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Abstract

perturbations.

transcription factors Nanog and FoxO3.

Background: With the expansion of public repositories such as the Gene Expression Omnibus (GEO), we are
rapidly cataloging cellular transcriptional responses to diverse experimental conditions. Methods that query these
repositories based on gene expression content, rather than textual annotations, may enable more effective
experiment retrieval as well as the discovery of novel associations between drugs, diseases, and other

Results: We develop methods to retrieve gene expression experiments that differentially express the same
transcriptional programs as a query experiment. Avoiding thresholds, we generate differential expression profiles
that include a score for each gene measured in an experiment. We use existing and novel dimension reduction
and correlation measures to rank relevant experiments in an entirely data-driven manner, allowing emergent
features of the data to drive the results. A combination of matrix decomposition and p-weighted Pearson
correlation proves the most suitable for comparing differential expression profiles. We apply this method to index
all GEO DataSets, and demonstrate the utility of our approach by identifying pathways and conditions relevant to

Conclusions: Content-based gene expression search generates relevant hypotheses for biological inquiry.
Experiments across platforms, tissue types, and protocols inform the analysis of new datasets.

Background

With the development of the DNA microarray and
other technologies that probe gene expression on an
“omic” scale, we are now able to discover associations
between biological conditions based on their molecular
underpinnings. Seminal work by Golub et al. [1] classi-
fied leukemia samples by their global gene expression
profiles, demonstrating that transcriptomic signatures
can aid in functional prediction and improve our mole-
cular understanding of disease. Hughes et al. [2] pre-
dicted the effects of novel gene deletions and chemical
treatments by profiling yeast mutants and comparing
new arrays to this reference. More recent studies exam-
ined cellular transcriptional response to drug treatment
[3,4] and disease [5,6] in order to identify novel relation-
ships between apparently unrelated conditions and
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compounds. This work not only demonstrated the utility
of expression-based discovery, but also suggested that
functional studies about drugs and diseases can utilize
data from different platforms and cell types. This gen-
eral approach to hypothesis generation - namely, finding
associations between diverse conditions based on gene
expression - has great potential to further biological and
biomedical research if implemented on a large scale.
Here we develop methods for content-based gene
expression search using an entire experiment as a query.
That is, given an input experiment comparing case to
control, we aim to identify other experiments that show
similar patterns of differential expression. This concept
is exemplified by the Connectivity Map [3], which
searches for relationships between treatment-control
comparisons for small molecules. While the Connectiv-
ity Map focused on drug treatment and disease, a simi-
lar approach across a sufficiently large data source
would allow for the identification of associations
between gene knockdowns, diseases, drugs, and myriad
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other perturbations and phenotypes. Public repositories
provide a wealth of data amenable to this task. The lar-
gest of these repositories, the National Center for Bio-
technology Information (NCBI) Gene Expression
Omnibus (GEO) [7], now contains over 400,000 indivi-
dual samples from more than 17,000 experiments detail-
ing the molecular characteristics of diverse cell types,
diseases, and drug treatments. The European Bioinfor-
matics Institute (EBI) ArrayExpress Repository [8] and
Stanford Microarray Database [9] host additional data.
While GEO supports searches of its content based on
free-text and controlled-vocabulary annotations, there is
increasing interest in methods for querying microarray
databases based on the molecular measurements them-
selves [10-14]. The power of this approach would grow
with the size of the repository.

Current methods for content-based search typically
involve a two-step process: they identify a gene set of
interest and then search for experiments in which this
gene set is important. Several groups have introduced
methods for identifying experiments that co-express [15]
or differentially express [11] a given gene set. Recently,
EBI implemented the Gene Expression Atlas, which pro-
vides this latter functionality over their curated array
archive [13]. These methods, however, require that both
the query and target experiments differentially express
genes above some hard threshold, and thus may miss
more subtle or noisy relationships [16]. Other
approaches, typified by Gene Set Enrichment Analysis
(GSEA) [16], partially bypass this requirement by com-
paring a subset of genes to ranked profiles, using a hard
threshold for the query experiment and a soft threshold
for the queried experiments [3,4].

While previous approaches require designating a
group of differentially expressed genes, we explore the
possibility of using as a query a differential expression
(DE) profile, consisting of a complete list of features and
associated expression scores. By examining all genes
shared between query and queried experiments, we aim
to identify experimental conditions and perturbations
that exhibit similar transcriptional responses. A success-
ful strategy in this effort should reconcile differences
between species, platform types, and normalization
methods, as well as overcome the confounding effects of
noise and technical replicability. To achieve this, we
consider combinations of methods for three tasks: data
representation, dimension reduction, and search
algorithm.

First, we consider the problem of data representation.
Typical microarray analysis methods represent differen-
tial expression as a fold-change, comparing the expres-
sion in one set of samples to that in another [17].
However, because public expression databases consist of
a broad range of data types and experimental modalities,
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rank-based representations are often employed to
account for the disparities in the distributions of
observed data [4,10]. Here we compare both parametric
and nonparametric data representations to determine
the best approach for comparing DE profiles. We also
consider an alternate representation of gene expression
data, and construct DE profiles based on the p-value of
differential expression.

A second challenge is that gene expression profiles
from high-throughput technologies consist of up to tens
of thousands of measurements per sample. In addition
to the computational complexity involved in handling
these large datasets, high dimensionality often con-
founds data mining techniques [16,18]. In particular,
high-dimensional, multimodal data lends itself to over-
fitting and reduced performance [19]. Many solutions to
this problem have been proposed, of which dimensional-
ity reduction is the foremost. Matrix decomposition
[20,21], feature selection [22], and module or gene-set
based approaches [16,23] attempt to capture the most
relevant data while removing redundant or noisy fea-
tures [18].

Given an appropriate data representation for differen-
tial expression, the final challenge is how best to calcu-
late the similarity between two experiments. While
Fujibuchi et al. use Spearman rank correlation to com-
pare individual microarrays [10], it is not clear whether
a similar approach is appropriate for DE profiles. Several
recent studies use a modified Pearson correlation mea-
sure on rank-normalized profiles [4,5,24]. Other work
suggests that weighting expression values by each gene’s
variance may improve classification and analysis [25,26].

To begin to address these challenges, we test several
search schema representing combinations of data repre-
sentation, dimension reduction, and correlation mea-
sures in a curated collection of 32 disease-related GEO
experiments. We create DE profiles to represent the
changes in transcription between normal and disease
samples (Figure 1A), and evaluate the performance of
our schema in retrieving experiments that measure the
same disease as a query experiment (Figure 1B). We
find that a projection method for dimension reduction
performs as well or better than search in gene-space,
and introduce an intuitive p-value weighted correlation
coefficient that performs the best in our test compen-
dium. Using the most successful parameters, we exhaus-
tively index GEO DataSets (GDS) totaling 31,453 arrays
and 2,089 experiments. We demonstrate the utility of
our method by querying our database of DE profiles
with several experiments examining transcription factor
knockdown in embryonic and neural stem cells. This
work demonstrates the feasibility of content-based
microarray search for the large-scale discovery of func-
tional links between gene expression experiments.
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Figure 1 Schematic diagram of our approach. (A) Creation of
differential expression (DE) profiles. An experiment comparing
condition X with condition Y is condensed to a single DE profile in
gene space. Dimension reduction is applied to create a DE profile in
a reduced feature space. (B) Searching a library of DE profiles. The
query profile is compared to the DE profiles of all other experiments
in our disease compendium (or in GEO) using a similarity measure.
Results are ranked by their similarity to the query profile. Italics
indicate variable steps in our pipeline.

Results
Evaluation of data representation and similarity measures
To develop a differential-expression search utility for
GEO, we first evaluated various data processing pipe-
lines in a compendium of 32 microarray experiments
comparing normal to diseased tissue. This collection
included three diseases with differing genetic origin:
Duchenne muscular dystrophy, Huntington’s disease,
and breast cancer. The studies originated from different
laboratories and measured primary human disease sam-
ples as well as animal disease models. Although these
experiments represented various combinations of spe-
cies, platform, and normalization techniques, they clus-
tered primarily by disease and tissue (Figure 2). To
search this collection of experiments based on differen-
tial expression (DE), we created a DE profile for each
experiment (32 total), consisting of a list of features (e.
g., genes) each with an associated score (e.g., fold-
change). We permuted various processing and ranking
techniques to search for the combination of parameters
that was best able to identify other experiments of the
same disease given a query experiment. We evaluated
the sensitivity and specificity of these processing pipe-
lines with leave-one-out cross-validation: we used each
experiment to query the remaining 31 experiments with
the goal of identifying other experiments that measure
the same disease.

First we compared the effects of data representation
on our ability to retrieve relevant experiments. Using
both Pearson and Spearman correlation, we found that
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representing differential expression as a log fold-change
nominally outperformed rank- and p-value-based repre-
sentations (see Additional file 1). For subsequent tests
we focused on the fold-change representation. Next we
evaluated all combinations of four dimension reduction
methods and six similarity measures (Figure 3). For
dimension reduction, projection onto features identified
by independent component analysis (ICA, see Methods)
[27] outperformed module-based representations. While
none of the dimension reduction methods made convin-
cing improvements over the gene-level analysis, the ICA
projection method did not result in a loss of informa-
tion, successfully recapitulating performance in gene-
space using a significantly reduced number of features.
For similarity measures, unweighted and p-value
weighted Pearson correlations nominally outperformed
Spearman correlation for analysis in gene- and ICA fea-
ture-space, resulting in the highest overall areas under
the receiver operating curve. P-weighted Spearman cor-
relation performed the worst for all dimension reduction
methods.

The receiver operating curves for the best-performing
search methods indicated that, on average, about 50% of
the true positives could be recovered with greater than
90% specificity. This high specificity is important for
search because typically the first few results, rather than
a complete list, are examined. To evaluate the perfor-
mance of our search over the top results in each search,
we calculated the “precision at 4” for each of the 32
experiments, permuting labels to create a null model
(see Additional file 2). The average precision for Duch-
enne muscular dystrophy and Huntington’s disease
exceeded the random model at a 95% confidence inter-
val for 13/15 and 8/8 experiments, respectively. The
“precision at 4” for breast cancer, a genetically complex
disease, was also high, but it significantly surpassed the
random model in only 4/9 experiments.

Constructing a network of GEO differential expression
experiments

Our comparisons of data processing methods and simi-
larity measures suggested that the p-weighted Pearson
correlation in gene- or ICA-space is most effective at
retrieving biologically relevant DE profiles. Because the
ICA-based method reduced the number of features by a
factor of 50, we used this approach to systematically
index GEO DataSets. We created a total of 9,415 DE
profiles, one for each combination of NCBI-curated
experimental conditions within a dataset. For example,
if a dataset had “1 hr”, “2 hr”, and “4 hr” groups, we
generated a comparison for each of “1 hr vs 2 hr”, “2 hr
vs 4 hr”, and “1 hr vs 4 hr.” We excluded 364 compari-
sons that failed to successfully map to human genes
through Homologene; these experiments measured
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Species Platform Tissue

Disease
Duchenne muscular dystrophy
Duchenne muscular dystrophy
Duchenne muscular dystrophy
Duchenne muscular dystrophy
Duchenne muscular dystrophy
Duchenne muscular dystropl
Duchenne muscular dystrophy
Duchenne muscular dystropl
Huntington's Disease
Huntington's Disease
Huntington's Disease
Huntington's Disease
Huntington's Disease
N Huntington's Disease
Huntington's Disease
ﬂi Huntington's Disease

Huntington's Disease
Huntington's Disease
Huntington's Disease
Huntington's Disease
Breast Cancer
Breast Cancer
Breast Gancer
Breast Cancer
Breast Gancer
Breast Cancer
Breast Gancer
Breast Cancer
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diseased tissue in cerebellum, frontal cortex, and caudate nucleus.

Source
GSE1472

GSE8762
GSE2602
GSE5786

Title

Extraacular and hindlimb muscle, comparison of wild type and mdx mice, 58 days {Porter lab)
Hindlimb muscle, comparison of wild type and mdx mice, 7 to 112 Day (Porter lab)

Diaphram, comparison of wild type and mdx mice, 7 to 112 Days (Porter lab)

mRNA expression in regenerated mdx mouse skeletal muscle

Expression prafiling in the muscular dystrophies

Extraocular muscle, comparison of wild type and mdx mice, 14 to 112 Days (Porter lab)
Moalecular profiles (HG-U95A) of dystrophin-deficient and normal human muscle

Extraacular and hindlimb muscle, comparison of wild type and mdx mice, 56 days {Porter lab)
Huntington's disease: Gene expression changes caused by Hdh CAG mutation or 3-nitropropionic...
Human cerebellum, frontal cortex [BA4, BA9] and caudate nucleus HD tissue experiment
Human cerebellum, frontal cortex [BA4, BA9] and caudate nucleus HD tissue experiment
Human cerebellum, frontal cortex [BA4, BA9] and caudate nucleus HD tissue experiment
Striatal gene expl ion data from 12 ths-old Hdh4/Q80 mice and control mice.

Human blood expression for Huntington's disease versus control

Human bload expression for Huntington's disease versus cantrol, Codelink

Contribution of Nuc. and Extranuc. PolyQ to Neuro. Phehotypes in Mouse Models of HD

R®&/1 brain hemisphere time series gene exprassion

Triple treatment R6/2 mice

Striatal gene expression data from 3- and 18-month-old Q92 mice and control mice.

Striatal gene expression data from 12 weeks-old R8/2 mice and control mice

Repeated observation of breast tumor subtypes in independent gene expression data sets
Human breast tumor expression

Atypical Ductal Hyperplasia

Camparative Analysis of MMTV-neu tumars, preneaplastic MMTV-neu mammary gland, and...
Rat mammary narmal - tumor

Microarray Analysis of Gene Expression in Human Normal and Breast Cancer Cells

breast cancer / tamaxifen manotherapy {whale tissue tumar biopsies)

breast cancer / tamoxifen monotherapy (microdissected tumar biopsies)

Human mammary epithelium and breast cancer

Lymphaocyte gene expression data from moderate stage HD patients and controls

Htt14A2.5 induced verses uninduced

Gene Expression Profiling of PGC-1a KO mouse striata

Figure 2 Disease compendium. Our collection of 32 disease-related experiments represents several combinations of species, platforms, and
tissues. Differential expression profiles based on log fold-change were generated for each experiment, then mapped to human genes through
Homologene. We compared DE profiles using Pearson correlation and applied hierarchical clustering to find that the profiles cluster primarily by
disease and tissue. One GEO Series appears more than once: GSE3790 provides three profiles that cluster together, comparing normal to

primarily bacterial and plant species. To visualize this
set of profiles, we calculated pairwise similarities using
p-weighted Pearson correlation and created a network
of differential expression experiments (Figure 4A,
Additional files 3, 4). Random comparisons were used
to build a null distribution of similarity scores. With a
strict cutoff (g < 0.001), highly-connected subnetworks
consisting of multiple profiles from the same dataset
emerged. Clusters of profiles from multiple experi-
ments also were apparent, linking datasets that exam-
ined related biological processes and perturbations.
Figure 4B shows a multi-experiment cluster examining
gonad development in mouse, consisting of differential
expression profiles from GDS2098, GDS2203, and
GDS2719. Each profile compares gonad tissue at two
developmental stages, between 10 and 18 days post
coitum. The highly significant associations between the
testis (GDS2098) and ovary (GDS2203) reflect known
molecular similarities between male and female gonad
development, especially before gestation day 10.5
[28,29]. Profiles comparing later stages in development
are not linked between the sexes (e.g., starred profile
in Figure 4B).

Application to Nanog knockdown in embryonic stem cells
This search method allowed us to simultaneously inves-
tigate a wide range of perturbations, conditions, and
comparisons using the hypothesis that experiments that
differentially express similar genes and pathways would
also share functional phenotypic relationships. To assess

the utility of this approach, we used data from GDS1824
to investigate the effects of Nanog knockdown in
embryonic stem cells (ESCs) [30]. We created a DE pro-
file comparing Nanog knockdown to control in mouse
ESCs, and queried all GEO DataSets to identify other
experiments that have similar differential expression pat-
terns. Because the transcription factor Nanog is required
for the maintenance of pluripotency in ESCs [31,32], we
hypothesized that this search would find profiles com-
paring embryonic stem cells to differentiated cells.
Indeed, ten of the top fifteen matching profiles consisted
of experiments comparing less differentiated to more
differentiated mouse embryoid bodies of various genetic
lineages (Figure 5). In matching experiments, differentia-
tion was induced by removal of LIF (leukemia inhibitory
factor) [33], a cytokine necessary to maintain the undif-
ferentiated state of ESCs [34]. The Nanog knockdown
search also identified comparisons from GDS1823, also
from Loh et al. [30], where ESC differentiation was
induced by drug treatment with retinoic acid (RA) or
hexa-methylene-bis-acetamide (HMBA).

In addition to mouse ESC datasets, this search pro-
duced interesting comparisons with different experimen-
tal systems. Result 14 supports a similarity between
Nanog knockdown and the comparison of non-small
cell lung carcinoma (NSCLC) to small cell lung cancer
(SCLC). SCLC, the more aggressive disease, has been
linked with expression of stem cell factor [35] and the
Hedgehog signaling pathway [36]. These relationships
suggest that, in a broad sense, SCLC compared to
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Figure 3 Evaluation of dimension reduction methods and similarity measures. Comparison of four dimension reduction methods and six
similarity measures using leave-one-out cross-validation in our disease compendium. Bars and AUC estimates indicate standard errors for curves
averaged over all cross-validation trials. The three similarity measures based on Pearson correlation outperform the rank-based approaches, with
the p-weighted Pearson correlation proving the best at identifying other experiments of the same disease. The ICA projection method for
dimension reduction outperforms the module-based approaches, and performs comparably to gene-level analysis. HsGxModules = Human Gene
Expression Modules (see Methods).
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Figure 4 Network of GEO differential expression profiles.
(A) We calculated p-weighted correlations between 9,415 differential
expression profiles from GEO and connected highly similar profiles
(g < 0.001). Nodes are colored according to experimental variable
(e.g., time). Dense clusters tend to represent multiple profiles from
the same experiment. We identified multi-experiment clusters
corresponding to processes including muscle injury, mammary
gland development, and glioma grade. For a high resolution figure,
see Additional files 3 and 4. (B) Close-up of a multi-experiment
cluster. DE profile nodes are re-colored to correspond to the GEO
DataSet from which they originate, and node shape represents
experimental variables. *Compares gestation day 14 to gestation
day 16.

NSCLC may have a more stem-like transcriptional
program.

Our method also identifies the genes that drive the
correlation between two profiles. These genes have the
most significant coordinated changes in the two experi-
ments. When we examined the genes driving the corre-
lation for Result 14, we found cytokeratin KRT18
overexpressed in both Nanog knockdown compared to

Query: GDS1824 Transcription factors Nanog and Oct4 ESC (control) v5. ESC (N Knockd )
ery: vs.
4 knockdown effect on embryonic stem cells contro’ anog knockdown)
Rank GEO Title Subset1 vs.  Subset2 Type Score g-value
Embryonic J1 stem cell differentiation in vitro
1 GDS2668 24h 3 4d il 0.596 0.0054
(MG-4308) * me
Embryonic J1 stem cell differentiation in vitro "
2 GDS2668 (MG-430A) 36h 1Z3 4d time 0565 0.0073
Embryonic J1 stem cell differentiation in vitro "
3 GDS2668 (MG-430A) 18h vs. 4d time 0558 0.0081
4+ Gdsaees EMPIONicJT stem cell diferentiation invito - e 0551 00087
(MG-430A)
s Gpsigas Emorvenicstem cell differentiation induced by o agent 0539 00038
various chemicals: time course
Embryonic R1 stem cell differentiation in vitro .
6  GDS2667 (MG-430B) 36h Vs, 7d time 0539 0.0098
7  GDS1414 Candoxin effect on glial cells: time course 24h vs. 12h time 0521 0011
8 GDS2666 Embryonic R1 stem cell differentiation in vitro 48h i 7d tme 0518 0011
(MG-430A)
o Gstazs Embrvonicstem celldifferentiation induced by oo n agent 0513 00119
various chemicals: time course
Embryonic J1 stem cell differentiation in vitro
10  GDS2668 18h 3 7d il 0512 0.012
(MG-4308) . me
Embryonic R1 stem cell differentiation in vitro "
11 GDS2666 (MG-430A) 36h 1Z3 7d time 0509 00122
12 Gpstz33 Heatshock tanscription factor HSFT depleted - - dme 0505 00127
cells response to heat shock: time course
13 aDsaess EMPYONicRI stem celldifferentiation invitro od ime 0505 00127
(MG-430A)
14 GDS1688 Various lung cancer cell lines smallcell | non-smallcell —cell 50 5146
cancer " adenocarcinoma line
Embryonic R1 stem cell differentiation in vitro .
15 GDS2666 (MG-430A) 36h Vs, 9d time 0487 00152
Figure 5 Search results for Nanog knockdown.
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control and in NSCLC compared to SCLC (Figure 6B),
fitting previous examinations of KRT18 by immunobhis-
tochemistry [37,38]. On the other end of the spectrum,
we found the relatively uncharacterized gene FXYD6, a
regulator of N, K-ATPase [39]. FXYD6 is down-regu-
lated during Nanog knockdown (see Additional file 5)
and up-regulated in several SCLC cell lines (see Addi-
tional file 6). This suggests that FXYD6 plays a role in
the transcriptional programs in common between
embryonic stem cells and SCLC.

Application to FoxO3 knockout in neural stem cells

To evaluate the predictive potential of our search
method in another system, we examined the effects of
FoxO3 knockout in neural stem cells (NSCs). FoxO3
regulates NSC homeostasis by preventing premature dif-
ferentiation and controlling oxygen metabolism [40].
Throughout the body, the FoxO family of transcription
factors regulate a wide variety of cellular processes
including glucose metabolism, cell cycle arrest, differen-
tiation, and detoxification of reactive oxygen species
(ROS) [41,42]. We created a DE profile comparing wild
type to FoxO3”" adult mice using normalized data from
GSE18326. A query of GEO DE profiles yielded numer-
ous significant results, the most significant of which are
shown in Figure 7. Several matching profiles (Results 2,
3, 5 and 9) implicate FoxO3 in hypoxia response: data
from GDS2758 and GDS2760 compare MCF-7 breast
cancer cells under hypoxic and normoxic conditions as
well as with siRNAs targeting hypoxia-inducible factor 1
(HIF-1¢r) and HIF-2¢. Bakker et al. found that FoxO3 is
activated in response to hypoxic stress in mouse
embryonic broblasts (MEFs), and furthermore that this
activation requires functional HIF-1a [43]. Renault et al.
also found that FoxO3 is required for the expression of
hypoxia-dependent genes in NSCs [40]. GDS2162
(Result 5) compares p300 and CBP null MEFs in
response to dipyridyl (DP) or control (EtOH). DP, a
hypoxia mimetic, induces HIF-1a [44] and thus poten-
tially FoxO3. In all four hypoxia-related profile matches,
therefore, the direction of the comparisons accurately
predicts known FoxO3 biology. To further probe the
relationship between FoxO3 and hypoxia, we examined
the genes responsible for the high correlation between
our FoxO3 query and Result 2. Predictably, we found
genes associated with both hypoxia and FoxO3 signaling
(Figure 6A). For instance, DDIT4 and NDRGI, both of
which have been found previously to be activated during
hypoxia [45,46] also contain FoxO binding motifs in
their regulatory regions [40].

Other matches from the FoxO3 search (Results 11,
12, 15) point to a role for FoxO3 in cellular response
to cytokine interleukin-2 (IL-2) stimulation. All three
of these matching profiles compare cytotoxic T cell
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Figure 6 Gene-level analysis of transcription factor search results. Scatterplots comparing the log fold-change of each gene shared by two
differential expression profiles. Expression values are centered and scaled. The area of each circle is proportional to the contribution that the
gene makes to the final correlation score, and thus is a function of the magnitude as well as the significance of differential expression. (A)
Comparison of GSE18326: FoxO3 null versus wild type and GDS2758: normoxia versus hypoxia. (B) Comparison of GDS1824: Nanog knockdown
versus control and GDS1688: non-small cell adenocarcinoma versus small cell cancer.

line (CTLL-2) at 1 hour after IL-2 stimulation to a
later time point (6, 12, or 16 hours). From the direc-
tion of these comparisons, we would predict that IL-2
stimulates a transcriptional program that is similar to
that of FoxO3 knockout. Indeed, IL-2 signaling leads

Role of Fox03 in adult neural stem cell

Query: GSE18326 R
maintenance in mice

Wildtype vs. FoxO3null

Rank GEO  Title
Lymphoblastoid cell lines from various

Subset1 vs Subset2  Type Score g-value
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CH1 domain deletion, p300 and CBP
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fibroblasts response to trichostatin A
Treacher Collins' syndrome Tcof1 gene
NTE-115 wild N1E-115Tcof1
6 GDS998 overexpression and knockdown effect on ", ! cellline 0712 0.0021
type overexpressed
neuroblastoma cells

Lymphoblastoid cell lines from various  CEPH pedigree  CEPH pedigree genotype

7  GDS2106 3 0710  0.0022
CEPH pedigrees 1447 1345 /variation

& GDs2106 ymphoblastoid celllines from various  CEPH pedigree | CEPH pedigree genotype 0
CEPH pedigrees 1447 1340 Ivariation

o Gosazgo Hypoxiarinducible factor depletion (HG- HIF-Za\Pha v HIF-1a\.pha protocol 0698 00024
U1332.0) depletion depletion

10 GDSs87 Myogenic differentiation timecourse (MG- 4d v, 2d time 0694 00025
U74C)

11 GDs3azy YIOUONICT cellline response to nterleukin h . 2h e 0693 00025
2:time course

12 GDs3222 YtOUOHICT cellline response to interleukin a0 v o ime 0684 00026
2:time course

13 GDs2106 ymPhoblastoid celllines from various  CEPH pedigree | CEPH pedigree genotype o0 0
CEPH pedigrees 1444 1341 Jvariation
Embryonic R1 stem cell differentiation in

14 GDS2666 18h 3 6h i 0671  0.0029
vitro (MG-430A) . me

15 GDS3222 Cytotoxic T cell line response to interleukin Th s 16h tme 0670 00029

2:time course

Figure 7 Search results for FoxO3A knockout.

to phosphorylation and inactivation of FoxO3 in
CTLL-2 cells [47], confirming this hypothesis.

Discussion
In optimizing our data processing and search pipeline, we
found that linear combinations of gene expression fea-
tures derived in a separate compendium benefited our
analysis. The most effective dimension reduction techni-
que involved projecting each DE profile into a feature-
space identified by independent component analysis. We
previously used ICA to identify fundamental components
of human gene expression from a large compendium of
10,000 arrays, of which only a small subset overlap with
the experiments examined here [27]. The ICA projection
method reduced the set of features from on the order of
20,000 to less than 500, allowing for rapid indexing and
searching of large libraries of differential expression pro-
files. Furthermore, this approach outperformed module-
based methods, possibly because the linear model incor-
porated data from all of the genes rather than only those
that participate in discrete gene sets. Despite the fact that
these ICA features were derived in human data, they
proved robust in identifying and ranking experiments in
closely related species as well. Thus, our results support
previous findings that gene expression features derived in
one compendium can be useful for interpreting data
from new datasets [48].

To calculate similarities between differential expres-
sion profiles, we introduced a novel weighting scheme
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that incorporates information about a feature’s signifi-
cance of differential expression. This approach provides
an intuitive means for emphasizing the contributions of
features that are significantly differentially expressed in
both experiments, which may represent the most rele-
vant common biology. At the same time, the weighted
correlation incorporates even genes that are not signifi-
cantly differentially expressed, potentially capturing the
effects of broader transcriptional changes. We observed
that this scheme worked well with Pearson correlation,
but did not perform as well when combined with rank-
based correlation. Future work will characterize the
behavior of this similarity measure on a larger scale.

We used the most successful data processing pipeline
to index all GEO DataSets. Our results with transcription
factor experiments suggest that this approach can pro-
vide predictions for genes, phenotypes and perturbations
that share functional similarities with a query experi-
ment. Analysis of Nanog knockdown in ESCs successfully
identified other ESC differentiation time courses, induced
by a variety of factors, from amongst almost 10,000 other
profiles (Figure 5). The same search predicted a link
between small lung cell carcinoma and ESC transcrip-
tional programs. For a less well characterized transcrip-
tion factor, FoxO3, our method also succeeded in
recapitulating known biology across species and experi-
mental systems. Although it is clear that FoxO3 has line-
age-specific effects [42,49], we identified a role for FoxO3
in hypoxia response that appears to transcend tissue type
[40,41]. For uncharacterized comparisons, this informa-
tion has the potential to provide useful hypotheses for
phenotypes and pathways to investigate.

As in more traditional microarray analyses, however,
interpretation of the most significant genes identified by
our weighting scheme remains difficult. Our analysis of
the FoxO3 search revealed a number of genes involved in
both hypoxia and FoxO3 signaling, linking these two path-
ways. However, the top genes in the Nanog knockdown
search failed to reveal convincing pathways that might
explain the relationship between small lung carcinoma
and ESCs. While we focus on the interpretation of several
individual genes in this study, future efforts may benefit
from the use of gene set enrichment tools to find pathways
that are significantly represented in the top gene list.

As experimentalists continue to explore and deposit
information about cellular processes and perturbations,
the utility of content-based search approaches will
increase. With a larger bank of transcriptomic data and
a high chance of identifying overlapping and functionally
related biology, an “experiment-omic” screen might be
the first step in characterizing a novel dataset. To realize
this, further ontological indexing of expression databases
may also be necessary [50]. Several groups have already
begun to integrate expression with textual phenotype
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data to enable gene function prediction [51] and auto-
matic disease diagnosis [14] from large databases. Even
for expression-driven methods, controlled annotations
for experimental variables, tissue types, and culture sys-
tems would allow for more accurate assessments of
functional relevance. Finally, ontological indexing of tex-
tual annotations will enable the creation of more sophis-
ticated connectivity maps linking not just diseases and
drugs, but also gene knockdowns, over-expression stu-
dies, and genotype comparisons. These ontology-
informed studies may not only search public repositories
based on gene expression, but also provide meta-analysis
across phenotypic categories.

Conclusions

We have explored computational methods needed to
search large repositories for relevant experiments based
on differential expression, using an experiment as a
query. While previous studies use hard thresholding to
select gene sets of interest [4,11,13], we propose a data-
driven approach that uses information from all shared
genes to compare two experiments. Differential expres-
sion profiles containing scores for each gene or feature
were generated and compared using correlation metrics,
following the hypothesis that this direct and intuitive
method would perform well across diverse datasets. In a
collection of 32 experiments comparing normal to dis-
eased tissue, we achieved an average AUC of 0.737 for
retrieving experiments that measure the same disease.
We further demonstrated the ability of our method to
identify functionally relevant experiments from a large
database of studies. Future work will include implement-
ing the principles learned here into a web-based applica-
tion. Public deployment of these methods will enable
discoveries in drug repurposing, disease classification,
and systems repositioning as we explore the molecular
underpinnings of diverse biological processes and
phenotypes.

Methods

Disease compendium

From a previous collection of disease-associated NCBI
GEO microarray experiments [5], we collected 1,278
processed arrays comprising 32 experiments that com-
pared normal to diseased tissue for Duchenne muscular
dystrophy, breast cancer, and Huntington’s disease.
These experiments represented a variety of species, plat-
forms, tissues, and normalization techniques, factors
which might strongly influence the clustering of expres-
sion data.

Differential expression profiles
In transcriptomic studies, differential expression analysis
identifies the genes and biological processes that vary
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between two samples. To represent this information
from different datasets in a standardized manner, we
mapped probesets to Entrez Gene identifiers using
AILUN [52] and generated differential expression (DE)
profiles for each comparison using Bioconductor soft-
ware [53]. Here, a DE profile consists of a list of features
(e.g., genes) each with an associated score (e.g., fold
change). For each comparison, we represented this dif-
ferential expression score in three ways.

Log fold-change profile

We converted all microarray data to log values by exam-
ining the maximum and minimum values of the normal-
ized probe-level data and applying log, transformation as
needed. We aggregated probes to genes using the fixed
effects meta-estimate, calculating an average for each
gene weighted by the variance of each probe [54]. We
calculated the fold-change difference between normal
and disease by averaging samples within each group.
P-value profile

Probes were aggregated as for the log fold-change
method. For each gene in each experiment, we deter-
mined the probability that the gene was differentially
expressed with an empirical Bayes moderated ¢-statistic
implemented in the limma R package (version 2.16.5)
[55]. We corrected for multiple hypothesis testing using
the Benjamini-Hochberg method [56]. For DE profiles
represented in terms of a reduced set of features (see
below), we applied limma to assess the differential
expression of that feature.

Rank profile

For each sample in each experiment, we ranked probes
based on their raw expression score, then averaged all
scores for a probe to create a single score for normal
and disease sample groups. We mapped from probes to
genes by finding the median of the subtractive difference
between all pairwise combinations of probes for the
same gene in normal and disease.

Dimension reduction

For all three DE profile representations, we mapped
genes to their human homologs using NCBI Homolo-
gene, removing genes that did not have one-to-one
homologs between species (Additional file 7). While
removing species-specific genes may result in loss of
important biological information, we hypothesized that
comparing global, conserved patterns of gene expression
between experiments would prove sufficient to predict
functional associations (see Additional file 1 for data on
the number of genes mapped for each dataset discussed
in the manuscript). Next, we applied one of two meth-
ods of dimension reduction.

Projection onto independent components

We previously used independent component analysis
(ICA) to identify fundamental features in human gene
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expression space by analyzing a compendium of 9,460
heterogeneous human microarrays run on the Affyme-
trix HG-U133 Plus 2.0 platform [27]. Briefly, we applied
hierarchical clustering to our compendium to normalize
the contributions of over- or under-represented condi-
tions, applied independent component analysis to the
normalized data, and aggregated the results over
20 runs using the partitioning around medoids cluster-
ing algorithm [57]. The resulting 423 components
provide a data-driven feature space on which to map
new gene expression data. For each DE profile, we con-
sidered the common genes between the experiment and
the gene-to-component mapping, then projected the DE
profile into ICA feature space using:

A=STX, (1)

where A is the final reduced profile (423 features), S is
the component matrix (components x genes), and X is
the original profile in gene-space.
Fixed effect meta-estimate
To evaluate the performance of the ICA projection
method, we also used a set of known features to reduce
the dimensionality of our DE profiles. Given a collection
of gene sets, we calculated a meta-score for each gene set
using the fixed-effect meta-estimate, which represents an
average across all genes in the set weighted by their
inverse variance [58]. This method summarizes the contri-
butions of functionally coherent gene sets, and may be
appropriate for expression analysis. We used MSigDB
v2.5, a well described collection of 5,452 gene sets most
often used in conjunction with GSEA [16]. For compari-
son, we also derived gene sets from the ICA features
described above: for each independent component, we cre-
ated a module from all genes that scored three standard
deviations above the mean in one direction. These 423
modules represented data-derived functionally coherent
gene sets as determined by GO enrichment [27].

Similarity measures

We compared DE profiles in gene- or feature-space using
similarity measures based on Pearson correlation coeffi-
cient and Spearman rank correlation coefficient. We used
three weighting schemes. First, unweighted correlations
are typically used in microarray clustering and search
applications. However, this approach does not incorporate
information about the variability of a gene, either across
the compendium or within each dataset. Thus we tested a
weighting scheme that accounts for the magnitude as well
as the variance of a gene’s change. We reasoned that genes
with high variability across the compendium should be
weighted lower than genes with low variability; that is, a
change of the same magnitude should be more significant
for a gene with low variance than for a gene with high



Engreitz et al. BMC Bioinformatics 2010, 11:603
http://www.biomedcentral.com/1471-2105/11/603

variance, since its relative deviation from the mean would
be higher. To account for this, we calculated an inverse-
variance weighted correlation, where each feature is
weighted by the inverse of its variance across the entire
compendium. Finally, we explored the possibility of
weighting each gene by a function of its differential
expression in the two datasets. Intuitively, a gene that is
differentially expressed in both datasets should receive
more weight than a gene that is differentially expressed in
one or neither dataset. While Pearson correlation already
rewards high magnitude changes, we chose to further
weight genes by their p-value of differential expression to
incorporate the inter-dataset variance as well as the mag-
nitude. We calculated the weights for this p-value
weighted correlation using:

w; = [—103( PirPi2 )]UC , 2)

where w; is the weight for feature i, p;; is the FDR-cor-
rected empirical Bayes p-value for experiment j, and C is
a scaling factor. For this work, we empirically chose C =
2 because it delivered the best clustering of our disease
compendium (data not shown). We used the ROCR
package [59] to evaluate the performance of various
data processing methods.

GEO DataSet search

To search GEO for experiments with similar transcrip-
tional patterns, we indexed all GEO DataSets (GDSs).
We downloaded processed data from GEO and used the
GDS “Value type” field to transform the data to log,
space. Each GDS is manually annotated with one or
more factors, e.g., “disease state” or “time”, which out-
line the experimental conditions that vary between
groups of samples. Within each GDS, we compared all
combinations of groups for a single factor. For each of
these comparisons, we created two DE profiles: one in
gene-space, and one in the ICA feature-space described
above. We calculated p-values for each gene and ICA
feature using the empirical Bayes modified ¢-test as
described [27]. To search these DE profiles, we used the
absolute value of the p-weighted Pearson correlation
metric, since the direction of the comparison is arbi-
trary. To assess the significance of DE profile compari-
sons, we selected 10,000 random pairs of comparisons
to serve as a background distribution of correlation
scores. We estimated the false discovery rate (FDR) of
our search results by calculating the percentage of these
random comparisons that exceed a given similarity
score. Because this random sampling may include true
positive comparisons (e.g., two profiles from the same
dataset), our corrected p-values may underestimate the
significance of new comparisons.
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Additional material

Additional file 1: Evaluation of data representation methods. We
explored three alternative methods for representing differential
expression data: log fold-change, normalized rank difference, and
adjusted p-value significance. Using our disease compendium, we
performed leave-one-out cross-validation by using each of 32
experiments to query the others. We generated ROC curves with
different combinations of data representation and correlation metrics.
Bars and AUC estimates indicate standard errors for curves averaged over
all cross-validation trials.

Additional file 2: Precision at 4 for ICA p-weighted Pearson search.
We calculated the “precision at 4" for each experiment in the disease
compendium. Red bars show null distribution creating by permuting
labels with 95% confidence intervals.

Additional file 3: High resolution network of GEO differential
expression profiles. Vector graphic representation of the network in
Figure 4. See Additional file 4 for legend.

Additional file 4: Legend for differential expression profile network.
Legend for Additional file 3.

Additional file 5: FXYD6 Expression in GDS1824. GEO Gene profile for
FXYD6 in GDS1824. See http://www.ncbi.nlm.nih.gov/sites/entrez?
db=geo&term=GDS1824[ACCN]+fxyd6.

Additional file 6: FXYD6 Expression in GDS1688. GEO Gene profile for
FXYD6 in GDS1688. See http://www.ncbi.nlm.nih.gov/sites/entrez?
db=geo&term=GDS1688[ACCN]+fxyd6.

Additional file 7: Homolog mapping. Excel Spreadsheet describing the
number of genes mapped through Homologene to human for each
dataset discussed in the text.
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