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Abstract

resources of the same sample size.

Background: Genomewide association studies have resulted in a great many genomic regions that are likely to
harbor disease genes. Thorough interrogation of these specific regions is the logical next step, including regional
haplotype studies to identify risk haplotypes upon which the underlying critical variants lie. Pedigrees ascertained
for disease can be powerful for genetic analysis due to the cases being enriched for genetic disease. Here we
present a Monte Carlo based method to perform haplotype association analysis. Our method, hapMC, allows for
the analysis of full-length and sub-haplotypes, including imputation of missing data, in resources of nuclear
families, general pedigrees, case-control data or mixtures thereof. Both traditional association statistics and
transmission/disequilibrium statistics can be performed. The method includes a phasing algorithm that can be
used in large pedigrees and optional use of pseudocontrols.

Results: Our new phasing algorithm substantially outperformed the standard expectation-maximization algorithm
that is ignorant of pedigree structure, and hence is preferable for resources that include pedigree structure.
Through simulation we show that our Monte Carlo procedure maintains the correct type 1 error rates for all
resource types. Power comparisons suggest that transmission-disequilibrium statistics are superior for performing
association in resources of only nuclear families. For mixed structure resources, however, the newly implemented
pseudocontrol approach appears to be the best choice. Results also indicated the value of large high-risk
pedigrees for association analysis, which, in the simulations considered, were comparable in power to case-control

Conclusions: We propose hapMC as a valuable new tool to perform haplotype association analyses, particularly for
resources of mixed structure. The availability of meta-association and haplotype-mining modules in our suite of
Monte Carlo haplotype procedures adds further value to the approach.

Background

Genetic studies are challenged with identifying and
characterizing the underlying genetic etiology of com-
mon, complex human diseases. Recently, genomewide-
association studies (GWAS) have contributed an abun-
dance of well-replicated findings that have identified
regions of the genome likely to harbor disease genes
(see [1]). The current limitation is the ability to move
from these initial association signals to identification of
the underlying critical variants. Analytical approaches
that consider haplotypes will be useful to guide the
mapping of underlying variants, in particular rare
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variants [2,3]. Furthermore, multi-center collaborative
efforts and use of resources enriched for genetic disease
will be helpful in the effort to identify underlying var-
iants. Potentially powerful family-based resources
already exist for many diseases, such as those previously
ascertained for linkage studies. The ability to utilize
these family-based resources for haplotype association
studies and combine family-based and singleton
resources for joint analyses would be extremely valuable.
Such analyses, however, present complex statistical chal-
lenges, such as haplotype inference and accounting for
phase uncertainty in family data and the identification
of appropriate statistics. Here we present a Monte-Carlo
method, hapMC, designed to perform valid haplotype
association analyses in mixed resources.
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A significant issue for use of haplotypes in association
analyses is the estimation of phase conditional on the
observed genotype data. In population-based data of
independent individuals, haplotype frequencies can be
estimated using Bayesian methods [4]) or expectation-
maximization (EM) approaches [5,6]. Such methods are
well established and are scalable to thousands of mar-
kers with thousands of subjects. For family-based data,
extensive work has been done to properly estimate hap-
lotypes (see [7,8]), but there are still considerable limita-
tions with regard to missing data and large pedigrees.
Linkage analysis software, such as Genehunter [9],
Merlin [10] and SIMWALK?2 [11], can phase SNP data
in pedigrees, however, these software either require that
markers are in linkage equilibrium or cluster the mar-
kers for analysis, conditions not suited to the situation
we are interested in here. Thomas (2007) [12] developed
a Markov chain Monte Carlo (MCMC) linkage method
that considers markers in linkage disequilibrium (LD) in
general pedigrees. However, the method remains
impractical for large pedigrees due to mixing problems
and high computational burden. Other efforts have
focused on phasing tightly-linked markers in small
nuclear families and moderate sized general pedigrees
[13-17]. By focusing on markers within minimum- or
zero-recombinant regions these methods reduce the
complexity of the haplotype reconstruction problem.
Additional reductions in the haplotype configuration
space are made by minimizing haplotype ambiguities
and missing data with rules based on Mendelian inheri-
tance [14,15,18,19] and genotype elimination [20,21].
Concentration on regions with minimal recombination
is reasonable to address specific regions, such as candi-
date genes or follow-up regions identified from GWAS.
However, the attention to only small to moderate pedi-
grees remains restrictive. Thus far, no method has inte-
grated haplotyping strategies for SNPs in LD for larger
pedigree structures with missing data.

Given any chosen method for estimating haplotypes,
the uncertainty from this estimation must be accounted
for at the analysis stage. For independent individuals in
a classical case-control design, a likelihood approach is
the usual solution, which allows consideration of all pos-
sible haplotype pairs for each individual, each weighted
by the appropriate probability. For small families and
transmission-disequilibrium statistics this also has been
dealt with in a variety of valid ways [22-26]. Three pub-
lished approaches have attempted to extend haplotype
association analyses to large pedigrees and allow for
combination of pedigrees and singleton data. The first
approach uses a weighting scheme to account for corre-
lation between related cases. It is limited in its require-
ment for independent controls when using pedigree
cases and only conducts a global haplotype likelihood
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ratio test [17]. The second approach is an extension of a
full likelihood approach for combining nuclear family
and singleton data [27]. The extension to general pedi-
grees is by splitting these into nuclear family compo-
nents and treating these components as-if independent,
which can lead to invalid tests. The third is a Monte
Carlo (MC) approach, proposed for single marker ana-
lyses, but with some restrictive opportunities for haplo-
type analyses [28]. In this MC method, to perform
haplotype analyses population haplotype frequencies and
phase-known observed data must be provided by the
user. Haplotype inference programs can be used to pro-
vide population haplotype frequencies, because, even
with related individuals, point estimates of the haplotype
frequencies are unbiased for zero-recombinant regions
[29]. Phase-known observed data, however, is not a rea-
listic condition, and treating estimated haplotypes as-if
phase-known is not valid [30-32]. Certainly, MC meth-
ods can be valid for association testing provided the MC
procedure is performed appropriately [33,34], however,
a more sophisticated approach is required than for sin-
gle marker analyses.

Beyond haplotype inference and uncertainty, to per-
form association in pedigrees attention must be made to
the controls utilized in the family data. In particular, the
parents of affected offspring are intuitively not ideal for
explicit use as controls because they must share exactly
one allele with the affected individual. Previously, “pseu-
docontrols” have been suggested for family data where
parents are available [22,23,35-37]. Pseudocontrols for
an affected offspring can be generated from the parental
alleles or haplotypes not transmitted to the affected off-
spring. Methods have been developed to generate up to
three pseudocontrols per case to perform a matched
case/control analysis and provide statistics robust to
population stratification [22,23]. The use of pseudocon-
trols may offer more power for classical association tests
in family-based resources. Data for pseudocontrols can
be used in the usual association statistics, thus also pro-
viding an easy way to combine association evidence
across family and case-control data - an important
consideration for joint analyses in mixed resource
structures.

Here we introduce an MC approach for haplotype
association analyses, hapMC, which allows for valid
analyses in large pedigrees and resources of mixed
structure. Our method incorporates a general EM phas-
ing method that estimates phase considering pedigree
structure for a set of tightly linked markers in a non-
recombinant region. Our phasing algorithm builds upon
previous methods by providing a pedigree-splitting pre-
processing step, a set of simplified rules optimized for
SNP markers [14,15,18,19], and an integrated genotype
elimination procedure in haplotype configuration
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construction. Valid haplotype association testing is
achieved using an appropriate MC procedure, and
includes full length and sub-haplotypes analyses, allow-
ing for imputation of missing data based on the com-
plete marker set. This new approach also allows for the
use of either explicit or pseudocontrols in family data.
HapMC is implemented in a Java software package,
which is incorporated as a module in the freely available
Genie software suite (http://www-genepi.med.utah.edu/
Genie/hapMCDetail.html).

Results

Phasing comparison

The haplotype phasing accuracy and timing results using
our pedigree-informed algorithm, the pedigree-informed
algorithm HAPLORE [19] and GCHap (pedigree-naive)
are shown in Table 1. Phasing accuracy was determined
by the percentage of correct MLE haplotypes across all
individuals. As expected, for the independent case-
control data, all three algorithms produced reasonably
similar accuracy results. Both pedigree-informed algo-
rithms were marginally better (4-6% improvement) than
GCHap for longer haplotypes (10 and 15 loci) due to
their partition-ligation procedures; however, these mar-
ginal increases in accuracy come at the expense of
increased computing time. As expected for an algorithm
that is pedigree-naive, the accuracy of GCHap remained
similar across all data sets, independent of the changing
pedigree structures.

For the data sets that included pedigree structure
(TRIO, ASP, LP), the pedigree-informed algorithms
achieved significantly greater accuracy than GCHap for
all loci lengths and missing rates. The accuracy of both
pedigree-informed algorithms continued to be similar in
all situations where both algorithms completed the
phasing, with our new algorithm consistently, if only
marginally, the better of the two. Our new algorithm
was also able to phase all data sets and scenarios gener-
ated. However, for certain scenarios with 15 loci (TRIO
and ASP data sets) HAPLORE was unable to completely
phase the data due to a configuration error, which was
most likely due to the inappropriate removal of a critical
haplotype from a partition. HAPLORE could also not be
performed for the LP1 data set because it was unable to
process these large pedigree data sets in a tractable
amount of time. For longer haplotypes and high missing
rates the improvements made by the pedigree-informed
algorithms were substantial (e.g. ASP, 15 loci, 5% miss-
ing; GCHap 31% accuracy, hapMC 91% accuracy). The
increased accuracy of pedigree-informed algorithms with
family-based data is perhaps expected given the nature
of the two approaches. Yet, the large differences in
accuracies between the two types of algorithms high-
lights the importance of accounting for the family
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structure information, particularly for analyses of larger
number of loci and higher rates of missing data.

Phasing time for all algorithms increased with the
number of loci considered and increased missing rates,
as expected. For GCHap, the phasing time increased
with the number of subjects, but this increase was inde-
pendent of pedigree structure. The phasing times for
the CC and ASP data sets (both containing 1,000 geno-
typed subjects) were similar and phasing times for TRIO
and LP1 data sets (both containing 1,500 genotyped
subjects) were also similar. For the pedigree-informed
algorithms, the number of subjects and the pedigree
structure influenced the phasing time. For the CC and
ASP data sets, the number of subjects is the same
(1,000), however the pedigree structure in the 250 ASPs
significantly reduced the haplotype configuration space,
hence, phasing time is significantly reduced in the ASP
data set. For example, for 10 loci, 10% missing, CC time
is 15.54 and 42.73 seconds whereas ASP time is 3.30
and 3.82 seconds for our algorithm and HAPLORE,
respectively. The TRIO and LP1 data sets both con-
tained 1,500 individuals, however, the relationship
between structure and phasing time is less straightfor-
ward for this comparison. The LP1 data set has more
overall structure between a larger number genotyped
individuals (smaller haplotype configuration space), but
the pattern of the structure is more complex. Conversely
the TRIO data set has less structure between total sub-
jects (less reduction in state space), but a uniform struc-
ture across smaller units. For 0% and 5% missing data,
the computing time for both TRIO and LP1 data sets
were relatively similar. However, for 10% and 15% miss-
ing data (which increases the state space), the larger
amount of structural information in the LP1 data set
appeared to shorten the phasing time compared to the
TRIO data.

Comparisons of run times between HAPLORE and
our new algorithm for ASP and TRIO data sets show
that HAPLORE was faster for 5 loci, but our new algo-
rithm was faster for 10 and 15 loci, and substantially
faster for many situations with 15 loci. Both pedigree-
informed algorithms scaled poorly compared to GCHap
when considering data sets with no or low pedigree
structure (CC and TRIO), especially with larger num-
bers of markers and missing data. HAPLORE was mark-
edly faster than our algorithm with 15 loci and high
missing rates for CC. For example, the new algorithm
was one and two orders of magnitude slower than HAP-
LORE and GCHap, respectively, for 15 loci and 15%
missing genotype rate.

Power and validity
Power and validity results for analyses using the simu-
lated family and independent case-control data sets, as
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Table 1 Haplotype phasing accuracy and timing results for one data set.

Missing data rates (%)

0 5 10 15
Data nloci Phasing type accuracy time(s) accuracy time (s) accuracy time (s) accuracy time (s)
CcC 5 new* 0.87 149 0.85 1.50 0.82 1.94 0.80 295
HAPLORE# 0.87 1.75 0.85 2.09 0.82 1.74 0.80 24
GCHapt 0.87 1.16 0.85 1.28 0.82 1.66 0.80 1.44
10 new 0.62 5.94 0.57 1013 0.53 15.54 049 30.21
HAPLORE 0.61 2044 0.56 320 0.52 4273 049 56.51
GCHap 0.57 2.56 0.53 444 049 5.19 0.46 7.53
15 new 0.36 4274 0.33 12248 0.28 316.55 0.26 1260.62
HAPLORE 0.36 90.38 032 147.25 0.27 167.37 0.21 302.84
GCHap 0.30 4.84 0.27 8.17 0.23 11.36 0.22 17.86
TRIO 5 new 0.98 1.53 0.95 1.72 0.92 2.19 0.90 249
HAPLORE 0.98 147 0.95 1.50 0.92 1.17 0.90 147
GCHap 0.88 1.15 0.85 1.38 0.82 1.54 0.80 1.60
10 new 0.95 2.81 0.89 445 0.84 6.93 0.77 13.54
HAPLORE 0.95 448 0.89 7.39 0.84 10.99 0.77 35.09
GCHap 0.59 3.36 0.55 6.53 0.51 744 047 10.69
15 new 0.92 4.52 0.81 8.15 0.73 15.13 0.65 107.28
HAPLORE 0.90 12.50 0.80 56.25 - - - -
GCHap 0.36 763 0.31 11.45 0.27 16.55 0.24 29.08
ASP 5 new 0.99 1.05 0.98 1.61 0.96 1.59 0.95 2.00
HAPLORE 0.99 061 0.98 0.74 0.96 0.60 0.95 0.67
GCHap 0.89 0.98 0.86 135 0.84 1.40 0.81 143
10 new 0.97 2.22 0.95 247 0.92 3.30 0.89 353
HAPLORE 0.97 2.06 0.95 2.53 0.92 3.82 0.89 434
GCHap 0.60 249 0.56 3.74 0.53 517 048 6.34
15 new 0.93 2.99 091 3.64 0.85 45 0.80 790
HAPLORE 091 361 0.89 32.64 - - - -
GCHap 0.37 531 0.31 7.55 0.28 9.66 0.24 15.59
LP1 5 new 0.99 2.04 0.98 1.88 0.98 1.96 0.97 202
HAPLORE - - - - - - - -
GCHap 0.87 1.60 0.86 1.64 0.85 1.69 0.85 1.82
10 new 0.98 345 0.97 3.80 0.96 3.94 0.95 527
HAPLORE - - - - - - - -
GCHap 0.63 4.90 0.61 6.46 0.59 7.00 0.59 6.54
15 new 0.96 6.76 0.95 8.23 0.93 10.85 0.92 5492
HAPLORE - - - - - - - -
GCHap 045 8.17 042 9.29 040 10.72 0.39 15.35

*new pedigree-informed phasing algorithm.

$HAPLORE (pedigree-informed).

1t GCHap (pedigree naive).

CC (Case Control): 500 cases, 500 controls = 1000 individuals (1000 genotyped).

TRIO (both parents and one offspring): 500 trios = 1500 total individuals (1500 genotyped).
ASP (Affected Sib Pairs and parents): 250 ASPs = 1000 total individuals (1000 genotyped).
LP1 (Large Pedigree) = 5 generational pedigree ~5800 total individuals (~1500 genotyped).
- program failed.
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well as the mixed designs are shown in Tables 2 and 3.
All analyses were haplotype specific tests for the known
risk haplotype and were tested at the a-level of 0.05.
Table 2 shows the power and type I error rates for each
data set, including results from explicit controls (EC)
and pseudocontrols (PC) in a standard Cochran-Armi-
tage test for trend. In addition, the TDT was performed
for the TRIO and ASP data sets. Table 3 shows the
type I error rates and power for mixed resources includ-
ing mixtures of two data sets.

Based on 1,000 replicates, all type I error rates were
found to be not significantly different than 0.05 (95%
confidence interval [0.036, 0.064]), indicating validity of
all tests within the MC framework both for hapMC
using the pedigree-naive and pedigree-informed MLEs.
Primarily, these results demonstrate the versatility and
potential for hapMC to perform valid analyses on mixed
structure study designs.

For the TRIO and ASP data sets, we performed trend
tests using EC and PC designs and also a TDT analysis.
In general, the ASP data set exhibited more power than
the TRIO data set even though it had a smaller overall
sample size (1,000 versus 1,500), presumably due to the
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enrichment of disease alleles in the ASP set. The excep-
tion was at the low genotypic relative risk of 1.2, where
the increased sample size of the TRIO design appears to
have out-weighed the minor genetic enrichment of the
ASPs at this small risk size. Within both data sets
power was observed to be quite similar across the three
analysis approaches for all alternative models. However,
both PC and TDT statistics showed consistently higher
power than the EC, although these gains were extremely
marginal (<3.5% increase in power). Formal testing of
the differences between the PC and EC approaches
using a Wilcoxon signed-rank (WSR) test provided evi-
dence for significant differences (TRIO: PC v EC pwsr =
0.001; ASP: PC v EC pwsr = 0.0012) indicating consis-
tent marginal power gains when using PC compared to
EC in these designs. The power from the PC and TDT
statistics differed by no more than 1% in the TRIO data
set and by less than 2.2% in the ASP data set and were
not statistically different (TRIO: TDT v PC pwsr =
0.392, ASP: TDT v PC pysg = 0.168).

For the LP data sets we also compared the EC and PC
approaches. In contrast to the TRIO and ASP data sets,
the PC approach in large pedigrees involves a mixture of

Table 2 Type | error rates and powert for all data sets and statistics.

ccx TRIO* ASP* LP1* LP2*
EC PC DT EC PC DT EC PC EC PC
pedigree-informed null NA 0046 0044 0045 0052 0051 0051 0049 0047 0054 0054
pedigree-naive null 0058 0056 0048 0055 0061 0061 0058 0062 0047 0054 0056
Freq risk hap GRR
0.17 20 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000  1.000
15 0910 0840 0846 0846 0904 0914 0916 0970 0974 0900 0892
135 0672 0620 0634 0624 0640 0650 0660 0786 0778 0632 0616
12 0280 0276 0290 0282 0256 0264 0264 0358 0364 0254 0268
0.10 20 0994 0994 0994 0994 1000 1000 1000 1000 1000 1000  1.000
15 0754 0712 0722 0726 0728 0732 0738 089 0900 0762 0742
135 0456 0422 0434 0428 0378 0406 0408 0604 0572 0448 0428
12 0210 0162 0166 0170 0218 0238 0242 0256 0262 0186  0.166
0.07 20 0990 0966 0968 0966 0994 0994 0992 1000 1000 0998 099
15 0642 0574 0586 059 0620 0646 0642 0820 0822 0688 0666
135 0399 0300 0312 0312 0368 0400 039 0554 0538 0368 0360
12 0168 0146 0161 0166 0143 0151 0154 0252 0252 0146  0.140
0.04 20 0855 0777 0798 079 0867 083 0880 0992 098 0928 0920
15 0363 0323 0348 0338 0343 0378 0376 0624 0610 0474 0464
135 0245 0158 0184 0174 019 0236 0230 0304 0317 0241 0211
12 009% 0139 0152 0141 0087 0114 0104 0152 0128 0118 0112

P-values between (0.036, 0.0635) for 1000 replicates are consistent with a valid 0.05 type 1 error rate.
EC = Explicit controls, PC = pseudocontrols, TDT = transmission disequilibrium test.

* = 500 cases, 500 controls.

# = 500 cases, 1,000 controls.

1 Power is shown for the hapMC with the pedigree-informed MLE estimation.
NA = pedigree informed phasing not applicable to case-control.
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Table 3 Type | error rates and powert for mixed resource study designs.
CcC TRIO ASP LP1 LP2
EC PC PC EC EC TRIOCC ASPCC LP1CC LP2CC
Total sample size 1,000% 1,500t 1,000 1,500 1,000 2,500 2,000 2,500 2,000
pedigree-informed null NA 0.044 0.051 0.049 0.054 0.051 0.039 0.042 0.044
pedigree-naive null 0.058 0.048 0.061 0.062 0.054 0.053 0.046 0.048 0.060
Freq risk hap GRR
0.17 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
15 0910 0.846 0914 0.970 0.900 0.996 0.998 0.996 0.998
135 0.672 0.634 0.650 0.786 0.632 0.904 0912 0.934 0918
12 0.280 0.290 0.264 0.358 0.254 0516 0518 0.566 0.500
0.10 20 0.994 0.994 1.000 1.000 1.000 1.000 1.000 1.000 1.000
15 0.754 0.722 0.732 0.896 0.762 0.950 0.960 0.984 0978
135 0456 0434 0406 0.604 0448 0.744 0.730 0.804 0.788
12 0210 0.166 0.238 0.256 0.186 0324 0.390 0372 0.358
0.07 20 0.990 0.968 0.994 1.000 0.998 1.000 1.000 1.000 1.000
15 0.642 0.586 0.646 0.820 0.688 0.866 0.904 0.952 0.944
135 0.399 0312 0400 0.554 0.368 0.598 0.674 0.752 0.678
12 0.168 0.161 0.151 0.252 0.146 0.250 0.264 0336 0.294
0.04 20 0.855 0.798 0.886 0.992 0928 0.981 0.990 0.998 0.998
15 0.363 0.348 0.378 0.624 0474 0618 0616 0.746 0.726
135 0.245 0.184 0236 0.304 0241 0.340 0411 0430 0429
12 0.096 0.152 0.114 0.152 0118 0.240 0.167 0.200 0.176

Results from most powerful statistic for each single resource analyses and mixed resource analyses. All controls within LP1 and LP2 are familial controls.

* = 500 cases, 500 controls

1 =500 cases, 1,000 controls

1 Power is shown for the hapMC with the pedigree-informed MLE estimation
NA = pedigree informed phasing not applicable to case-control null.

pseudo and explicit controls according to the pedigree
structure. If both parents of an affected case are genotyped
and are unaffected, then a pseudocontrol is generated
from their data and used in place of their explicit data,
otherwise controls are considered explicitly. In the LP1
data set, power differences between the EC and PC
approaches were marginal across all models and neither
approach was consistently better than the other. The lar-
gest difference between the two was 3.2% for the disease
model with a risk haplotype of 0.10 and a GRR of 1.35.
Formal testing indicated that there was no evidence that
one approach was consistently superior to the other (pwsr
= 0.28). However, in the LP2 data set, the EC approach
most often gave marginally more power (in all but one
model) with an average increase of 1.35%. This consistent
marginal increase was significant (pysg = 0.006).
Examining power across all resource designs shows
that the LP1 data set, matched in sample size to the
TRIO data set, was consistently more powerful than the
TRIO data set for all risk haplotype frequencies and
GRRs (pwsr = 0.009). The maximum difference in
power of 26.2% between the two data sets is seen with
the 0.04 risk haplotype frequency with 1.5 GRR.

Furthermore, even though the other three designs (CC,
ASP and LP2) had smaller sample sizes, these designs
also out-performed the TDT design for the majority (at
least 75%) of models. The LP2, matched in sample size
to the CC and ASP data sets, performed comparably to
the CC or ASP data sets (both pysr >0.3). An increase
in power of the LP1 compared to LP2 was evident
(pwsr = 0.001) consistent with the increase sample size
of LP1 which contains twice as many controls.

For the mixed nuclear family and case-control designs
that include TRIOs and ASPs (TRIOCC and ASPCC),
the superiority of the PC approach reflected the obser-
vations for the single data set results (TRIOCC: PC v
EC pwsr = 0.008, ASPCC: PC v EC pysg = 0.0075). In
the mixed large pedigree and case-control data sets, the
PC approach outperformed the EC approach in one set
(LP1CC: PC v EC p = 0.036), but not in the other
(LP2CC: EC v PC p = 0.61). Given the superiority of PC
to EC in all but LP2CC and the marginal nature of the
individual differences, only the PC results are detailed in
Table 3.

As expected, power was always increased in the joint,
two-data-set mixed resources compared to either single
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data set. Furthermore, and previously shown by others
[38], the power of the joint analysis in the mixed
resource was always superior to the power of analyzing
both resources separately (power = 1-{(1-p;)x(1-p»)},
where p; is the power for the first data set and p, is the
power of the second).

Discussion

Here we have described a MC, MLE-based haplotype
association method and software (hapMC) designed to
analyze a set of tightly-linked SNPs in general pedigree
and/or independent case-control based studies. HapMC
allows for the haplotype MLE to be estimated by either
a pedigree-naive or pedigree-informed algorithm.
A novel aspect of our method comes from the imple-
mentation of the pedigree-informed general phasing
algorithm that appropriately handles related and unre-
lated individuals into the haplotype phasing. A variety of
pedigree-informed phasing algorithms currently exist
(see [7,8]), but none have established practical measures
for dealing with large amounts of missing data in
extended pedigrees and directly integrated these for
haplotype association testing. Our algorithm includes a
preprocessing step to optimally split large pedigrees into
substructures, which enables it to consider important
pedigree structure that surrounds dense genotype data
and maintain tractability. While this step may appear
trivial, it is a necessary step to analyze large pedigrees
with missing data that current phasing programs cannot
handle. Our new approach includes both incorporation
of pedigree structure and a partition-ligation in the hap-
lotype estimation procedure.

We found that the accuracy of haplotypes estimated
from our pedigree-informed algorithm was always equal
or superior to that estimated without these algorithm
improvements. Even in the situations where there was
little or no pedigree structure (CC and TRIO data sets),
the new algorithm performs substantially better due to
the partition-ligation alone. However, a notable issue
from our investigations is that while the new pedigree-
informed algorithm always results in greater accuracy
than a pedigree-naive approach, the phasing times are
orders of magnitude longer for data sets with little or
no pedigree structure, large number of loci (nloci = 15)
and high missing rates (10-15%). Hence, for incorpora-
tion in a Monte Carlo analysis approach where the pro-
cedure must be repeated thousands of times, the new
phasing algorithm is impractical for unrelated indivi-
duals with high missing rates. We therefore recommend
that for a resource of unrelated individuals (CC data
sets) the standard full likelihood approach (as imple-
mented, for example, in [27]) is the best alternative.
However, for data sets that include family structure we
find that substantial haplotype accuracy is lost by
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ignoring pedigree structure, and the use of an algorithm
that considers that structure (such as hapMC) is a more
prudent choice. In some situations, this may require a
more stringent quality control protocol with higher
minimum genotyping thresholds to retain practical
application of the more sophisticated algorithm.

Comparisons between our new phasing algorithm and
a previously proposed pedigree-based algorithm, HAP-
LORE [19], show equivalent or slightly better MLE hap-
lotype accuracy for the new algorithm for all situations
and data sets considered. In terms of phasing times, our
algorithm ran substantially faster in most situations con-
sidered for comparison, particularly when using family-
based data with higher number of markers and missing
rates. Furthermore, HAPLORE was unable to be used
for in nuclear families with larger numbers of loci and
high missing rates, or in the large pedigrees.

As an empirical approach, the space and time require-
ments for hapMC can be considered limitations. The
time required to phase haplotypes and calculate the
observed association statistics must be scalable to be
able to practically generate the necessary MC simula-
tions. As has been mentioned, the haplotype phasing
aspect of hapMC can be computationally intense for
large data sets and high missing rates. For example, to
analyze ten markers in one mixed large pedigree and
case control resource with ~1500 genotyped individuals
the hapMC algorithm required ~21 minutes using a
2.40 Ghz processor and 2 Gb of memory. These require-
ments increase with increased missing data and markers
and decreased pedigree structure. In our current appli-
cation, the total number of loci hapMC can practically
handle is approximately 20, although the precise limita-
tion is dependent upon the data set characteristics
(including missing data rate, number of individuals and
families, and types of families). However, because the
method is designed for tSNPs across a non-recombinant
follow-up GWAS region or candidate gene, marker sets
of fewer than 20 markers is not unreasonably small. The
marker limitation is also consistent with other programs
with similar approaches.

It is known that the use of MLE haplotypes in associa-
tion analyses (that is, ignoring phase uncertainly) can
lead to invalid association tests and may result in biased
estimates of effect size and other parameters [30-32].
We emphasize here that all tests in hapMC are under
the null hypothesis of no association of any haplotype,
and that the key to the MC procedure in producing
valid association statistics using the MLE haplotypes is
to generate properly matched null data from which to
generate the null distribution [34]. Our method uses a
MC procedure that matches the entire phasing process
and the use of MLEs in the observed data and in all
null data sets used for the null distribution. HapMC
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therefore produces accurate significance levels for both
tests for independence and effect size, as we have
shown. However, the point estimates for effect size sta-
tistics (that is, odds ratios) estimated from our method
may be upwardly biased. Such biased effect sizes are
possible when using pedigree data that have been ascer-
tained for disease and analyzing related controls expli-
citly. While the bias may be removed by using a
matched case/pseudocontrol analysis within families
[39], the point estimates (such as odds ratios) should be
interpreted with caution both due to the use of MLE
and the pedigree-based data. It is worth noting that in
joint analyses of multiple resources, if the disease MAF
and/or disease effect size is anticipated to differ across
the component studies that a formal meta procedure
should be followed. HapMC has been incorporated in to
the Genie framework, and hence formal meta proce-
dures can be implemented in the approach [40].

Not addressed here, is that while haplotype association
testing is considered a reasonable approach to explore, it
is often burdened with the task of determining which
haplotypes or sub-haplotypes that should be tested. It
may be of interest to note, that the MC, MLE haplotype
association approach outlined in this paper has also
been incorporated into a peripheral Genie software pack-
age called hapConstructor [41] (http://bioinformatics.
med.utah.edu/Genie/hapConstructor.html). HapCon-
structor is a data mining software aimed at identifying
the most significant haplotypes from a data set. However,
due to computing time constraints of a data-mining
approach, currently hapConstructor is limited to using
the phase-naive EM algorithm for haplotype estimation.
Mixed resource structures and formal meta analyses are
supported within hapConstructor and, as we have shown
here, even though it may not be ideal, our MC approach
with the pedigree-naive MLEs remains valid.

We have illustrated hapMC using multiple single data
sets of varying design, as well as several joint resources
based on a combination of one traditional case-control
data set and one family-based data set. However, the
MC approach extends more generally to multiple consti-
tuent groups where each can be from any study design.
Furthermore, the family structures it can analyze are not
limited in size or structure. This feature was demon-
strated here by the LP data sets that were five-genera-
tion pedigrees with substantial missing data. We re-
emphasize that large pedigrees with missing data may
necessitate pedigree splitting at the phasing step, but
that the full structures are maintained when generating
the null configurations to fully account for the familial
relatedness in the association analyses. To our knowl-
edge, hapMC is the only method and software currently
available that can provide valid haplotype analyses in
resources of mixed study designs that include general
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pedigrees. As previously shown by others [38], the
importance of joint analyses is the increased power such
analyses offer over simply combining the statistical evi-
dence from two separate analyses.

Beyond demonstrating the validity of the method, our
power results provide some insight into the relative
strengths of different study designs and statistical
approaches. In our single data set analyses, for TRIO
and ASP data sets we found that both the trend test
with a PC approach and the TDT were superior to the
EC approach. There was a lack of significant difference
in power between the PC approach and the TDT analy-
sis. From this we would conclude that the TDT statistic
remains the preferred statistic for analyzing nuclear
family designs due to its additional robustness to popu-
lation stratification. In the large pedigree data sets, the
relative superiority of the two approaches (PC and EC)
was not clear. In the single data sets (LP1 and LP2), the
EC and PC approaches were similar in LP1 and the EC
approach appeared superior in LP2. In the joint data
sets (LP1CC and LP2CC), the PC approach was superior
in LP1CC, but no significant difference was found in
LP2CC. The lack of impact of the PC approach in LP2
may be due to the reduced control size in that data set
(1,000 vs 1,500 total), however, our observations high-
light the difficulty in defining optimal approaches for
general pedigrees where the specific structure may influ-
ence the relative powers of different approaches. To
investigate this we repeated our LP analyses, but with
oversampling of parents of affected cases and less sam-
pling of other individual as controls, thus increasing the
number of occurrences that the pseudocontrol could be
used in the analysis. We found that the PC approach
improved in power (data not shown). In summary, the
PC approach was found to have significant superiority
over the EC approach in the TRIO, ASP, TRIOCC,
ASPCC, and LP1CC data sets. Only one design indi-
cated superiority of the EC approach (LP2), and the
remainder indicated no significant difference (LP1,
LP2CC). Our results therefore suggest that the PC
approach is likely to be the better approach for mixed
nuclear family and case-control designs.

We also explored a stricter definition to select familial
controls. We found that if close relatives are simply not
considered in the analyses (restrict controls to only
those further than first degree) that the power was
adversely affected by the reduced control sample size
(data not shown). This indicates that the close relatives
contribute positively to the power of the analysis.

Comparing different single study designs, the TRIO
design consistently performed worse than all other
designs. Of the remaining designs, it was interesting to
note that for matched sample sizes the large high-risk
pedigree design (LP2) was comparable in power to ASP
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and CC designs. Large pedigrees arguably contain the
most redundancy in the familial cases (and controls),
but are also enriched for disease alleles (ascertainment
criteria of 14 cases required per large pedigree, a rate of
2.0 fold increase over the sporadic rate). Familial con-
trols have previously been shown to increase power
[42,43]. The comparability in power between LP2 and
CC suggests that the positive effect of the disease allele
enrichment in LP2 may have balanced the decrease in
effective sample size due to the redundancy in informa-
tion from related subjects. We also found that LP2 and
ASP were not significantly different for power and both
designs are enriched for disease. However, on average,
large pedigree controls are less related to the cases than
controls are in ASPs, hence the effective increase in
control population in LP2 may balance the effect that
the effective sample size of the cases is reduced. Of
course, it must be noted that our results may be specific
to our simulated data sets, and, for other large pedigree
structures, these findings may not hold. Nonetheless,
our results indicate substantial potential for large pedi-
gree resources and using pedigree-based controls for
haplotype association analyses.

Conclusions

In conclusion, we have developed a method and soft-
ware to perform valid haplotype analyses in resources of
mixed pedigree structure. To our knowledge this is the
only method currently available that can perform such
analyses. Similarly to that found by others [38], our find-
ings illustrate the power advantage of joint analyses and,
furthermore, suggest family-based resources can play a
valuable role in haplotype association studies.

Methods

Haplotype phasing

We have implemented a general haplotype phasing algo-
rithm designed to estimate population haplotype fre-
quencies as well as determine maximum likelihood
estimate (MLE) haplotype pairs for a set of tightly linked
markers in general pedigrees. It can also be used for sin-
gleton data (independent cases and/or controls). The
method involves three parts: (1) data preprocessing;
(2) identification of all possible haplotype configurations
in pedigrees; (3) and an EM algorithm across the haplo-
type configuration state space to estimate haplotype fre-
quencies and MLE haplotype pairs.

Part 1: data preprocessing

Although the algorithm is general to pedigree structure,
the missing data inherent in large pedigrees may make
it intractable to consider all haplotype configurations for
the total structure. To address this we have developed a
preprocessing algorithm to determine the sub-structures
within large pedigrees to retain for phasing. Our
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algorithm selects these substructures to maintain tract-
ability. The algorithm works by determining all the
nuclear families within the full pedigree. For each
nuclear family, if both parents and at least one offspring
have sufficient genotype data (a user-defined parameter)
then the nuclear family unit is maintained for the phas-
ing process. After iterating through all nuclear families,
those selected for retention are connected back together
if overlapping individuals exist. Individuals that are part
of non-retained nuclear families are considered as inde-
pendent individuals, or alternatively are removed from
the analysis if they do not have sufficient genotype data.
This process is designed to remove pedigree structure
that will lead to a prohibitively large haplotype config-
uration space for the EM algorithm, while also main-
taining as much pedigree structure as possible. Only the
substructures identified are integrated into the estima-
tion of the MLE haplotypes and haplotype frequencies.
However the full pedigree structure is always maintained
for the statistical analysis in the MC procedure, such
that the correction for all known relationships is main-
tained in the analyses.

Also involved in the data preprocessing is an iterative
process whereby a series of rules are used to reduce
phase ambiguities and missing data across all markers
within each pedigree. We assume a zero-recombinant
autosomal region and mutation- and error-free SNP
data. All parent-offspring trios that were maintained for
phasing are considered with these rules, which are
repeated iteratively until no more updates can occur.
The four steps involved in this part of the preprocessing
are detailed below. In step 1, genotypes are loaded into
variables efficient for updating. Steps 2 and 3 are
designed to use known homozygous genotypes to
resolve both parent and child unphased and missing
locus positions. Step 4 considers the parent-offspring
trios to further reduce phase ambiguities based on basic
rules of inheritance and transmission. Step 1 is per-
formed once per individual, steps 2 and 3 are performed
once per parent-offspring trio, and step 4 is repeated
until no further updates can be completed.

Step 1 - Load haplotype variables This step reads each
individual’s genotype data into six variables that are
used to fully define and store the genotype data. Each of
these variables is an n-length string of ‘0’ and ‘1’ values,
or bits, with the /™ position in the string storing infor-
mation for the i SNP locus. The value ‘1’ indicates that
a condition is satisfied, ‘0" that it is not. The first two
variables indicate the ‘heterozygous’ and ‘homozygous’
status of each locus. The third is the ‘unphased’ variable
that indicates whether the data at locus i remains
unphased (1) or has been phased (0). These three vari-
ables apply to a haplotype pair and thus there is only
one of each of these defined per individual. The
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remaining three variables are haplotype specific and
hence two of each are defined per individual -one for
each haplotype. The fourth ‘set’ variable indicates
whether the allele at locus i has been assigned. The fifth
‘missing’ variable indicates whether the allele at locus i
is missing. The sixth ‘value’ variable indicates whether
the allele at locus i is the minor allele.

Storing genotype data in this way allows for compari-
sons between individuals and updates to be performed
quickly using bitwise operations that can consider the
full set of loci simultaneously, rather than iterating
through each of the # loci separately, and is therefore
computationally efficient. Table 4 shows an example of
how genotype data are loaded into these variables.

The six variables hold all the pertinent pieces of infor-
mation for phasing. Clearly, if the variables ‘missing’,
‘unphased’, and ‘set’” are 000..0, 000..0 and 111..1, respec-
tively, then the haplotype has been completely specified
at all loci and is unambiguously determined. In stepl we
initialize the variables simply based on the individuals
own data, and then in steps 2-4 we use any parent-

Table 4 Example of preprocessing step 1, loading
genotype data into the six n-locus bit variables (n = 5).

M1 M2 M3 M4 M5
Genotype values* 12 00 11 12 22
Variables
Haplotype pair
Homozygoust 0 0 1 0 1
Heterozygous§ 1 0 0 1 0
Unphased** 1 0 0 1 0
Haplotype 1
Set# 0 0 1 0 1
Missingt+ 0 1 0 0 0
Value§§ 0 0 0 0 1
Haplotype 2
Set 0 0 1 0 1
Missing 0 1 0 0 0
Value 0 0 0 0 1

*11 indicates a homozygous genotype for the major allele; 12 a heterozygous
genotype, and 22 a homozygous genotype for the minor allele; 00 indicates
missing genotype.

tHomozygous 0 indicates the positions that are heterozygous or missing and
1 indicates the homozygous positions.

§Heterozygous 0 indicates the positions that are homozygous or missing and
1 indicates the heterozygous positions.

**Unphased 0 indicates the positions that are phased or missing and 1
indicates a heterozygous position without known phase.

$Set 0 indicates the positions that have not been assigned an allele (i.e.
unphased or missing) and 1 indicates the allele value and phase is known.
ttMissing 0 indicates the positions that have an observed allele value and 1
indicates positions that are missing.

§8Value 0 indicates the positions that have the major allele or unknown and
1 indicates positions that have the minor allele.
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offspring relationships to remove as much ambiguity as
possible. That is, the variables are updated towards the
fully unambiguous state. Of course, many positions will
remain ambiguous after this process. These become the
positions that are iterated through to identify all possible
haplotype configurations in Part 2, which subsequently
defines the state space for the EM algorithm in Part 3.
To help the updating process we additionally define
inheritance and transmission single-bit variables. These
variables indicate which haplotypes are shared by the
parent-offspring pair in the current variable states. This
provides the basis for determining which haplotypes to
transfer information between during updates. For each
parent-offspring pair, one transmission and two inheri-
tance (one for each offspring haplotype) variables are
defined. The transmission variable indicates which par-
ental haplotype is shared with the offspring (value = 0 if
haplotype 1 is transmitted and shared, 1 if haplotype 2
is transmitted). An inheritance variable indicates
whether an offspring haplotype is shared with the father
or the mother (value = 0 if haplotype is inherited from
and shared with father, 1 if inherited from mother).
Along with the six genotype variables, the transmission
and inheritance variables are updated and reassessed as
the haplotype states change in steps 2-4.

Step 2 - Parent-to-offspring homozygous updates With
this rule, parental homozygous loci are used to resolve
phase ambiguities in the offspring’s haplotype. If an off-
spring has not yet been updated from a prior parent-off-
spring update (either as a parent or an offspring), then
either of the offspring’s haplotypes can be chosen to be
updated. If the offspring was previously updated in the
parent-to-offspring pair involving the other parent, then
the offspring’s inheritance variables will be assigned. If
the offspring was previously updated as a parent, its
inheritance variable will not be assigned but the haplo-
type configurations will be uniquely defined. In this
instance, the inheritance rule is applied (see Table 5) to
determine which haplotype to update. If the inheritance
rule is inconclusive no update is made.

The update involves establishing if any loci in the cho-
sen offspring haplotype are missing or unphased where
the parent is homozygous. If so, these positions are
updated in the offspring haplotype variables (set,
unphased, missing, and value variables) using logical bit-
wise operations. Figure 1 illustrates the logical bitwise
operations that take place in a parent-to-offspring
homozygous update. Once the update is made to the
variables for the chosen haplotype, the inheritance vari-
ables for both offspring haplotypes (for the specific
parent-offspring pair) are assigned.

Step 3 - Offspring-to-parent homozygous updates
With this rule, the offspring homozygous variable is
used to resolve ambiguities in the parent’s haplotypes.
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Table 5 Inheritance and transmission rules.
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Rule Description

Inheritance  Indicates which haplotype is received by the offspring (characteristic of offspring haplotypes).

The parental source of an offspring haplotype can be established using exclusion. That is, once an offspring haplotype is known not

to be from one parent, it is must be from the other parent.

Exclusion can be determined if a haplotype has an allele not found within a parent’s genotypes or the haplotype does not match

either of a parent’s set haplotypes.

Transmission  Indicates which haplotype is transmitted by the parent (characteristic of parental haplotypes).

Which haplotype is transmitted from a parent to an offspring can be established using exclusion. That is, once a parental haplotype is
excluded as being either haplotype in an offspring, then the alternate parental haplotype must be the transmitted one.

A conditional exclusion can be determined by examining the situation where one parental haplotype was transmitted to the offspring
and check if the complimentary haplotype from the offspring’s genotypes could be inherited from the other parent.

Similarly to step 2, for each parent-offspring pair, a par-
ental haplotype is selected for update. This is deter-
mined by checking if the parent has been updated from
a prior offspring-to-parent update (either as a parent or
offspring). If the parent has not been updated yet, either

haplotype is chosen to be updated. If the parent has been
considered as an offspring in an offspring-to-parent pair,
then the transmission will not be assigned but the haplo-
type configurations will be uniquely defined. In this
instance, the transmission rule is applied (see Table 5) to

homparent =0010110110 A.
valueprens =0000110000

homparent= 0010110110 AND
Unphasedoffsprfng = 01 01 1 001 1 1 }

a.=0000100110

homparent= 001 01 1 01 1 0
MissiNGoftspring = 1000001000 }AND

b.=0000000000

a.=0000100110 OR
b.=0000000000

- 0010110110 (new)

setoftspring= 001001 ODOOEOR

Setoffsprfng

Unphasedoffspn'ng = 01 01 1 001 1 1
a.=000010011 O}XOR

Haplotype 1
hetoffsprmg=0101100111 E.

MisSiNGoftspring = 1000001000

Valueparent — 00001 1 0000 AND
homparen{= 0010110110 AND

a.=0000100110

value update = 0000100000
Valueoffsprfng =000001 OOOO]_OR

Valueoffsprfng =0000110000 (neW)

Figure 1 Example of a parent-to-offspring homozygous update using bit-variables. The parent's homozygous variable (hompend) is used
to update variables in the offspring. In this example, offspring haplotype 1 has been chosen for update. Variables listed on the left in the trio
drawing are the current states for the offspring and parent. Variables listed in the panel on the right and indicated by (new) are the updated
states. Panel A. Logical “AND" operation determines which loci are homozygous in the parent and unphased in the offspring. The result (a.)
indicates positions (value = 1) where updates can be made to the Setqfrspring, Valueoffspring and unphasedyrspring Variables. In this example, 3
positions can be updated (the 51 8" and 9™). Panel B. Similar to panel A, but for the missingofrspring Variable. In this example, no positions can
be updated for this variable (all position in b. = 0). Panels C-E. Logical operations “OR”, exclusive OR ("XOR") and "AND" are used to determine
the new updated versions of variables setofspring, UNPhasedofrspring and valuesftspring:
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determine which haplotype to update. If the transmission
rule is inconclusive no update is made.

The update involves establishing if any loci in the cho-
sen parent haplotype are missing or unphased where the
offspring is homozygous. If so, these positions
are updated in the parent haplotype variables (set,
unphased, missing, value variables) using logical opera-
tions. Once the update is made to the parent haplotype,
the transmission variables for this parent to the specific
offspring are assigned.

Step 4 - Reduce haplotype phase ambiguities For
further reducing haplotype phase ambiguities we have
implemented and built upon the concepts outlined in
rules 3-13 in Zhang et al. [19]. These rules consider par-
ent-offspring trios and work by iteratively updating the
inheritance and transmission states between the off-
spring and each parent, which allows ambiguity reduc-
tion between offspring and parent haplotypes. The
procedure starts by first attempting to resolve the
unknown transmissions from both parents to an off-
spring, and then resolving unknown offspring inheri-
tance states. In our implementation, we have reordered
rules 3 and 4, and 5 and 6 from Zhang et al. [19] so
that known transmissions from both parents can be
used to help determine inheritance. That is, if one par-
ents’ transmitted haplotype is known and one of the off-
spring haplotypes is known to not be equal to it, then
transmission can be established and the offspring inheri-
tance variables can be assigned. The remaining rules
(7-13) are implemented as previously described [19].
Rule 7 is applied when the shared haplotype between a
parent and offspring is known and either copy of this
haplotype can be used to update any ambiguities in the
other. Rules 8 and 9 are applied when the either the
inheritance or transmission for a parent and offspring is
known but not both. When neither inheritance nor
transmission is known, then rules 10 and 11 are applied.
Lastly, rule 12 is used to reset homozygous positions
that were altered from the previous rules, and rule 13
sets the phase of one heterozygous locus if all other set
alleles are homozygous. As for steps 2 and 3, all rules
are implemented as logical operations.

Part 2: Identification of all possible haplotype
configurations

After Part 1 is complete, the variables may still contain
unknown or unphased positions. Expansion to all possi-
ble values for these positions will generate all possible
haplotype pairs for an individual. As the possible haplo-
types are enumerated for each offspring in a nuclear
family, the nuclear family configurations are established.
Rather than creating a separate step for the haplotype
elimination process [20,21], we have integrated this
directly into our procedure for creating the configura-
tions. This is done by iterating through each offspring
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in the nuclear family. For the first offspring, all the hap-
lotype possibilities for this offspring that are compatible
with the parent haplotypes are used to create a nuclear
family haplotype configuration. For the remaining off-
spring, we iterate through the haplotype possibilities and
add compatible configurations or discard incompatible
configurations. We perform this starting from the off-
spring with the minimum number of haplotype possibi-
lities that allows us to limit the number of possible
configurations created and stored. After creating all
nuclear family configurations, the full haplotype config-
urations are assembled for the pedigree substructures
chosen in our preprocessing step (that is, structures
containing multiple connected nuclear families). This
step works by matching together all the nuclear family
configurations through the linking individuals.

Part 3: EM algorithm for haplotype frequency and MLE
haplotype estimation

An EM algorithm is used to maximize the likelihood of
the haplotype frequencies given the observed genotype
data and pedigree structure under the assumption of
Hardy-Weinberg equilibrium (HWE). Consider a pedi-
gree with m members with marker phenotypes y and
population haplotype frequencies H. Among the m
members there are f founder individuals and d descen-
dants, m = f + d. Each individual has a set of haplotype
pairs consistent with their marker phenotype data, y;,
which resolve to multiple pedigree haplotype configura-
tions, ¢, as determined in Part 2. Each possible config-
uration contains a set of haplotype pairs (h;, hy, ..., h,,)
across each individual in the pedigree. The haplotype
pairs consist of a maternal and paternal haplotypes, h; =
(hyis hy). The likelihood for each pedigree is defined
from the Elston-Stewart algorithm [44] is:

Lyl H) = Y T2 (g 1) T2 (i)
c f d

For the founders, the probability of the haplotype pair,
P(hy| H), is calculated according to HWE as the product
of the corresponding haplotype frequencies if the haplo-
types are equal or double the product if they are
unequal. For descendants, the gametic transmission
probabilities, P(h, | h,.;, hp;), are calculated based on
Mendel’s laws. The overall likelihood is the product
across all pedigree likelihoods. The EM is an iterative
process that alternates between an expectation or E-step
and a maximization or M-step. The E-step estimates the
probability of the haplotype configurations given the
current haplotype frequency estimates. Based on the
haplotype configuration estimates, the expected count
for each haplotype is derived. This is done by counting
the occurrences of a haplotype in a configuration and
weighting this count by the probability of the haplotype
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configuration in the family (or individual) of which it
occurs. The M-step updates the haplotype frequency
estimates based on the expected haplotype counts. The
iterations continue until the difference in the estimates
between iterations is less than a user-defined value.

To further reduce the complexity and state space for
possible haplotype configurations, we have also imple-
mented a partition-ligation strategy in conjunction with
the EM algorithm (PL-EM) [45]. The PL-EM technique
works by splitting the complete marker set into smaller
overlapping marker sets with a user-defined number of
markers. For these smaller partition lengths, the haplo-
type configurations are assembled and the haplotype fre-
quencies are estimated using the EM algorithm. When
two adjacent units have been completed, they are ligated
and the procedure is re-applied. The size of the haplo-
type configuration state space is reduced by removing
haplotypes with frequencies below a set threshold within
each partition. The reduction in haplotypes in each par-
tition limits the subsequent set of possible haplotype
configurations in the ligation step.

Association Testing

HapMC has been developed to allow the user to test
specific hypotheses of individual SNPs, sub-haplotypes
(any subset of the full SNP set) and full-length haplo-
types. The hapMC module is integrated into the Genie
software package [28] allowing the use of all the test sta-
tistics provided by Genie for dichotomous and quantita-
tive outcomes. For dichotomous outcomes, these are
the classical association test statistics for risk and non-
independence (odds ratio, chi-squared, and chi-squared
trend) which can be tested based on haploid or diploid
data. Haploid models are allele-based (or haplotype-based)
tests where the unit of interest is the chromosome. Diploid
models are genotype (or paired-haplotype) tests where the
unit of interest is the individual. Also, the TDT, sibling-
TDT and combined-TDT transmission-disequilibrium test
statistics are available. Here, we have added the option to
generate pseudocontrols for genotyped cases where both
parents of the case are genotyped [35-37]. For haplotype
tests, the MLE haplotype pair can be estimated by ignoring
all familial relationships or using the phasing algorithm
described above. The haplotype pair for a pseudocontrol is
composed of the two parental haplotypes not transmitted
to the genotyped case. Haplotypes for pseudocontrols are
then used in the standard way with the aforementioned
dichotomous case-control statistics. For quantitative out-
comes, the quantitative TDT, analysis of variance, and dif-
ferences in means test are available. If multiple
populations are present, or a difference of effect size is sus-
pected across the multiple data sets considered, options
are available to estimate haplotypes and perform gene-
drops separately for each user-identified population to
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avoid admixture problems. These meta statistics are avail-
able for chi-square association statistics and odds ratios
and the MC procedure is used to access significance [40].

Monte Carlo procedure

For each individual with sufficient genotype data (user-
defined percent threshold), full-length MLE haplotype
pairs are estimated as described above. Individuals with
less than the specified percent threshold of genotype
data are coded as completely missing. Association statis-
tics of interest are calculated on the single SNPs, sub-
haplotypes or full-length MLE haplotypes data as drawn
from these full-length haplotypes. These statistics are
called the observed statistics. For individuals included in
the analyses but for whom missing data positions exist,
these positions are imputed when the MLE haplotype
pairs are estimated and therefore imputed data for these
positions are used in full-haplotype, sub-haplotype and
single SNP analyses.

The MC procedure generates a null distribution for
each statistic to empirically determine significance. The
MC procedure begins by creating “null multi-locus gen-
otypic configurations” where the genetic data are simu-
lated consistent with Mendelian inheritance but
independent of the disease status. This is performed as
follows. Haplotype-pairs are assigned to founders and
independent individuals based on the estimated full
length haplotype frequencies from the haplotype phasing
step in observed data. Full length haplotypes are
assigned to pedigree descendants using gene-dropping
techniques based on Mendelian inheritance [46]. Hence,
these null haplotype configurations are based on the
same LD structures as the observed data. However, this
creates full phase-known data. To properly match the
observed data situation, the missing data structure of
the observed data is imposed on each simulation and
the remaining genetic data is considered as phase-
unknown, thus creating a null multi-locus genotype
configuration. Based on this null genotype configuration,
MLE haplotype pairs are estimated. The phenotype data
is the same as for the observed data. As was performed
for the observed data, association statistics of interest
are calculated for these null data and null statistics cal-
culated. These null statistics are used to form a null dis-
tribution from which to assess the significance of the
observed statistic.

It should be noted that although the Genie framework
allows for the specification of non-zero recombination
fractions (0) between markers that our method used for
haplotype frequencies and MLEs assumes no recombi-
nation between markers. Hence, the method is only
relevant for limited genomic regions, such as small fol-
low-up regions for GWAS (<1 Mb), candidate regions
or sliding windows.
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Generation of simulated data for validation testing

We simulated data sets to assess the improvements of
the phasing algorithm and to illustrate the validity and
potential power of haplotype association testing using
hapMC, particularly for analyzing mixed structured
resources. To simulate SNP data under realistic condi-
tions, HapMap CEPH Utah data was used for allele fre-
quencies and LD structure. We chose an 18 kb region
on chromosome 2 (230,976,558-30,994,737 bp) that con-
tained 15 tightly linked (6 = 0) SNP markers with low
pairwise 1 values (similar to that expected from a regio-
nal tagging-SNP approach).

Our family-based data sets were: (1) TRIOS -500 case-
parent trios including a total of 500 cases and 1,000 par-
ental controls; (2) ASPs -250 affected sib-pairs with par-
ents including a total of 500 cases and 500 parental
controls; (3) LP -large pedigrees (see Figure 2). The
large, extended five-generation pedigrees were simulated
to be high-risk (at least 14 cases were required). This
structure was selected to mimic the data that would be
available for large “linkage-like” pedigrees. All indivi-
duals in the top two generations were considered miss-
ing. All affected individuals (cases) were considered
sampled. Regarding unaffected relatives (family con-
trols), two LP data sets were generated: LP1 and LP2 to
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match the total numbers of cases and controls in the
TRIO and ASP data sets. Hence, for LP1 sufficient LPs
were generated to result in ~500 cases and ~1,000 con-
trols and for LP2 the totals were ~500 cases and ~500
controls. In both LP1 and LP2, 80% of the family con-
trols were close relatives to an affected individual (50%
parents, 30% siblings) and the remaining 20% were
beyond first degree relatives. We also simulated a fourth
data set: (4) an independent case-control (CC) data set
comprised of 500 cases and 500 controls.

Founder individuals were assigned haplotypes based
on the genetic characteristics (allele frequencies and LD
structure) of the selected chromosome 2 region. Next, a
haplotype was selected to be the “risk haplotype” (we
considered haplotype frequencies ranging between
0.04-0.17), which we assumed to have a haplotype r* of
0.8 with the underlying disease SNP (dSNP) allele. Con-
ditional on each haplotype in the founders and an r” =
0.8, a dSNP allele was assigned to each founder haplo-
type. Descendants were then assigned haplotypes
(including dSNP genotype) based on Mendelian inheri-
tance rules using gene-dropping techniques. The dSNP
genotypes were then removed. We assigned phenotypes
under the null hypothesis of no association and under
various alternate genetic models (see below). For the

A.

B.

- O

Figure 2 Simulated pedigree structures. A. Case-offspring trios (TRIO) B. Affected sib-pairs with parents (ASP) C. Five generation large
pedigrees (LP). Black filled shapes are affected individuals (cases), white filled shapes are unaffected (controls) and grey filled are unknown.
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null scenario, affection status was randomly assigned to
individuals independent of genetic data and based on a
5% sporadic rate for case-control and nuclear family
data [47]. For null large pedigree simulations, phenotype
clustering was simulated based on an alternate model,
but genotypes were assigned independent of this pheno-
type. All alternative genetic models considered included
a 5% sporadic rate and multiplicative genotypic relative
risks at the dSNP ranging from 1.2 to 2.0. Simulations
were repeated until a sufficient number of families of
the types required were generated to form the data set.
Each data set was replicated 500 times for the investiga-
tions of power and validity.

Phasing comparison

To explore the properties of the new phasing algo-
rithm, we considered four data sets all simulated under
the null: 500 independent cases and 500 independent
controls (CC); 500 TRIOs (500 cases and 1000 parental
controls); 250 ASPs (500 cases and 500 parental con-
trols); and the LP1 data set with ~500 cases and ~1000
controls. We considered marker sets comprised of 5,
10 and 15 SNP loci, and for those individuals with
genotype data, we considered missing SNP rates of 0%,
5%, 10%, and 15%. For each of the four data sets, we
examined the time to phase the observed data and the
accuracy of the MLE haplotypes compared to the
known true haplotypes using our new pedigree-
informed phasing algorithm and a population-based
EM phasing method that ignores relationships
(GCHap) [48]. For independent individuals and nuclear
family structures we also performed HAPLORE [19]
for comparison. The same parameters for partition
length (5 loci), overlap between partitions (1 locus),
haplotype frequency cutoff (1 x 10°°) and haplotype
buffer size (25 haplotypes beyond the cutoff) were
used in our algorithm and HAPLORE. This process
was repeated for five replicates to gain increased
accuracy.

It is important to note that in our MC procedure we
perform MLE haplotype estimation for both the real
data and for each set of null data. Hence, it is impera-
tive that the phasing step is efficient to gain reasonable
run times.

Power and validity

For each simulated data set (CC, TRIO, ASP, LP) we
investigated the validity of haplotype analyses using
hapMC based on pedigree-naive and pedigree-informed
(new algorithm) MLEs for three statistics: Cochran-
Armitage test for trend using explicit control, Cochran-
Armitage test for trend using pseudocontrols and also
the TDT statistic [49,50], where applicable. Power was
also assessed for the new pedigree-informed algorithm
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for a variety of genetic models. In addition, we illustrate
the power and validity of haplotype association analysis
for mixed resources of different structures consisting of
each of the family data sets combined with the indepen-
dent cases and controls: TRIOCC, ASPCC, LP1CC, and
LP2CC.

Power and validity were estimated using 1,000 repli-
cates. For each replicate, the specific “risk haplotype”
was tested and assessed for significance using 1,000 null
configurations in the MC procedure.
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