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Abstract

Background: Colon cancer is driven by mutations in a number of genes, the most notorious of which is Apc.
Though much of Apc’s signaling has been mechanistically identified over the years, it is not always clear which
functions or interactions are operative in a particular tumor. This is confounded by the presence of mutations in a
number of other putative cancer driver (CAN) genes, which often synergize with mutations in Apc.
Computational methods are, thus, required to predict which pathways are likely to be operative when a particular
mutation in Apc is observed.

Results: We developed a pipeline, PETALS, to predict and test likely signaling pathways connecting Apc to other
CAN-genes, where the interaction network originating at Apc is defined as a “blossom,” with each Apc-CAN-gene
subnetwork referred to as a “petal.” Known and predicted protein interactions are used to identify an Apc blossom
with 24 petals. Then, using a novel measure of bimodality, the coexpression of each petal is evaluated against
proteomic (2 D differential In Gel Electrophoresis, 2D-DIGE) measurements from the Apc1638N+/-mouse to test the
network-based hypotheses.

Conclusions: The predicted pathways linking Apc and Hapln1 exhibited the highest amount of bimodal
coexpression with the proteomic targets, prioritizing the Apc-Hapln1 petal over other CAN-gene pairs and
suggesting that this petal may be involved in regulating the observed proteome-level effects. These results not
only demonstrate how functional ‘omics data can be employed to test in silico predictions of CAN-gene pathways,
but also reveal an approach to integrate models of upstream genetic interference with measured, downstream
effects.

Background
It is clear that sporadic colorectal cancer - as well as other
cancers - is largely the product of acquired somatic
mutations [1]. Though many of these mutations are func-
tionally relevant to the tumor ("driver” genes), the most
well-studied cancer driver gene remains Apc (adenoma-
tous polyposis coli), thought to be the first hit in the
majority of nonhereditary colon cancers [2]. While Apc is
commonly known as an antagonist to b-catenin and WNT
signaling, a growing body of evidence points to the impor-
tance of Apc in a variety of other cellular contexts - from
microtubule polymerization [3] to cell migration [4]. Apc
also plays important roles in chromosome segregation and

stability, localizing to spindles, kinetochores, and centro-
somes in mitosis [5,6]. The myriad aspects of Apc signal-
ing may not be relevant in all cellular contexts, however,
as signaling depends upon the background gene expres-
sion program and, in cancer biology, is often the result of
multiple mutations. In fact, mouse models mutated at two
driver genes simultaneously have shown a synergistic (i.e.
non-additive) increase in tumor burden, such as in Pten-
Apc [7], Kras-Tgfb [8], and Apc-Trp53 [9] double mutants.
Such genetic synergy suggests that the pathways emanat-
ing from the two genes intersect downstream, supporting
the idea that only a subset of all possible pathways are
involved in a tumor harboring a mutation in Apc. We
hypothesize that these mutations have distinct synergistic
effects on the cancer phenotype, such that the activities
of these networks are greatly associated with the measured
downstream changes in the proteome of the intestine. We
argue that these measured molecular changes can be

* Correspondence: gurkan@case.edu
† Contributed equally
1Center for Proteomics and Bioinformatics, Case Western Reserve University,
10900 Euclid Ave, Cleveland OH, 44106, USA
Full list of author information is available at the end of the article

Bebek et al. BMC Bioinformatics 2010, 11:596
http://www.biomedcentral.com/1471-2105/11/596

© 2010 Bebek et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:gurkan@case.edu
http://creativecommons.org/licenses/by/2.0


leveraged to elucidate which pathways are most relevant to
the disease model at hand.
In order to prioritize the various pathways associated

with a cancer driver gene, we have developed a compu-
tational framework to first predict the set of pathways
functionally related to Apc signaling in mouse models
(Figure 1). Our algorithm mines chains of proteins (sim-
ple paths) from a protein-protein interaction (PPI) net-
work; these paths are then filtered by tissue-specific
mRNA coexpression and Gene Ontology (GO) [10]
annotation rule mining [11]. To identify biologically
relevant paths, we constrain our search space to path-
ways connected to previously identified cancer driver
genes (CAN-genes) [12], as many of these pairings are

expected to be simultaneously mutated. The set of paths
linking Apc to each CAN-gene comprises a subnetwork,
which we refer to as a petal in the Apc blossom. As each
petal is based on in silico predictions, we then use pub-
licly available functional genomic and proteomic data
from the intestine of the Apc1638N+/- mouse to assess
the biological relevance of each petal in this mouse
model. As proteins themselves are the mediators of cel-
lular functions, we mapped proteome-level measure-
ments identified through 2 D differential In Gel
Electrophoresis (2D-DIGE) to each petal, using mRNA-
level coexpression to quantify the strength of the rela-
tionship. We chose to use 2D-DIGE - a widely used 2 D
gel electrophoresis based method - to illustrate our
approach. However, our methods can utilize a variety of
proteomics data (e.g. label-free LC/MS (Liquid Chroma-
tography/Mass Spectrometry), protein antibody chips
etc.). Though transcriptional activity (i.e. mRNA level)
does not strictly correlate with translational activity (i.e.
protein level) [13,14], coexpression information can still
be helpful in uncovering regulatory hot spots in protein
networks [15]. Testing each petal against such functional
data correlates gene and protein expression readouts
with specific driver gene relationships, thereby allowing
the experimenter to identify the petal most likely to be
operative in this particular mouse model.

Results and Discussion
In this paper, we present a method to capture the likely
signaling pathways of a cancer driver gene, focusing on
the signaling related to Apc as an example. The initial
set of pathway predictions are mined from protein-
protein interaction networks, coupled to mRNA coex-
pression data and Gene Ontology association rules. We
refer to this data-mining process as the Blossom Algo-
rithm (Figure 1 top), as it produces a network connect-
ing a driver gene (e.g. Apc) to a set of putative signaling
partners, referred to as the Apc blossom (Figure 1 cen-
ter). The Apc blossom is then pruned using biological
evidence (microarray and proteomic data) to identify
a candidate petal, or subnetwork, most likely to be
involved in Apc signaling (Figure 1 bottom).

The Apc Blossom: A PETALS Network
To study CAN-gene pathways operative in the Apc1638N+/-

mouse model, we used the Blossom algorithm to identify
pathways connecting Apc to 68 other CAN-genes [1,12].
In summary, the Blossom Algorithm mines publicly avail-
able protein-protein interaction networks to uncover
paths - i.e. chains of proteins - likely to be “functional.” As
evidence of a path’s functionality, we use mRNA coexpres-
sion and Gene Ontology association rules. As our current
knowledge of molecular networks is incomplete [16], we
use sequence homology to infer these missing data. The

Figure 1 Workflow for PETALS: Proteomic Evaluation and
Topological Analysis of a Mutated Locus’ Signaling. We begin
with a cancer driver gene of interest (e.g. Apc) and a set of putative
signaling partners. The pathways between these two sets are
predicted based on protein-protein interactions, coupled with
mRNA coexpression and GO annotations. The prediction of
pathways to the various signaling partners allows individual
subnetworks to blossom into a flower with many petals. The
biological relevance of each petal is assessed against proteomic
evidence (i.e. 2D-DIGE), using the bimodality of mRNA coexpression
to quantify this association. This results in a ranking of petals, which
can then be plucked for further experimental evaluation.
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details of the Blossom algorithm follow below (see Meth-
ods for additional details; refer to Figure 1 in [17] for a
diagram). First, likely false positives from the underlying
PPI network are filtered out. Next, using this filtered
PPI network, we were able to find paths linking Apc to
42 of the CAN-genes, forming subnetworks, which we
refer to as petals. After imputing interaction edges using
sequence homology [11], this number was increased to
65. However, filtering out paths whose (i) average
mRNA coexpression was low (r < |0.6|, a significance
threshold validated in similar studies [11,17]) and (ii)
support of GO annotation association rules based on
known signaling pathways and functional annotations
[11] was weak (p - value > 0.05), the number of Apc-
CAN-gene petals was reduced to 24 (Figure 2). The
petals identified vary in the number of nodes (from 3 -
35) and edges (from 2 - 80) they contain, with some
nodes beings shared among multiple petals.
A blossom can be constructed for a wide variety of

genes, with the stipulation that corresponding microar-
ray data is available. In our case study of Apc, we
employ mRNA expression data from intestinal tumors
harvested from ApcMin/+ mice. As multiple mutations
are present in these samples, coexpression measure-
ments calculated for this dataset are representative
of the tumor microenvironment; as such, both Apc

signaling, as well as additional CAN-gene signaling, are
likely to be active simultaneously. While the presence of
these multiple, active pathways increases the signal asso-
ciated with cross-talk within in each petal, it does not
allow us to determine which pathways are most strongly
associated with Apc signaling alone. To answer this
question, as outlined in the next section, we used mice
with a particular heterozygous mutation in Apc - 1638N
- that results in a mild intestinal cancer phenotype [18],
thereby minimizing the noise arising from the many
pathways activated in a full-blown tumor. Since we are
interested in assessing the systems-level effects of such
mutations, we focus on measuring the downstream
effects of these genes via ‘omic experiments.

Plucking Petals: Testing the Bimodality of Coexpression
The Apc1638N+/- mouse model represents a perturbation of
the stamen (the center node) in the Apc blossom, and
such a perturbation is expected to have far-reaching mole-
cular effects. This was supported by the 2D-DIGE proteo-
mic experiments that identified 31 proteins with a variety
of cellular functions from the intestinal epithelium of com-
pared to wild-type. We hypothesized that if one of the
petals in the blossom truly reveals signaling associated
with this mutation of Apc, then the nodes of this petal are
more likely to associate with the 2D-DIGE targets than a
random group of proteins. To gauge this association,
we used a map of coexpression compiled from the corre-
sponding Apc1638N+/- intestinal epithelium mRNA-expres-
sion profile. Assuming that the signaling molecules in a
petal are upstream of the 2D-DIGE targets, strong coex-
pression between a petal and the 2D-DIGE targets can
help to identify the causative signaling events that led to
these measured changes in abundance of the proteome.
Since coexpression is most informative when it relates
to differentially expressed nodes (i.e. those that differ
between the mutant and wild-type mice), we modulated
the coexpression values associated with the nodes in each
petal by their respective levels of differential expression.
This allows for the identification of nodes where any indi-
vidual node may have a low level of expression, but the
collective level of expression across nodes may be high.
We further posited that, if a group of proteins truly is
coregulated, then we expect to see deviations in the tails
of the coexpression distribution when compared to the
expected (background) distribution. To gauge this devia-
tion, we introduced the bimodality, b, of coexpression: a
measure based on the mass (i.e. area under the curve) of
the cumulative distribution functions’ and the distance of
the mass from the origin. This allowed us to prioritize the
petals by their respective p-values and the top three petals
are shown in Figure 3 (See Additional File 1 Table 1 for
the complete list). In Figure 4 the 31 2D-DIGE targets are
shown on the periphery of the petal, ranked by their

Figure 2 The Apc blossom. Using the Blossom algorithm, we
search for paths in the filtered and imputed PPI network that
connects Apc to other CAN-genes [12]. For the CAN-genes that
possess at least one path to Apc, this resulted in 24 petals (p < 0.05)
- one petal for each CAN-gene.
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degree (i.e. sum) of absolute coexpression. This represen-
tation also facilitates the prioritization of 2D-DIGE targets,
placing emphasis on those targets whose regulation is sup-
ported by multiple elements of the candidate petal. Much
of the coregulation can be explained by a few key signaling
intermediates - notably, TGFB1, which has both a high
level of differential expression, as well as strong

coexpression links. Signaling molecules like TGFB1 are
hypothesized to lie upstream of ‘omics measurements,
and, thus, the petal at the heart of Figure 4 represents a
potential set of intermediaries by which the signal arising
from a mutation in Apc blossoms into proteome-level
manifestations (i.e. the 2D-DIGE targets).

Conclusions
To understand how a mutation affects information flow
in a tumor, one must consider both the proximal and
distal signaling effects. Proximally, a mutation in a gene
may result in a truncated protein product that affects
physical interactions, or it may result in a hyperpho-
sphorylated and active state. These small, upstream
effects are then amplified and result in distal changes in
signaling, affecting mRNA and protein levels of tens to
hundreds of seemingly unrelated nodes. While the field
of cell signaling is adept at dissecting the proximal
effects of a mutation - mechanistically mapping out per-
turbed pathways - it has not yet developed the tools to
fully understand the distal effects and, more importantly,
their connection with more proximal signaling. Indeed,
currently available commercial software for network
analysis can only associate these distal effects amongst
themselves, with no regard to the upstream causative
mutation. In this study, we present a method by which
the distal effects measured in two ‘omics experiments -
microarray and proteomics - can be simultaneously
leveraged to test network-based hypotheses. After test-
ing the hypotheses (petals) against proteomic evidence,
the refined petal subnetworks we present not only reveal
the relationship between upstream genetic interference
and its downstream effects at the proteomics level, but
also allow us to prioritize other cancer-driver genes that
are likely to act cooperatively with Apc to drive tumori-
genesis. This new approach - linking in silico predictions
with experimental measurements - provides a way for-
ward in mining context-specific pathways that may
prove to be useful in identifying pathways active in indi-
vidual cancer patients.

Methods
The Blossom Algorithm
The Apc blossom is built using the Blossom algorithm,
based on the PathFinder architecture [11]. A recent
study compared various frameworks developed for
detecting signaling networks [19], and the PathFinder
architecture had the best recall rate compared to other
available methods, whereas all methods described had a
similar precision rate.
In the Blossom algorithm, networks (e.g. pathways) con-

necting proteins of interest are built by integrating and
mining multiple datasets. First, the network of publicly
available interactions [20,21] (over 80K interactions) is

Figure 3 Top three significant Apc petals. The top three petals,
Apc-Hapln1 (left, p = 0.0068), Apc-Kras (middle, p = 0.0157), and Apc-
Prkd1 (right, p = 0.0167), found to be significant after coexpression
correlation with proteomic targets are shown. The darker nodes
represent CAN-gene proteins. When searching for paths, CAN-genes
were not differentiated from other proteins on the network, hence
multiple CAN-genes exist in some of the petals. The dashed edges
represent novel interactions predicted to exist on the network,
whereas solid edges are known interactions.

Figure 4 2D-DIGE Proteomics targets and top scoring Apc-
Hapln1 petal. The Apc-Hapln1 petal is illustrated in the center, with
the 2D-DIGE targets shown on the periphery. The activity
(turquoise) of each node in the petal ranges from 0.0-0.4, and their
coexpression links (purple) range from -0.37-0.37. The size of the 2D-
DIGE targets corresponds to their degree; for each 2D-DIGE target,
this is calculated as the sum of the absolute value of coexpression
links.
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filtered to remove less reliable interactions, i.e. likely false
positives, and, then, new interactions are added to enrich
the network to account for missing interactions, i.e. false
negatives. To remove false postives, a logistic regression
model that incorporates (i) the number of times a PPI is
observed, (ii) coexpression measurements for the corre-
sponding genes, (iii) the protein’s small world clustering
coefficient, and (iv) the protein subcellular localization
data of interacting partners [22].
Coexpression values (Pearson’s correlation coefficient)

are calculated from mRNA expression profiles of the
laser-capture microdissected epithelium from the ApcMin/+

mouse (series GSE422 [23]), providing coregulatory
information specific to our tissue and organism of inter-
est. The logistic regression model that predicts the valid-
ity of interactions is trained on positive (1000 PPIs from
the MIPS database [24]) and negative training data sets
(1000 randomly selected PPIs not in MIPS, assuming
that most interactions are unreliable or irrelevant
[11,25]). Repeating these trials 100 times, an optimized
cut off point for the probability of a true interaction
is set, and a network of reliable interactions is formed
(~ 30K PPIs).
Finally, false negative interactions are inferred using

sequence homology relationships, as it has been shown
that similar sequences share similar interaction partners
in the same organism [26-29]. An interaction edge is
inferred among two proteins if no record of interaction
exists, and there exists at least one interaction between
the protein families of these two proteins (since
sequences sharing similar domains share similar interac-
tion partners [30,31]) (Pfam release 23.0 used [32]).
These steps resulted in a filtered network with pre-

dicted edges within which we searched for pathways
linking Apc and CAN-genes. GO biological process
annotations [10] are used to generate functional associa-
tion rules from know pathways [24,33-35] as outlined in
[11]. Association rules are tuples representing a note-
worthy relationship, in this case functional relationships,
between two interacting proteins. For each protein, leaf
terms on the GO term graph are used. In addition, the
average absolute coexpression is calculated for each
path, and paths are then filtered according to a set
threshold (g = 0.6). These rules and parameters are used
to evaluate candidate paths for possible occurrences of
these rules. The p-value, pj, for a path, j, is calculated
with the null hypothesis being that every simple path
connecting two proteins has a number of association
rules associated with these interactions, but the average
number of rules on these paths are uniform across
various paths. Significant paths, i.e. pj < pthreshold, are
merged into a subnetwork, thus representing a petal in
the blossom. An empty set is returned when there is not
a significant path.

Formally, let G(V, E) denote the PPI network gathered
from publicly available interactions. Also, let G’ and G’’
be networks built on the same set of nodes, V, using the
procedures described above, where false positive interac-
tions, F, are removed, E’ = (E - F), to obtain G’(V, E’),
and a set of additional interactions, H, are imputed
(based on sequence information) to obtain E’’ = E’ ∪ H
forming G’’(V, E’’).
The objective of the proposed Blossom framework is to

find a petal for a given protein ca Î V (in our case, Apc)
and each protein ci in the candidate set of proteins C ⊂ V
(CAN-genes). To reduce the search space, Blossom
employs a network diameter heuristic. Namely, for each
node pair (ca and ci), let di denote the shortest path
between ca and ci in G(V, E) (PPI network without inferred
edges). For each ci Î C, we then search G’(V, E’) for every
path that connects ca to ci with path length smaller than di
that connect ca and ci. This guarantees at least one path
for consideration if the two nodes are connected.
The paths on the network are discovered using all paths

depth first search (AllPathsDFS), where every path con-
necting ca and ci that is less than di, Fi , is identified. In
the final step of the algorithm, these paths are compared
against the null distribution for significance. For the short-
est path calculation, a single-source shortest path solution
is used (e.g. Dijkstra’s algorithm). The Blossom algorithm’s
run time is the same as the all-paths depth first search:

O( )V dmax where d dmax c C ii
= max ∈ .

Input: ca, C, G(V, E), G’’(V, E’’), pthreshold, g

Output: Gca

foreach ci Î C do
di = ShortestPathDistance(G(V, E), ca, ci);
if di = = ∞ then
di = ShortestPathDistance(G’’(V, E’), ca, ci);

end
Fi = AllPathsDFS(G’’(V, E’’), ci , ca, di);
forall the j Î Fi do
if r(j) ≤ g and pj < pthreshold then

G Gc ca a
= ∪  .

end
end

end
Algorithm 1: The Blossom algorithm that returns the

blossom network for protein ca.

Plucking Petals: Testing Bimodality of Coexpression
For a particular petal, a single node perturbation (e.g. a
mutation at Apc) within the petal itself will perturb
pathways that are expected to associate with the given
petal more strongly than others, assuming that the net-
work predictions were accurate. To identify the best
petal in the Apc blossom, we employed a mouse mutant,
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Apc1638N+/-, representing a perturbation at the stamen.
The transcript and protein levels of Apc itself have been
verified in previous studies [18]; in this study, we were
interested in distilling the myriad downstream effects
into a coherent set of candidate pathways. As proteins
are the ultimate mediators of function, targets from pro-
teomic experiments - such as label-free, or, in our case,
2 D DIGE - represent an ideal dataset for assessing the
downstream effects of such perturbations. However,
proteomic technologies often sample the most abundant
quartile of proteins [36], while cancer network predic-
tions - such as those in the Apc blossom - often focus
on low-abundance signaling proteins.
In order to make inferences about identified petals, a

relational map must be used to connect the proteomic
targets to the petal of interest. Coexpression networks
are currently the most informative and accessible map-
ping available, as proteins correlated at the mRNA-level
are hypothesized to be coregulated.
Thus, for a hypothesized petal, P, mRNA coexpression

(Pearson’s correlation coefficient) was calculated
between the nodes, i Î P , and the 2D-DIGE targets,
d Î D (where D ⊂ S and S is the set of all genes on the
array) measured in the Apc1638N+/- mouse intestinal
epithelium. The 2D-DIGE targets’ Mascot DAT files
are available through the Proteomics Identifications
Database (accession number 10638) [37].
Apc1638N+/- microarray data is available through the

Gene Expression Omnibus (GSE19338) [38]. Two frac-
tions, representing crypts and villi, were available with
four samples in each group (eight samples each, wild-
type and Apc1638N+/-). Though the mild phenotype of the
Apc1638N+/- mouse appears to result in a low signal - in
stark contrast to that observed from ApcMin/+ mice -
many molecular changes are still measurable, as evi-
denced by the ‘omic experiments. The proteins identified
within each fraction were pooled to arrive at a set of 31
2D-DIGE targets shown on the periphery of Figure 4 (see
[17] for detailed methods). Robust Multiarray Averaging
was used to normalize mRNA expression measurements,
and differential expression was calculated between the
eight mutant samples versus the eight wild-type samples.
For coexpression, the wild-type and Apc1638N+/- microar-
ray data were normalized by dChip [39] to avoid artifi-
cially inflating coexpression values [40].
Additionally, mRNA coexpression is more informative

for nodes that are known to be differentially expressed,
as these nodes are regulated differently between wild-
type (WT) and mutant tissue (MT); a node with low
differential expression may have many coexpression lin-
kages simply due to its uniform expression profile over
the samples, which is shared by the majority of genes
(as most genes are not differentially regulated). To focus

on genes with strong levels of both coexpression and
differential expression, we compute the active coexpres-
sion as follows:

r ri i i

 
’ = ⋅

Where ri


is the vector of coexpression between node

i (in petal P) and all other genes on the array; ai is the
activity of node i, defined as the scaled, absolute differ-
ential expression:
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Where μMT,i is the average expression of a gene, i,
across the samples in the mutant, MT (in our case,
Apc1638N+/-), and s2 is the associated variance; these
parameters are defined respectively for the wild-type
(WT) samples. The active coexpression matrix, R’(P, D),
between a given petal, P, and the 2D-DIGE targets, D, is
then vectorized, vec(R’(P, D)). The distribution of vec
(R’(P, D)) is expected to be leptokurtic (i.e. higher peak,
fatter tails), as it is a product of a normal and a folded
normal distribution (see Figure 5A). With coexpression
measurements, we are particularly interested in the tails
of the distribution, as these are expected to exhibit two
modes - one positive and one negative - if subgroups of
coexpressed 2D-DIGE targets exist. Thus, we developed
a measure of bimodality, b:
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i.e. the expected active coexpression to all genes on
the array; and the sample deviation, ΔFP , is simply the
difference of the two CDFs. lx<0 is the moment arm of
the distribution defined classically as:
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And lx≥0 is defined similarly. Thus, lx < 0 and lx≥0
represent the centers of mass for the negative and posi-
tive active coexpression values’ deviation from the
expected distribution (Figure 5B). The bimodality, bP,
then, is simply the torque of the distribution, ΔFP(x),
around the center: negative values of bP indicate a
clockwise skewing of the tails, with greater mass distrib-
uted at extreme (high and low) values of r’ than the
background; positive values of bP indicate a counter-
clockwise skew, where the sample distribution is more
leptokurtic than the background, and, hence, possesses
less correlation than expected. Further insight can be
gained by noting that the denominator of the center of
mass, lx, cancels out, leaving:

 P P P

P D P S

F x x dx F x x dx

x F x F x dx

x

= +

= −

=

−∞

∞

−∞

∞
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∫ ∫

∫

Δ Δ
0

0

( ) ( )

( ( ) ( )), ,

∞∞
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∫ ∫ −f y f y dy dxP D P S

x

, ,( ) ( )

Changing the order of integration allows us to formu-
late bP in terms of the probability density functions
(PDFs) of our targets, fP,D(x), and the background, fP,S(x):

 P P D P S

P D P S

x f x f x dx

E x E x
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= − −
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∞

∫1
2

1
2

2

2 2
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( ( ) ( ))
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Where E(·) indicates the expectation. Thus, we see
that bP is the difference between the second moments
of the two distributions (or the difference of their var-
iances, if both distributions are centered at zero).
While this ultimate formulation of bP is statistically

simple, we present the initial formulation - in terms of
the center of mass and torque - to provide an intuitive
understanding of its motivation and meaning. As men-
tioned, we use the empirical CDF/PDF to calculate bP.
We calculated the significance, p, of bP for a network-
petal, P, as follows:

p rand P

rand

= <#
#

 


With brand being the bimodality for a randomly
selected set of candidate 2D-DIGE targets; 10000 such
sets (of cardinality equal to that of P) were generated.
Then, the null hypothesis is that the coexpression

pattern between the network-petal and the proteomic
targets is random, and the p-value is the probability of
attaining at least a value of |bP| via stochastic generation
of 2D-DIGE targets.

Additional material

Additional file 1: Additional table listing petals identified. The petal
subnetworks identified and the bimodality scores calculated against the
proteomics targets for each petal are listed in this file.
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