on either all or a subset of

alignment columns thus essentially giving four differ-
ent accuracy scores. SP is the number of correctly
aligned residue pairs divided by the number of aligned
residue pairs in the reference alignment, TC is the
number of correctly aligned columns divided by the
number of columns in the reference alignment. SP and
TC can also be calculated on columns of the core
blocks only - these feature columns are described in
the BAliBASE database by separate files. We denote
the so-obtained scores ‘Feature SP’ and ‘Feature TC’.
All four of these scores can be regarded as a sensitivity
measure (in classiffcation terminology) because char-
acters/columns incorrectly shown homologous do not
decrease the score.
We measured the accuracy of the Reticular Alignment

method on BAliBASE v1.0 and v2.0 Ref1-5 datasets and
compared it to the performance of the well-known
alignment software ClustalW, MAFFT and FSA. See
results in Figure 2 and 3. To separate the effect of the
guide tree and allow a fair comparison of the alignment
strategies we re-run ClustalW and RetAlign with the
guide tree fixed to the one created by MAFFT. Results
are shown in Figure 4.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

RetAlign Clustal MAFFT FSA

A
cc

u
ra

cy
 (

se
n

si
ti

vi
ty

) SP scores
TC scores

Figure 3 Comparison of alignment software on BAliBASE v1.0. Alignment accuracy of multiple alignment programs compared to that of
RetAlign as measured on BAliBASE v1.0 using the provided bali_score tool (SP and TC scores are both shown). RetAlign was run with sequence
weighting on, a single guide tree iteration and with a reticular threshold of 200. FSA was run in maximum sensitivity mode. MAFFT was run with
the -auto switch and ClustalW with the default settings.

Szabó et al. BMC Bioinformatics 2010, 11:570
http://www.biomedcentral.com/1471-2105/11/570

Page 11 of 19

We were interested in how the accuracy of our
method depends on different parameters. Since the
parameter space is four dimensional (guide tree build-
ing, similarity scoring, gap scoring, threshold value in
the generalised Waterman-Byers algorithm) with several
choices along each dimension, we do not show the
results for each possible combinations of parameters.
Two parameters (similarity scores, gap scores) influence
only the score of the multiple alignments, one parameter
(threshold value for the generalised Waterman-Byers
algorithm) influences how to search in the search space,
and one parameter (how to build the guide tree) influ-
ences the search strategy (when the tree-constructing
strategy changes the topology of the tree, since our
method is a progressive alignment method), and might
also influence the way of scoring alignments (if the
sequences are weighted by the guide tree). For each
fixed score function, we tested how the alignment accu-
racy changes with the t parameter, namely, how much
the accuracy can be improved by a deeper search in the
alignment space. Some of our findings are quite surpris-
ing, discussed in the following subsections.

Alignment accuracy generally increases with the
deepened search in the alignment space
As the main novelty of our method is the sophisticated
search for the best scored alignment, we first show the
effect of the t parameter on the alignment accuracy. The
average alignment accuracy improves as the t parameter
increases, see Figure 5. However, this increase is not
monotonous. There might be two reasons why a widened
search may yield worse alignments. The first reason is
simple: the better scored alignments are less accurate,
hence, although the wider search found better scored
alignments, these alignments agree less with the BAli-
BASE benchmark. The second reason is more sophisti-
cated, and to understand this, the reader must have in
mind that the globally optimal alignment might be
achived via suboptimal solutions during the progressive
alignment method. Having said this, imagine the follow-
ing situation (see also Figure 6.): at a given reticular
threshold value t1, the best alignment at internal node va
has a score sa, and an xa,1-network is generated at va.
From this network, the best alignment at some ancestral
node of va, denoted by vb has a score sb,1, and an xb,1-

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

RetAlign (thr=800) Clustal MAFFT (FSA)

A
cc

u
ra

cy
 w

it
h

 M
A

F
F

T
 g

u
id

e
tr

ee
 o

n
 B

A
liB

A
S

E
 v

2.
01

 R
ef

 1
-5

.

All-column SP

All-column TC

Feature SP

Feature TC

Figure 4 Comparison of alignment software with fixed guide tree on BAliBASE v2.01 Refs [1-5]. Alignment accuracy of multiple alignment
programs compared to that of RetAlign as measured on BAliBASE v2.01 Reference sets [1-5] when guide tree is fixed to MAFFT’s output. Note
that FSA does not need a guide tree but accuracy figures are shown for convenience. RetAlign was run with sequence weighting on, a single
guide tree iteration and with a reticular threshold of 800. FSA was run in maximum sensitivity mode. MAFFT was run with the -auto switch and
ClustalW with the default settings.

Szabó et al. BMC Bioinformatics 2010, 11:570
http://www.biomedcentral.com/1471-2105/11/570

Page 12 of 19

0.745

0.75

0.755

0.76

0.765

0.77

0.775

0.78

0.785

0.79

0.795

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Reticular threshold

A
cc

u
ra

cy
 (

al
l-

co
lu

m
n

 S
P

 s
co

re
 o

n
 B

A
liB

A
S

E
 v

2.
01

 R
ef

s
1-

5)

Figure 5 Dependency of alignment accuracy (all-column SP) on the reticular threshold. Alignment accuracy achieved by RetAlign for
different reticular threshold values. Accuracy here is measured as the mean all-column SP score on BAliBASE v2.01 Reference sets [1-5]. RetAlign
was run with sequence weighting on and pairwise indel scoring.

Figure 6 Explaining how the internal score might decrease with the reticular threshold. See text for details.

Szabó et al. BMC Bioinformatics 2010, 11:570
http://www.biomedcentral.com/1471-2105/11/570

Page 13 of 19

network is generated at vb. From this network, the best
alignment at the root of the guide tree has score sr,1.
Now we change the threshold to t2. The best alignment
at node va is still the same, but we create a larger, xa,2-
network at this node, xa,2 >xa,1. From this network, we
are able to find a better scored alignment at node vb,
which has score sb,2 >sb,1. We build up an xb,2-network
around this node, but it might happen that sb,2 - xb,2
>sb,1. This means that the new xb,2-network does not
contain any alignment from the old, xb,1-network! There-
fore, the progressive alignment method with reticular
threshold t2 will operate on a set of alignments above the
node vb which are completly different from the set of
alignments appeared during the progessive alignment
method with reticular threshold t1. The consequence is
that the best alignment at the root obtained from the
xb,2-network might have a score sr,2 <sr,1. Namely, the
score of the final alignment might decrease with increas-
ing the reticular threshold parameter.
To test the second hypothesis, the internal score of the

alignments were measured, i.e. the score that the Reticular
Alignment algorithm was to maximise. The dependency of
this internal score on the t threshold value is shown on
Figure 7. On average, this internal score is monotonously
increasing, although we did find example sets of sequences

for which the internal score decreased by increasing t.
However, these examples were relatively rare. Hence, the
slight occasional decrease in the accuracy caused by the
increase of t is mainly due to the non-perfect correlation
between the RetAlign’s internal score of an alignment and
the alignment accuracy measured on BAliBASE. The most
interesting case is discussed in the next subsection.

Comparing single and pairwise gap penalties
Clustal uses a simple non-pairwise gap-penalty for mul-
tiple alignments as described in the Methods section.
This seems a rational choice for Clustal, as this gap
scoring scheme indeed generates better alignments for
Clustal than the pairwise scoring scheme.
However, when we extend the scope of the search in

the alignment space, and keep not only the locally
optimal alignment during the progressive alignment
procedure, we see a different picture. Increasing the t
parameter when the alignments are scored using a
pairwise gap penalty scheme yielded an increase in the
accuracy of the generated alignments, and eventually
the Reticular Alignment method with this gap-penalis-
ing scheme overtakes ClustalW, see Figure 8. We
would like to highlight that in this experiment no
further tricks were used by Reticular Alignment, like

16000

16200

16400

16600

16800

17000

17200

17400

17600

17800

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Reticular threshold

M
ea

n
 in

te
rn

al
 a

lig
n

m
en

t
sc

o
re

 o
n

 B
A

liB
A

S
E

 v
2.

01
 R

ef
s

1-
5.

Figure 7 Dependency of internal score on the reticular threshold. Best internal alignment score achieved by RetAlign for different reticular
threshold values. Score is the mean internal score on BAliBASE v2.01 Reference sets [1-5]. RetAlign was run with sequence weighting on and
pairwise indel scoring.

Szabó et al. BMC Bioinformatics 2010, 11:570
http://www.biomedcentral.com/1471-2105/11/570

Page 14 of 19

differentiating the gap penalties for hydrophobic and
hydrophilic amino acids.
On the other hand, when simple non-pairwise gap

penalties were applied, the accuracy decreased with
increasing the t parameter, see Figure 9. A detailed analy-
sis revealed that the internal score of the Reticular Align-
ment increased in this experiment. Namely, the method
found better-scored alignments with increasing the
explored search space, however, these better scored align-
ments are less accurate according to the BAliBASE data-
base. However, these overall better scored solutions can
only be constructed via locally suboptimal solutions, see
Figure 10. Clustal does not consider suboptimal solutions,
that is why it does not find these alignments, and thus
generates worse-scored, on the other hand, more accurate
alignments. This example clearly shows that the parame-
terisation problem is at least as important in the multiple
sequence alignment than the optimisation problem.

The importance of a good guide tree, sequence
weighting and gap scoring
Although Reticular Alignment outperformed ClustalX with
a simple sum-of-pairs scoring scheme, and without any

sophisticated gap scoring scheme, its performance with the
less sophisticated scoring schemes was worse than the per-
formance of the cutting-edge multiple sequence alignment
methods. Therefore, we improved the scoring scheme both
for similarity scoring and for gap scoring.
It is well-known that the relative difference between

the score of the fully conserved alignment column and
the score of the alignment column with a single mis-
match decreases with the number of sequences [30].
This artefact can be reduced by weighting the sequences
according to the evolutionary tree showing their rela-
tionship. Such a weighting also improves alignment
accuracy [30]. We implemented the same sequence
weighting method that ClustalX uses.
Since our sequence weighting method uses the guide

tree, it is also important to construct a good guide tree.
We found that NJ outperforms UPGMA measured in
alignment accuracy (data not shown). Since the NJ algo-
rithm generates an unrooted tree, and the Reticular
Alignment method needs a rooted tree, the NJ tree
must be rooted. Changing the root of the guide tree
also changes the progression of the multiple alignment.
The more balanced the tree, the closer the numbers of

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

RetAlign
(thr=0)

ClustalW RetAlign
(thr=200)

RetAlign
(thr=400)

RetAlign
(thr=600)

RetAlign
(thr=800)

A
cc

u
ra

cy
 o

n
 B

A
liB

A
S

E
 v

2.
01

 R
ef

s
1-

5. All-column SP
All-column TC

Figure 8 Effect of pairwise indel scoring combined with reticular optimization. Alignment accuracy of RetAlign for different reticular
threshold values with only pairwise indel scoring enabled and comparison to that of ClustalW. With no other advanced scoring techniques
RetAlign slightly outperformed ClustalW for thresholds over 200. Alignment accuracy was measured as the mean all-column SP and TC score on
BAliBASE v2.01 Reference sets [1-5].

Szabó et al. BMC Bioinformatics 2010, 11:570
http://www.biomedcentral.com/1471-2105/11/570

Page 15 of 19

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ClustalW RetAlign (thr=0) RetAlign (thr=200) RetAlign (thr=400) RetAlign (thr=600) RetAlign (thr=800)

A
cc

u
ra

cy
 o

n
 B

A
liB

A
S

E
 v

2.
01

 R
ef

s
1-

5

All-column SP

All-column TC

Figure 9 Alignment accuracy with simple non-pairwise indel scoring. Alignment accuracy of RetAlign for different reticular threshold values
when indel scoring is non-pairwise. Accuracy monotonously decreases with the threshold and is always below that of ClustalW. Alignment
accuracy was measured as the mean all-column SP and TC score on BAliBASE v2.01 Reference sets [1-5].

Figure 10 Counterintuitive example for simple non-pairwise indel scoring. An example showing why the accuracy of alignments might
decrease with increasing the reticular threshold when the gaps are scored with simple non-pairwise indel scoring. a) The best alignment found
with t = 0 threshold and simple non-pairwise indel scoring. Only the locally optimal alignments were kept in the progressive alignment, thus the
final multiple alignment contains a few, aggregated gaps, for which the pairwise alignments are also optimal. b) The best alignment found with
t = 800 threshold value and simple non-pairwise indel scoring. This alignment scored better than the previous alignment, because it contains
more homologous pairs. The increased number of homologous amino acid pairs is achieved by inserting more gaps, however, the increased
number of gaps do not reduce too much the score as simple non-pairwise indel scoring is applied. ClustalW never considers this alignment as it
can be built only via sub-optimal alignments.

Szabó et al. BMC Bioinformatics 2010, 11:570
http://www.biomedcentral.com/1471-2105/11/570

Page 16 of 19

sequences in the two alignment networks. We found
that balanced trees generated by the ‘mid-point’ method
as described in [16] generates more accurate alignments
than unbalanced trees where one of the subtrees of the
root contains only a single sequence.
Finally, it is also important to distinguish gap scores

based on whether hydrophilic or hydrophobic amino-
acids are inserted and/or deleted. Applying the same
scoring scheme that ClustalX uses improved the align-
ment accuracy.
Fortifying the Reticular Alignment method with these

sophisticated scoring schemes yielded a method that
generated highly accurate alignments. Reticular Align-
ment outperformed all of ClustalX, MAFFT and FSA in
SP values on the BAliBASE v1.0 database, and only
MAFFT outperformed Reticular Alignment in the TC
values, see Figure 3. On BAliBASE v2.0., Reticular
Alignment outperformed ClustalX and FSA in all accu-
racy measurements, and it had a higher feature SP value
than MAFFT, see Figure 2.

Memory and Computational demand
As the threshold value increases, the size of the align-
ment network will increase, too. Figure 11 and 12. show

the dependence of running time on the reticular thresh-
old value. The log-log scale plot in Figure 11. clearly
indicates that the empirical running time grows quadra-
tically with the reticular threshold. This agrees well with
the theoretical considerations that the time required to
align two alignment networks is proportional to the pro-
duct of the two network sizes. The memory usage is
also quadratic with the threshold value in the current
implementation (data not shown), which restricts the
applicability of the software to 30-50 sequences of inter-
mediate size (on a typical modern laptop computer) due
to memory requirements, but this can be circumvented
using checkpoint algorithms, see [31].

Conclusions
Previous corner-cutting methods define a compact part
of the dynamic programming table for searching the
best scored alignment. These methods become very
inefficient when the number of sequences increases. We
introduced a new progressive alignment method called
Reticular Alignment, which obtains a set of optimal and
suboptimal alignments at each step of the progressive
alignment procedure. This set of alignments is repre-
sented by a network and are not directly embedded into

y = 1.9491x - 19.851
R2 = 0.9969

0

0.5

1

1.5

2

2.5

3

3.5

4

11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 12 12.1 12.2

Log(reticular threshold)

L
o

g
(m

ea
n

 r
u

n
n

in
g

 t
im

e
in

 s
)

Figure 11 Execution time growth rate with the reticular threshold. Average running time of RetAlign on BAliBASE v2.01 Reference sets [1-5]
for different reticular threshold values. Log-log scale is used to illustrate growth rate. RetAlign was run with sequence weighting on and pairwise
indel scoring.

Szabó et al. BMC Bioinformatics 2010, 11:570
http://www.biomedcentral.com/1471-2105/11/570

Page 17 of 19

the high-dimensional dynamic programming table. The
set typically contains high-scored alignments that are
usually not neighbours in the dynamic programming
table (see, for example, the already mentioned Figure 2.
in [22]). Therefore, the convex hull of the set of these
alignments in the high dimensional dynamic program-
ming table contains a Significantly larger set of align-
ments. Any previous corner-cutting method setting a
convex part containing the set of alignments found by
the Reticular Alignment method would need Signifi-
cantly more memory and running time.
This novel corner-cutting approach allows the effi-

cient search of the space of multiple sequence align-
ments for high-scored alignments. The method has a
parameter which affects how much of the alignment
space is explored. Furthermore, the Reticular Alignment
method can be combined with any scoring scheme, and
in this way, we were able to infer what is the impor-
tance of sophisticated scoring schemes and more exhaus-
tive searches in finding accurate multiple sequence
alignments.
The conclusion is that it is important to increase the

search space for finding high-scored alignments. The
Reticular Alignment method could find more accurate
alignments than ClustalW even when the gap-scoring

scheme was Significantly less sophisticated than the scor-
ing scheme of ClustalW. For example, ClustalW gives
different gap scores for hydrophilic and hydrophobic
amino acids. This is considered to improve the alignment
quality as hydrophobic amino acids are on the surface of
globular proteins forming loops, and these loops undergo
Significantly more insertion and deletion events than
other parts of the proteins. Still, Reticular Alignment
could generate more accurate alignments than ClustalW
by merely extending the search space and without apply-
ing the above mentioned sophisticated scoring scheme of
ClustalW. On the other hand, sophisticated scoring
schemes are also necessary to get highly accurate multi-
ple alignments. Combining sophisticated scoring schemes
with the Reticular Alignment progressive alignment
approach yielded a method whose accuracy is compar-
able to that of cutting-edge alignment methods. Without
such sophisticated methods, the Reticular Alignment
method only outperformed the ClustalX method, and
were beaten by MAFFT and FSA in all accuracy measure-
ments. Therefore it is also an important question how to
find the scoring function that provides the most accurate
multiple alignments. Kececioglu and Kim gave a fast lin-
ear programming-based method that finds parameter
values that make given example alignments be optimal-

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Reticular threshold

T
o

ta
l r

u
n

n
in

g
 t

im
e

o
n

 B
A

liB
A

S
E

 (
m

in
u

te
s)

Figure 12 Absolute execution time growth with the reticular threshold. Total time required to run RetAlign on BAliBASE v2.01 Reference
sets [1-5] for different reticular threshold values. RetAlign was run with sequence weighting on and pairwise indel scoring.

Szabó et al. BMC Bioinformatics 2010, 11:570
http://www.biomedcentral.com/1471-2105/11/570

Page 18 of 19

scoring alignments of their strings [32]. Such extension of
that approach for multiple sequence alignments would be
desirable.

Acknowledgements
Ádám Novák gratefully thanks BBSRC for the continued support and
funding. István Miklòs is supported by OTKA grant NK 78439.

Author details
1Computer and Automation Research Institute, Hungarian Academy of
Sciences, Lágymányosi u. 11., 1111 Budapest, Hungary. 2Eötvös Loránd
University, Faculty of Informatics, Pázmány Péter sétány 1/c., 1117 Budapest,
Hungary. 3Department of Statistics, University of Oxford, 1 South Parks Road,
OX1 3TG Oxford, UK. 4Oxford Centre for Integrative Systems Biology,
Department of Biochemistry, South Parks Road, OX1 3QU Oxford, UK. 5Alfréd
Rényi Institute of Mathematics, Hungarian Academy of Sciences, Reáltanoda
u. 13-15., 1053 Budapest, Hungary.

Authors’ contributions
IM proposed the extension of Waterman-Byers algorithm for aligning a
network of alignments to a network of alignments, and implemented a
prototype. AS developed the majority of the current RetAlign
implementation. ÁN proposed the data structures and algorithms for
efficient score calculation, and created the benchmarking framework to
compare alignment programs. JH encouraged the discussions. All authors
read and approved the final manuscript.

Received: 20 June 2010 Accepted: 23 November 2010
Published: 23 November 2010

References
1. Gusfield D: Algorithms on Strings, Trees and Sequences: Computer Science and

Computational Biology Cambridge University Press; 1997.
2. Needleman SB, Wunsch CD: A general method applicable to the search

for similarities in the amino acid sequence of two proteins. J Mol Biol
1970, 48(3):443-53.

3. Sankoff D, Cedergren RJ: Time Warps, String Edits, and Macromolecules: The
Theory and Practice of Sequence Comparison Addison-Wesley, Reading,
Massachusetts; 1983, 253-263, chap. Simultaneous comparison of three or
more sequences related by a tree.

4. Wang L, Jiang T: On the complexity of multiple sequence alignment.
J Comp Biol 1994, 1(4):337-348.

5. Fickett J: Fast optimal alignment. Nucleic Acids Research 1984, 12:175-180.
6. Ukkonnen E: Algorithms for approximate string matching. Inform Control

1985, 64:100-118.
7. Spouge J: Fast optimal alignment. CABIOS 1991, 7:1-7.
8. Hein J, Wiuf C, Knudsen B, Moller MB, Wibling G: Statistical alignment:

computational properties, homology testing and goodness-of-fit. J Mol
Biol 2000, 302:265-279.

9. Wu S, Manber U, Myers G, Miller W: An O(NP) sequence comparison
algorithm. Information Processing Letters 1990, 35(6):317-323.

10. Carrillo H, Lipman D: The multiple sequence alignment problem in
biology. SIAM Journal of Applied Mathematics 1988, 48:1073-1082.

11. Lipman D, Altschul S, Kececioglu J: A tool for multiple sequence
alignment. PNAS 1989, 86:4412-4415.

12. Gupta S, Kececioglu J, Schäffer A: Improving the practical space and time
efficiency of the shortest-paths approach to sum-of-pairs multiple
sequence alignment. J Comp Biol 1995, 2(3):459-472.

13. Hogeweg P, Hesper B: The alignment of sets of sequences and the
construction of phyletic trees: An integrated method. J Mol Evol 1984,
20(2):175-186.

14. Feng DF, Doolittle RF: Progressive sequence alignment as a prerequisite
to correct phylogenetic trees. J Mol Evol 1987, , 25: 351-360.

15. Higgins D, Sharp P: CLUSTAL: a package for performing multiple
sequence alignment on a microcomputer. Gene 1988, 73:237-44.

16. Thompson J, Higgins D, Gibson T: ClustalW: improving the sensitivity of
progressive multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice. Nucl Acids Res
1994, 22:4673-4690.

17. Notredame C, Higgins D, Heringa J: T-Coffee: A novel method for fast and
accurate multiple sequence alignment. J Mol Biol 2000, 302:205-17.

18. Katoh K, Misawa K, Kuma Ki, Miyata T: MAFFT: a novel method for rapid
multiple sequence alignment based on fast Fourier transform. Nucl Acids
Res 2002, 30(14):3059-3066.

19. Suchard MA, Redelings BD: BAli-Phy: Simultaneous Bayesian inference of
alignment and phylogeny. Bioinformatics 2006, 22(16):2047-2048.

20. Novák A, Miklós I, Lyngsø R, Hein J: StatAlign: An Extendable Software
Package for Joint Bayesian Estimation of Alignments and Evolutionary
Trees. Bioinformatics 2008, 24(20):2403-2404.

21. Bradley R, Roberts A, Smoot M, Juvekar S, Do J, Dewey C, Holmes I,
Pachter L: Fast Statistical Alignment. PLoS Computational Biology 2009, 5:
e1000392.

22. Zhu J, Liu J, Lawrence C: Bayesian adaptive sequence alignment
algorithms. Bioinformatics 1998, 14:25-39.

23. Thompson J, Koehl P, Ripp R, O P: BAliBASE 3.0: latest developments of
the multiple sequence alignment benchmark. Proteins 2005, 61:127-136.

24. Waterman MS, Byers TH: A dynamic programming algorithm to find all
solutions in the neighborhood of the optimum. Math Biosci 1985,
77:179-188.

25. Saitou N, Nei M: The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Mol Biol Evol 1987, 4(4):406-425.

26. Studier J, Keppler K: A note on the Neighbor-Joining algorithm of Saitou
and Nei. Mol Biol Evol 1988, 5(6):729-731.

27. Hirschberg DS: A linear space algorithm for computing maximal
common subsequences. Commun ACM 1975, 18(6):341-343.

28. Ma B, Wang Z, Zhang K: Alignment between Two Multiple Alignments.
Lecture Notes in Computer Science 2003, 2676:254-265.

29. Henikoff S, Henikoff J: Amino acid substitution matrices from protein
blocks. Proc Natl Acad Sci USA 1992, 89(22):10915-10919.

30. Durbin R, Eddy S, Krogh A, Mitchison G: Biological sequence analysis.
Probabilistic models of proteins and nucleic acids Cambridge University Press;
1998.

31. Tarnas C, Hughey R: Reduced space hidden Markov model training.
Bioinformatics 1998, 14:401-406.

32. Kececioglu J, Kim E: Simple and Fast Inverse Alignment. Lecture Notes in
Computer Science 2006, 3909:441-455.

doi:10.1186/1471-2105-11-570
Cite this article as: Szabó et al.: Reticular alignment: A progressive
corner-cutting method for multiple sequence alignment. BMC
Bioinformatics 2010 11:570.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Szabó et al. BMC Bioinformatics 2010, 11:570
http://www.biomedcentral.com/1471-2105/11/570

Page 19 of 19

http://www.ncbi.nlm.nih.gov/pubmed/5420325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/5420325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6694900?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2004263?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10964574?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10964574?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2734293?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2734293?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6433036?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6433036?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3118049?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3118049?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3243435?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3243435?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7984417?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7984417?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7984417?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10964570?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10964570?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12136088?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12136088?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16679334?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16679334?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18753153?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18753153?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18753153?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19478997?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9520499?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9520499?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16044462?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16044462?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3447015?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3447015?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3221794?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3221794?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1438297?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1438297?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9682053?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	The Waterman-Byers algorithm and x-networks
	Theorem 1
	Proof
	Definition
	Theorem 2
	Proof

	Aligning a network of alignments to a network of alignments
	Definition
	Definition
	Definition
	Definition
	Definition
	Theorem 3
	Proof

	The Reticular Alignment algorithm
	Building the guide tree
	Gap penalties
	Scoring similarities
	Internal score and sequence weighting
	Threshold values
	Efficient score calculation

	Results and Discussion
	Alignment accuracy generally increases with the deepened search in the alignment space
	Comparing single and pairwise gap penalties
	The importance of a good guide tree, sequence weighting and gap scoring
	Memory and Computational demand

	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	References

