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Mining protein loops using a structural alphabet
and statistical exceptionality
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Abstract

Background: Protein loops encompass 50% of protein residues in available three-dimensional structures. These
regions are often involved in protein functions, e.g. binding site, catalytic pocket... However, the description of
protein loops with conventional tools is an uneasy task. Regular secondary structures, helices and strands, have
been widely studied whereas loops, because they are highly variable in terms of sequence and structure, are
difficult to analyze. Due to data sparsity, long loops have rarely been systematically studied.

Results: We developed a simple and accurate method that allows the description and analysis of the structures of
short and long loops using structural motifs without restriction on loop length. This method is based on the
structural alphabet HMM-SA. HMM-SA allows the simplification of a three-dimensional protein structure into a one-
dimensional string of states, where each state is a four-residue prototype fragment, called structural letter. The
difficult task of the structural grouping of huge data sets is thus easily accomplished by handling structural letter
strings as in conventional protein sequence analysis. We systematically extracted all seven-residue fragments in a
bank of 93000 protein loops and grouped them according to the structural-letter sequence, named structural
word. This approach permits a systematic analysis of loops of all sizes since we consider the structural motifs of
seven residues rather than complete loops. We focused the analysis on highly recurrent words of loops (observed
more than 30 times). Our study reveals that 73% of loop-lengths are covered by only 3310 highly recurrent
structural words out of 28274 observed words). These structural words have low structural variability (mean RMSd
of 0.85 Å). As expected, half of these motifs display a flanking-region preference but interestingly, two thirds are
shared by short (less than 12 residues) and long loops. Moreover, half of recurrent motifs exhibit a significant level
of amino-acid conservation with at least four significant positions and 87% of long loops contain at least one such
word. We complement our analysis with the detection of statistically over-represented patterns of structural letters
as in conventional DNA sequence analysis. About 30% (930) of structural words are over-represented, and cover
about 40% of loop lengths. Interestingly, these words exhibit lower structural variability and higher sequential
specificity, suggesting structural or functional constraints.

Conclusions: We developed a method to systematically decompose and study protein loops using recurrent
structural motifs. This method is based on the structural alphabet HMM-SA and not on structural alignment and
geometrical parameters. We extracted meaningful structural motifs that are found in both short and long loops. To
our knowledge, it is the first time that pattern mining helps to increase the signal-to-noise ratio in protein loops.
This finding helps to better describe protein loops and might permit to decrease the complexity of long-loop
analysis. Detailed results are available at http://www.mti.univ-paris-diderot.fr/publication/supplementary/2009/
ACCLoop/.
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Background
Protein structures are classically described using second-
ary structures: a-helices, b-strands and loops, also called
coils. This third class is a default description, which
denotes all residues that are not involved in periodic
local structures, helices or strands. On average, protein
loops encompass 50% of residues. Protein loops are
often involved in protein functions [1]. They participate
in active sites of enzymes [2] and in molecular recogni-
tion [3,4]. They are often the place of binding sites: for
example, the ATP and GTP-binding site (P-loop motif)
and the calcium-binding site (EF-hand motif) are found
in loops [5-8]. The description and analysis of protein
loops have been the subject of many studies. Protein
loops were first seen as random because they are highly
variable in terms of sequence and structure and are sub-
ject to frequent insertions and deletions [9,10]. Because
of their large variability, loops are the protein regions
which are the most difficult to analyze and modelize.
Indeed, in protein models, loops, and more particularly
long loops, are the place of a lot of errors.
Systematic studies actually showed that loops, even

long ones, are far from random. In their study, Pan-
chenko et al. (2004) analyzed the evolution of protein
loops and identified a linear correlation between
sequence similarity and average loop structural similarity
in protein families [11]. They suggested that the evolu-
tion of loops is made via an insertion/deletion process
and concluded that even longer loop regions cannot be
defined as “irregular conformations” or “random coils”.
The resolution of an increasing number of protein struc-

tures allowed the classification of short loops (3 to 12 resi-
dues) according to their geometry, and gave birth to
several loop classification systems: Sloop [12-14], Wloop
[15,16], ArchDB[17-19], Li et al. classification [20,21].
These different classification initiatives were based on dif-
ferent criteria such as loop length [12,14,15,17,18], flank-
ing region type [12,14,17,18,20,21], flanking-region
geometry [12,14,17,18], or loop conformation [17,18]. The
majority of the resulting loop clusters presented a signifi-
cant sequence signature. These classifications thus
revealed the existence of recurrent loop conformations
with amino-acid dependence. However, these classifica-
tions focus on short and medium loops (less than 12 resi-
dues) and do not take long loops into consideration.
Another type of studies focused on specific structural

motifs extracted from loops such as b-turn [22-25], b-
hairpin [26-29], helix-turn-helix [30], helix-turn-strand
[31], or ω-loop [1,32]. The most frequent motif is b-
turn. It corresponds to 25% of residues [33]. Other turn
types have been identified such as g-turn [34-36] or a-
turns [37,38]. Recently, Golovin et al. (2008) proposed a
web application that allows identifying known small

structural motifs characterized by hydrogen-bonds
(alpha-beta motif, asx-motif, beta-bulge, beta-bulge-loop,
beta-turn, catmat, gamma-turn, nest, schellmann-loop,
st-motif, st-staple, st-turn) from a query protein [8]. A
database of these structural motifs extracted from a set
of 400 representative proteins is now available [39]. All
these studies were dedicated to particular -and known-
small structural motifs, but did not perform a systematic
analysis of all loops.
In a previous study, we have shown that the structural

alphabet HMM-SA (Hidden Markov Model-Structural
Alphabet) is an effective tool to simplify loop structures
with good accuracy [40]. Structural alphabets constitute
a privileged tool to discretize 3D structures including
loop regions, with an accuracy that depends on the size
of the fragment library [41]. HMM-SA is a collection of
27 structural prototypes of four residues called struc-
tural letters, permitting the simplification of all three-
dimensional (3D) protein structures into uni-dimen-
sional (1D) sequences of structural letters [42].
Here, we present an extensive analysis and description

of both short and long loops based on the analysis of
structural motifs extracted from loops. The systematic
extraction of seven-residue structural motifs is based on
the loop decomposition in structural letters provided by
HMM-SA. Thanks to this decomposition, structural
motifs are described as patterns of structural letters,
called structural words. This representation as structural
words permits to partition the full space of loop confor-
mations, independently of their length, in clusters repre-
sented by distinct words. We first present general
results concerning structural words: repartition of clus-
ters and intrinsic characteristics of structural words
such as structural variability and sequential specificity.
Then, we present the analysis of the link between struc-
tural words and loop types. In order to gain further
insight into the high complexity of loop structures, we
complement our analysis with an original approach
based on statistical exceptionality implemented in the
SPatt software [43]. The idea is to compute, for each
structural motif, a score that is a measure of its “unu-
sualness” with respect to some background model. The
goal is to assess whether some structural motifs are
more or less frequent than expected. This is directly
inspired by analogous studies of sequence patterns in
genomes [44,45], that permitted the discovery of func-
tional patterns such as restriction sites [46], cross-over
hot spot instigator sites [47] and polyadenylation signals
[48]. Finally, this systematic structural-alphabet decom-
position and word analysis provide an accurate descrip-
tion of loops and allows extracting meaningful motifs in
both short and long loops, which is an important contri-
bution to the difficult task of long loop analysis.
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Results
We extracted all structural motifs within loops from a
non-redundant data set of 8186 protein chains, using
the structural alphabet HMM-SA. This alphabet is a col-
lection of 27 prototypes of four residues, denoted [A-Z,
a], based on a hidden Markov model [40,42]. It permits
the encoding of a protein structure of n residues into a
sequence of (n - 3) structural letters.
Loop structures extracted from our protein data set

were encoded into structural-letter sequence using HMM-
SA. Each encoded loop was then decomposed into over-
lapping structural words, i.e. series of k consecutive struc-
tural letters, corresponding to k - 3 residue fragments.
Thus, structural words can be seen as a way of clustering
the fragments. Each cluster of fragments is defined by a
structural word. The first step of this work is the determi-
nation of the optimal length of fragments/words.

Choice of the structural word length
The choice of the optimal length was guided by the fol-
lowing dilemma. On the one hand, it is desirable to con-
sider long fragments, in order to better describe 3D
conformation and capture the longest-range interac-
tions. On the other hand, the amount of available data
rapidly becomes insufficient when dealing with long
fragments. To choose this optimal length, we computed
the frequency of all structural words in our data set,
with length from five residues (two-structural letters) to
ten residues (seven-structural letters), see Additional file
1. We identified seven residues as the maximum length
to avoid the problem of data sparsity. The number of
different structural words sharply increases beyond that
limit and 80% of structural words of 8 residues are seen
at most 6 times in our data set, versus 34 times for
words of 7 residues. For these reasons, we selected
seven residues, i.e., four structural letters as the most
meaningful length for systematic extraction.

First Part: Global results on structural words
We systematically extracted structural words of four
structural-letters from protein loops and analyzed their
properties: structural variability, amino-acid specificity
and preference for particular loop types.
Extraction of structural words from loops
The data set contained 93396 loops of minimal length
seven residues (i.e. four structural letters). From these
loops, we extracted 415071 overlapping seven-residue
fragments. The 415071 fragments were partitioned into
28274 different four-structural-letter words, with an
average cluster size of 14.7 and a high variability: stan-
dard deviation was equal to 36. As HMM-SA offers a
very detailed description of loop structures, some
slightly different conformations ended up in distinct

clusters; our classification then disclosed with a high
number (5626) of singletons, i.e. clusters containing only
one fragment. However, even if we had considered X-
ray structures with good resolution (better than 2.5 Å),
such rare conformations might have been an artifact
due to the structural flexibility of some protein regions.
Indeed, protein loops are generally more flexible than
regular secondary structures [49]. We tested this
hypothesis using B-factors, as atoms with high B-factors
are those with the largest positional uncertainty. We
computed the average Ca B-factor for all fragments in
each structural word. We used the rule-of-thumb sug-
gested in [50] and set a B-factor cut-off at 40. We found
that a large proportion (28%) of singletons have an aver-
age B-factor greater than 40, compared to only 1% for
structural words from clusters with more than 30 frag-
ments. Singletons and rare conformations are thus
linked to structural flexibility. In the rest of the paper,
we consider a restricted set containing words seen more
than 30 times (i.e., minimal cluster size set to 30),
denoted Wset≥30. The reason for this choice is that our
goal is to perform a statistical analysis of word proper-
ties, namely structural variability and sequence specifi-
city. Since these properties are assessed by RMSd and
Z-scores extracted from sequence profiles, a sufficient
number of fragments per cluster is needed. We esti-
mated that 30 fragments were sufficient to compute
mean RMSd and sequence profiles. Statistics of Wset≥30
are given in Table 1. As can be seen in Table 1, Wset≥30

Table 1 Quantification of the structural word extraction
from the non-redundant data set.

Words Wset 30
1 URw

2 NSw
3 ORw

4

Number of words 3310 166 2214 930

(%) (11.7%) (5.0%) (66.9%) (28.1%)

Number of fragments 249953 11435 129781 108737

(%) (60.2%) (4.6%) (51.9%) (43.5%)

Nb fragments/word 75.5 68.9 58.6 116.9*

All-loop coverage rate 72.7% 5.1% 46.5% 40.2%

Short-loop coverage rate 70.3% 4.4% 38.9% 39.3%

Long-loop coverage rate 74.9% 5.7% 53.9% 41.1%

Loops containing at least one
word

84.8% 9.8% 60.3% 58.2%

Short loops containing at least one
word

79.7% 6.1% 48.1% 49.4%

Long loops containing at least one
word

97.8% 19.1% 90.9% 80.4%

1: words seen more than 30 times. 2: under-represented words, 3: non-
significant words, 4: over-represented words, ‘*’: significantly higher
occurrence according to a Kruskal-Wallis test. Coverage rates are given on a
per structural letter basis. Numbers within brackets denote the percentage of
words/fragments with respect to the 28274 words/415071 fragments of the
whole data set (column 1) and with respect to the 3310 words/249953
fragments in Wset≥30 (columns 2 to 4).
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encompass 3310 different structural words (12% of all
words), and 60% of fragments.
Loop coverage by Wset≥30 words
In this part, we check if the elimination of rare words
does not result in (i) a dramatic diminution of loop cov-
erage or (ii) a loss of diversity in structural families.
At first, we can observe that the selection of Wset≥30

words does not favor any loop length: the distribution
of loop lengths in Wset≥30 is similar to the global loop-
length distribution (cf. Additional file 1).
Global loop coverage (cf. Materials and Methods).
Words from Wset≥30 encompass 60% of the fragments.
However, since we extracted overlapping fragments, the
coverage rate of loop structures is more than 60%: if a
loop of 8 structural letters is described by two Wset≥30
words on positions 1 to 4 and 5 to 8, the actual cover-
age is 100% even if only 2 out the 5 overlapping frag-
ments are represented by frequent words.
Coverage rates are reported in Table 1. The limited

number of words seen more than 30 times (3310) covers
most loop, namely 73% of loop lengths. If we make the
distinction between short loops (up to 12 residues) and
long loops (longer than 12 residues), we can see that
Wset≥30 words cover both short and long loops. If we
now consider loops that contain at least one Wset≥30
word, Wset≥30 words partially describe 85% of all loops
-80% of short loops and 98% of long loops.
The consideration of the restricted set Wset≥30 thus

allowed us to get rid of clusters with high positional
uncertainty while still covering a large fraction of pro-
tein loops.
SCOP superfamily coverage by Wset≥30 words There
might be a risk that the selection of recurrent words
could give preferences to loops from highly populated
structural families. In order to address this problem, we
assessed the coverage of Wset≥30 with respect to the
SCOP classification. We surveyed the SCOP classifica-
tion of 8140 protein chains covered by Wset≥30. The
results are presented in Table 2. We identified 1493 dif-
ferent superfamilies in the full data set. The removal of
rare words led to the elimination of 46 protein chains,
and 11 SCOP superfamilies. We then checked the num-
ber of structure members in the 1485 remaining super-
families. After the removal of words seen less than 30
times, this number was lowered for 46 superfamilies.
The majority of affected superfamilies (44 among 46)

lost only one member, as shown in Additional file 1.
These elements suggest that the elimination of words
seen less than 30 times still permits to keep a good
representation of SCOP superfamilies, since 97% of
initial superfamilies were unaffected. Therefore, loops
from highly populated structural families are not given
preferences due to the selection of recurrent words.
Consequently, we can conclude that the systematic

extraction of structural words shows that most loops
can be described by a limited number of frequent four-
structural-letter words.
Structural and amino-acid conservation of words
The next step consists in analyzing the intrinsic struc-
tural and sequential properties of structural Wset≥30
words. We considered the following properties: struc-
tural variability of the fragments, and dependence to
their amino-acid sequence.
Structural properties of words The intra-word struc-
tural variability of clusters is assessed using the average
Root Mean Square deviation (RMSdw) between frag-
ments within the same cluster. The global mean RMSdw
is equal to 0.85 Å (cf. Table 3). Words exhibiting the
largest structural variability include structural letters J
or F. It was expected because these two letters are the
most structurally variable ones [42]. We can observe
that the word structural variability could be quantify by
the structural-letter type. This allows avoiding the com-
putation of RMSd and the superimposition of word frag-
ments. This analysis shows that most words exhibit a
weak structural variability.

Table 2 Population of SCOP superfamilies before and
after elimination of rare conformations

All words Wset≥30

Nb structures 8186 8140

Nb superfamilies 1493 1485

Nb superfamilies with less than 30 members 1437 1435

Table 3 Structural and sequential properties of words in
Wset≥30 according to the statistical word type

Words characteristic Wset≥30 URw NSw ORw

Average RMSdw (Å) 0.85 0.94 0.89 0.74*

(± standard deviation) (± 0.4) (± 0.4) (± 0.4) (± 0.3)

Average RMSddev (Å) 2.72 2.67 2.69 2.76

(± standard deviation) (± 0.6) (± 0.6) (± 0.6) (± 0.7)

AverageZmax 10.3 9.5 8.8 14.0*

(± standard deviation) (± 6.1) (± 3.8) (± 4.0) (± 8.4)

Average nbpos* 3.3 3.0 2.9 4.1*

(± standard deviation) (± 1.8) (± 1.7) (± 1.6) (± 1.8)

Average dZ-score 31.1 29.0 27.4 39.5*

(± standard deviation) (± 9.7) (± 5.7) (± 5.3) (± 13.8)

The upper part of the table corresponds to the analysis of word structural
properties. The intra-word structural variability is analysed using the Root
Mean Square deviation (RMSd) between fragments corresponding to the
same word (RMSdw). The inter-word structural variability is analysed using the
RMSd between fragments of two different words (RMSddev). The lower part of
the table corresponds to the analysis of sequential properties of words. The
intra-word amino-acid preferences of a word are analysed using Zmax criterion
(cf. Method section) and the number of significant position of a word (nbpos*).
The coverage of sequential space is analysed using the Euclidian distance
between Z-score vectors (cf. Method section) (dZ-score). Numbers within
brackets indicate standard deviations. *: significant differences according to
the Kruskal-Wallis test. The RMSddev are computed on a subset of 890 words
of Wset≥30.

a: words shared by long and short loops.
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Amino-acid preferences of words Intra-word amino-
acid specificity is assessed using Z-score computation as
described in Material and Methods. Briefly, we com-
puted Z-scores for the 20 amino acids at the 7 positions
of a structural word. We then considered the maximum
Z-score, denoted Zmax, measuring the strongest amino-
acid specificity, and the number of significant positions,
denoted nbpos*, indicating how many positions exhibit
significant sequence specificity. As shown in Table 3,
the global average Zmax (resp. nbpos*) is equal to 10.3
(resp. 3.3). Almost every word (97%) present at least one
significant position (Zmax ≥ 4) and 19% of words have at
least one very significant position (Zmax ≥ 14). Conver-
sely, only 3% of words (89 words covering 2% of loops)
have no informative position. Among the sequence-
informative words, 198 words (6% of recurrent words)
are highly informative, as all their positions are signifi-
cant. These very informative words cover 16% of loops.
Words with high Zmax contain structural letters D and
S, in agreement with the fact that these two letters have
very strong sequence specificity [51]. Thus we can con-
clude that most loops are composed of motifs with
amino-acid specificities.
Correlation between structural variability and
sequential specificity We can note that there is no
obvious link between Zmax and RMSdw (Pearson coeffi-
cient is equal to 0.09, cf. Additional file 1). The structu-
rally less variable words are not systematically the most
informative ones in terms of amino acids. Some words
with high RMSdw are informative in terms of sequence,
as illustrated by word FFFF, with an RMSdw equal to
2.5 Å and Zmax equal to 15.8 (an illustration of the
word geometry is presented in Figure 1).
2590 words are characterized by both low structural

variability and significant sequential specificity, with
RMSdw lower than 1 Å and Zmax greater than 4. These
structural words cover 63% of loop regions. We can
conclude that most loops are composed of motifs with a
weak variability and amino-acid specificities.
Relation between structural words and loop type
After exploring the intrinsic structural and sequential
properties of structural words, we analyzed their rela-
tionship with different loop types seen in proteins. We
defined different loop-types according to their lengths
and flanking secondary-structures [14,15,17,18].
Loop length We used the Kullback-Leibler asymmetric
divergence, denoted KLD criterion [52] (cf. Methods) to
extract the words that are significantly more frequent in
long loops than expected. These words are classified as
specific to long loops. Words specific to short loops are
extracted in a similar manner. The result of this analysis
is presented in Table 4. We found that 758 words (23%
of Wset≥30) are specific to long loops and 476 words
(14% of Wset≥30) are specific to short loops. It means

that roughly one third of the structural words display a
significant preference for a length range, and two thirds
are unspecific, i.e., shared by short and long loops. In
Table 4, we also reported the loop coverage achieved by
words specific to short and long loops. It can be seen
that half of loops are covered by words shared by long
and short loops. About one third of short loops (resp.
long loops) are covered by words specific to short (resp.
long) loops.
Flanking regions We now consider the four possible
flanking regions for a loop: bb : loops linking two b-
strands, ab: loops linking an a-helix and a b-strand, aa
: loops linking two a-helices and ba: loops linking a b-
strand and an a-helix. We found that about 60% of
Wset≥30 display a significant preference for one of the
four-flanking-region types. This word set permits to
cover about 59% of loops. Thus, about half of the loops
are described by flanking-region-specific words.
Loop length × flanking regions We then combine the
loop length and loop type descriptors to distinguish
eight types of loops. According to the KLD criterion,
2543 words (80% of Wset≥30) exhibit a significant prefer-
ence for one of the eight loop-types. This significant
word set covers more than half of the loops (66%).
The association between words and the eight loop

types is further explored using a correspondence analy-
sis presented in Figure 2. The first two axes of the cor-
respondence analysis capture 62% of the variability and
are mainly explained by the preference for short loops.
The bb short loops is opposite to the aa short loops on
the first axis (36% of the variability) while the ab short
loop is opposite to the ba short loop on the second axis
(26% of variability). Association is weaker for long loops
-appearing in the central region of the plot- but similar
tendencies are observed for short and long loops. This
analysis made it possible to identify the loop structures
with a dependence to loop-type, and the ones with no
dependence.
Loop-type preferences × intrinsic properties
By combining the loop-type preferences of words and
their intrinsic properties, we observe that words specific
to short loops present slightly higher sequence depen-
dence than others, while words specific to long loops
have lower structural variability (cf. Table 5).
We can note that only 44 words (1% of the Wset≥30

words) have neither amino-acid-significant position, nor
loop-type preference. Thus, less than 1% of loop regions
are covered by these unspecific words in terms of
sequence dependence and loop types.
Our approach, which relies on a systematic decompo-

sition of short and long loops, allowed showing loops
are composed of recurrent structural motifs, some of
them with preference for a particular loop type in terms
of loop length and/or flanking regions. Conversely, some
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structural words have no preference for a loop length,
meaning that they are similarly found in short and long
loops.

Second part: Statistical exceptionality of structural words
In the second part of this study, we complement our
analysis of word properties by their statistical exception-
ality in protein structures represented by strings of
structural letters. Statistical exceptionality is traditionally
used in genome analysis to extract functional motifs
such as enzyme restriction sites or regulatory motifs
[44-48]. Our goal was to explore if a statistical bias is
also associated to specific properties in the case of

protein structures. Statistical exceptionality does not
measure the frequency of a word. It is an indicator of
the discrepancy between observed and expected occur-
rence according to a background model that takes into
account the first order Markovian process between
structural letters. The statistical representation of words
was assessed using the SPatt software that computes an
exceptionality score Lp for each word (see Material and
Methods). According to the value of Lp, words are clas-
sified as over-represented, under-represented or not sig-
nificant. Hereafter, over-represented words are referred
to ORw, under-represented words as URw and not signif-
icant words as NSw.

Figure 1 Loop-word extraction from chain B of protein 1GPW. a) 3D structure of the protein, b) the 27 structural letters of HMM-SA, c)
structure simplification as a succession of structural letters, d) extraction of simplified loops, e) extraction of overlapping words of four structural-
letters with structural words FFFF and GDZI illustrated.

Table 4 Preference of structural words in Wset≥30 according to the loop types as assessed by the KLD criterion and
the associated loop coverage rate (on a per structural letter basis).

Loop words specificity Wset≥30
7 URw

7 NSw
7 ORw

7 all loops4 short loops5 long loops6

Long-loop-specific words 758 (22.9%) 23 475 260 23.2% 12.2% 33.9%

Short-loop-specific words 476 (14.4%) 23 220 233 25.7% 33.0 % 18.6%

Shared words 1 2076 (63.7%) 120 1519 437 45.9% 39.4% 56.3%

Flanking-region-specific words2 1879 (57.1%) 102 1131 646 58.6% 58.9% 58.4%

Flanking-region-unspecific words 1431 (43.2%) 64 1083 284 31.4% 21.7% 40.8%

Loop-type-specific words3 2543 (78.8%) 124 1605 814 66.3% 64.3% 68.2%

Loop-type-unspecific words 767 (23.2%) 42 609 116 16.6% 12.7% 20.5%

1: words shared by long and short loops 2: description by the four possible flanking-types (aa, ab, ba, bb loops), 3: description by the four flanking-types and
the two length ranges (aas, abs, abs, bbs for short loops and aal, abl, abl, bbl for long loops). 4: all-loop coverage rate (on a per structural letter basis) 5: short-
loop coverage rate (on a per structural letter basis) 6: long-loop coverage rate (on a per structural letter basis) 7: Number of words
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Extraction of exceptional words
The analysis of the correlation between the frequencies
(i.e. cluster size) and Lp values for all words in the data
set shows that many frequent words tend to be over-
represented but there is no linear relation between fre-
quency and exceptionality (cf. Additional file 1). Some
frequent words are classified as URw or NSw, like FFFF
(seen 537 times, Lp = -2.8). Conversely, some rare words
are classified as ORw, like GDZI (seen 64 times, Lp =
102.2). An illustration of the geometry of these words is
presented in Figure 1. This result shows the relevance of
the extraction of word exceptionality instead of word
frequency.

The repartition of words in Wset≥30 according to
exceptionality status is given in Table 1. We can see
that ORw contribute predominantly to the set of frag-
ments in Wset≥30: 40% of the fragments are in ORw clus-
ters. ORw clusters are indeed significantly bigger than
other word types (cf. Table 1).
Redundancy of loops and robustness of the extraction
method
In this study, loops were extracted from a non-redun-
dant data set presenting less than 50% sequence identity.
Different redundancy levels have been used in the litera-
ture. Concerning loop classifications, Wloop[16] used a
protein data bank with 50% sequence identity. The loop

Figure 2 Correspondence analysis between the eight loop-types (defined according the length and the flanking regions of the loops)
and the structural words in Wset≥30. aas, abs, bas, bbs correspond to the four different short-loop-types according to the flanking regions,
and aal, abl, bal, bbl correspond to the four different long-loop-types according to the flanking regions. aa: loops linking two a-helices, ab:
loops linking an a-helix and a b-strand, ba: loops linking a b-strand and an a-helix, bb: loops linking two b-strands. The two first axes account
for 36% + 26% = 62% of the variance. a) Plot of the eight loop types, b) Plot of Wset≥30 words colored according to their statistical
exceptionality: red = ORw, gray = NSw, blue = URw.

Table 5 Structural and sequential properties of loop-type specific words in Wset≥30
Words

characteristic
shared
wordsa

short-long specific
words

long-long specific
words

flanking-region unspecific
words

flanking-region specific
words

Average RMSdw (Å) 0.90 0.80* 0.74 0.83 0.88

(± standard
deviation)

(± 0.4) (± 0.4) (± 0.4) (± 0.4) (± 0.4)

AverageZmax 9.4 15* 9.7 8.5 11.6*

(± standard
deviation)

(± 4.7) (± 9.5) (± 5.3) (± 3.9) (± 7.0)

Average nbpos* 3.0 4.6* 3.3 2.7 3.8

(± standard
deviation)

(± 1.6) (± 1.7) (± 1.8) (± 1.5) (± 1.8)

The upper part of the table corresponds to the analysis of word structural properties. The intra-word structural variability is analysed using the Root Mean Square
deviation (RMSd) between fragments corresponding to the same word (RMSdw). The inter-word structural variability is analysed using the RMSd between
fragments of two different words (RMSddev). The lower part of the table corresponds to the analysis of sequential properties of words. The intra-word amino-acid
preferences of a word are analysed using Zmax criterion (cf. Method section) and the number of significant position of a word (nbpos*). Numbers within brackets
indicate standard deviations. *: significant differences according to the Kruskal-Wallis test. The RMSddev are computed on a subset of 890 words of Wset≥30.

a:
words sharing by long and short loops
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classification system ArchDB is available in two ver-
sions: one built on a set of proteins with 40% sequence
identity and the second on a redundant-protein set with
95% sequence identity [18]. It is classically considered
that the evolutionary relationship between two proteins
is detectable up to 25% sequence identity. Consequently
this cut-off is frequently used for calibrating prediction
methods [53]. Since loops are more variable than the
rest of the protein sequence, we set the identity cut-off
at 50% in order to work with as many data as possible
with limited redundancy.
One could object that no attention was given to how

many redundant loops were left or removed from the
database during the redundancy filtering. The problem
of loop redundancy is a non-trivial one: the extraction
of loops from a non-redundant protein set does not
necessarily result in a non-redundant loop set, and loop
redundancy is itself difficult to quantify. We indirectly
addressed this question by repeating our systematic
extraction on different data sets, using identity levels of
25% and 80%. It was also important to ensure that our
observations were applicable to protein structures in
general and not only to the data set used. Taking into
account the correction due to the different database
sizes (see Method), we found a satisfactory level of con-
sensus equal to 82% between the 25% and 50% data-
bases, and 90% between the 50% and the 80% databases
(more details are given in Additional file 1). These ratios
refer to the proportion of recurrent words - common to
both data sets - that are classified in the same statistical
word type (over-presented/not significant/under-repre-
sented). Moreover, only one word, QLHB, was assigned
as over-represented in a data set and under-represented
in the other. Therefore, we can conclude that the
extraction of exceptional words is robust and very
weakly depends on the redundancy of the data set.
Then, we compared the properties of the Wset≥30 words
after classification into these three classes.
Exceptionality and word properties
The structural and amino-acid property measures for
the three statistical word types (ORw, NSw and URw) are
reported in Table 3.
The intra-word structural variability is lower for

ORw than for other words, as assessed by a Kruskal-
Wallis test [54] (p-value < 2 × 10-16, cf. Table 3). The
RMSdw distribution for the three statistical word types
is shown in Figure 3a. It can be seen that the RMSdw
distribution of ORw is shifted toward lower values. ORw

are thus significantly less structurally variable than other
words.
The coverage of the structural space by the struc-

tural words of different exceptionality status is assessed
by the RMSd between clusters. The goal is to evaluate
how well the structural words sample the

conformational space of loops. In order to assess the
coverage of the loop-conformational space, we com-
puted the RMSd between all pairs of words in the
Wset≥30, denoted RMSddev. The average RMSddev com-
puted for each type of words is given in Table 3. The
average RMSddev for words in Wset≥30 is equal to 2.7 Å
It is significantly greater than the average RMSdw, indi-
cating that the structural variability of words is low
compared to the structural differences between words.
This observation stands for the three types of words.
RMSddev were computed between every words of
Wset≥30, and the resulting 3310 × 3310 dissimilarity
matrix is used to compute Sammon’s map projections
shown in Figure 3b. It can be seen that the three statis-
tical word types all sample the conformational space in
the same way. It means that ORw correctly sample the
Wset≥30 conformational space and are not restricted to
some particular shapes. Let us note that RMSd are dis-
similarity measures that do not necessarily respect the
triangular inequality. A consequence is that the Sam-
mon’s projection does not actually reflect the word’s
proximity (words separated on the map can be structu-
rally close). However, since the three point series are
simultaneously projected on the same subspace, Sam-
mon’s maps can be used to qualitatively assess the simi-
larity between the conformational sampling. We can
thus conclude that ORw are, on average, significantly
more structurally stable than other words, and sample
all the conformational space.
Intra-word amino-acid specificity is significantly

higher for ORw (p-value < 2 × 10-16, cf. Table 3). The
Zmax distributions for the three statistical word types are
shown in Figure 4a. The distribution for ORw is clearly
shifted toward high values of Zmax. ORw are also more
informative in terms of number of significant positions
(p-value < 2 × 10-16, cf. Table 3). These results must be
interpreted with caution due to the restrictive condition
for the interpretation of the Z-scores (see Material and
Methods). However, they show that ORw are, on aver-
age, more informative in terms of both the number of
significant positions and specificity.
The coverage of sequence space by the different

structural words is assessed using a procedure similar to
the one used for structural space. We computed the
Euclidean distances between Z-score vectors of each
word pair in Wset≥30. The resulting average distances
are given in Table 3. The Kruskal-Wallis test indicates
that, in terms of amino-acid specificity, ORw are signifi-
cantly more distant one from the other (p-value <2.2-16,
cf Table 3). Sammon’s map projections of the three
word-types are shown in Figure 4b. We can see that
ORw cover a large region of the map, including regions
not visited by NSw and URw. We can conclude that ORw

are globally more distinct from each other in terms of
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amino-acid sequence dependence than other words and
that they sample the sequence space better than other
word types.
Exceptionality and loop types
As shown in Table 1, ORw significantly contribute to the
description of long loops: ORw cover about 40% of both
short and long loops. Moreover, 58% of the loops con-
tain at least one ORw, and as many as 80% of long loops
contain at least one ORw. If we consider the specificity
of words for a particular loop length (cf. Table 4) it can
be seen that 260 ORw are specific to long loops and 233
ORw are specific to short loops. It means that 493 ORw

out of 930, i.e. 53% of ORw, exhibit a significant prefer-
ence for a loop-length type. This proportion should be
compared to what is obtained for other words: 31% of
NSw and 28% of URw are significantly dependent on a
particular loop length range. If we consider the flanking
secondary-xstructures, the same observation can be
made: 70% of ORw versus 52% of NSw and 45% of URw

are specific to a particular loop type. It thus seems that
ORw exhibit stronger dependence toward the loop type
than other statistical word-types.
Finally, we compared the preference of the three

word-types for the eight loop-types defined by length
range and flanking secondary-structures. We found that
88% of ORw versus 72% of NSw and 75% of URw exhibit
a significant dependence for a particular loop type. The

qualitative analysis by correspondence analysis is dis-
played in Figure 2, where the three statistical word types
are highlighted in different colors. It can be seen that
ORw predominantly appear in outlying regions of the
plot, in agreement with the KLD quantification.
Therefore, we can conclude that ORw present higher

signature in terms of structure and/or sequence and
higher dependence to loop types than other words. At
the same time, ORw correctly sample all the loop-con-
formational space, and better cover the sequential space
of protein loops. They are seen in every loop type and
offer a reasonable coverage rate, with only 930 different
structural motifs.

Discussion and Conclusion
In this study, we have developed an original approach
for the analysis and the description of loop structures.
This approach corresponds to a systematic extraction
and statistical analysis of seven-residue structural motifs
within loops, using a structural-alphabet simplification.
Contrary to classic approaches, our method does not
require either loop-structural alignment or computation
of structural parameters. The structural word approach
defines a structure-based clustering of all fragments,
where all seven-residue fragments encoded in a similar
word can be seen as a cluster. Our systematic clustering
resulted in 28274 clusters, with 1 to 1633 fragments per

under−represented words

RMSdw

Fr
eq

ue
nc

y

0
5

10
15

20
25

30

2.36.10

not significant words

RMSdw

Fr
eq

ue
nc

y

0
5

10
15

20
25

30

2.36.10

over−represented words

RMSdw

Fr
eq

ue
nc

y

0
5

10
15

20
25

30

.36.10 2

−4 −2 0 2 4

−4
−2

0
2

4

first axis

se
co

nd
 a

xi
s

−4 −2 0 2 4

−4
−2

0
2

4

first axis

se
co

nd
 a

xi
s

−4 −2 0 2 4

−4
−2

0
2

4

first axis

se
co

nd
 a

xi
s

a)

b)

Figure 3 Structural variability of the three statistical word types of Wset≥30. a) Intra-word structural variability: distribution of the RMSdw.
The vertical line corresponds to a threshold of 0.6 Å b) Inter-word structural variability: Sammon’s map computed from the RMSddev for a
sample of 890 words of Wset≥30. All the points are subjected to the same projection and plotted on distinct plots.
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cluster, and an average size equal to 15. The analysis of
B-factors showed that some of the singletons are indeed
associated to regions with high B-factors, which is indi-
cative of coordinate uncertainty. It was thus legitimate
to exclude them from the analysis.
In order to compute cluster properties, we chose to

restrict ourselves to the 3310 clusters (= 12% of clusters)
with more than 30 fragments, referred to Wset≥30. This
reduction was required to have a sufficient number of
fragments to compute RMSd and sequence profiles for
clusters. This limited number of structural words (3310)
results in a good coverage rate of the loops: 73% of
loop-lengths. We additionally checked that the restric-
tion to Wset≥30 does not result in the restriction to
highly populated structural families, and that our results
are stable on different data sets.

Comparison with existing approaches
An extensive comparison with already existing loop clas-
sification schemes is extremely difficult because we do
not consider the same objects, and pursue different

objectives. Existing classifications cluster loops according
to their length [12,14,15,17,18], flanking region types
[12,14,17,18,20,21], flanking region geometry
[12,14,17,18] and loop geometry [17,18]. Such classifica-
tions consider full length loops and are thus inherently
limited to short loops. In the present study, we cluster
fixed-length structural motifs within loops, indepen-
dently of their lengths or flanking regions, thus also
bringing information for long loops. Consequently, it is
delicate to compare our loop analysis with existing loop
classifications.
Other studies have previously investigated the use of

seven-residue fragments to analyze protein structures
[55,56] whereas our study focuses on loop structural
fragments. For this reason, the results are not directly
comparable.
Other studies consisted in identifying functional pat-

terns in whole proteins [57,58]. Such patterns, involved
in protein function, are relatively rare. On the contrary,
our approach considers recurrent structural motifs in
loops. Alternatively, some groups have investigated the
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identification of 3D structural patterns linked to func-
tions that are not necessarily made of consequent resi-
dues [59-63]. For example, Ausiello et al. (2009) [63]
extracted some structural motifs from protein in differ-
ent folds which recognize ligands presenting same fea-
tures. In this case also, the studied objects are very
different, making the comparison difficult. Another
interesting analysis, MegaMotifBase, deals with struc-
tural motifs that are important for the preservation of
the 3D structure in given families or superfamilies [64].
These motifs were identified using both sequence con-
servation and preservation of important structural fea-
tures. They mainly correspond to regular secondary
structures, whereas we focused our analysis on loops.
For all these reasons, any comparison between our
approach and already existing classifications should be
regarded with caution.

Insight into loop structures
We analyzed structural and amino-acid properties of
clusters, defined by structural words, using RMSd and
different criteria to measure their amino-acid dependen-
cies. We found an average intra-cluster RMSdw equal to
0.85 Å versus 2.72 Å for the inter-cluster RMSddev,
which confirms our previous results [40]. In the loop
classification ArchDB[65] clusters grouping seven-resi-
due loops present an average RMSd close to 1 Å. In
Sander et al. [55], fragments were clustered according
both to their structure and amino-acid sequence into 27
clusters with an average RMSd of 1.19Å. The most
populated cluster groups a-helix fragments and prob-
ably largely contribute to the average RMSd.
Loop description by recurrent structural words per-

mits a quantification of the loop structural redundancy:
around 73% of loops are described by a limited number
of accurate recurrent structural words. Thanks to the
loop-structure simplification using HMM-SA, our
method is the first one allowing a systematic mining of
loops independently of their lengths and the study of all
loops in terms of motif composition.
First, we demonstrate that the majority of the recur-

rent structural words have low structural variability and
specific sequence signature. The simplification of loop
structures using HMM-SA permits to analyze long
loops. We can observe that 46% of loops are covered by
words found both in short and long loops. These results
show that short and long loops are composed of similar
motifs. This is in agreement with the insertion/deletion
process of loop evolution hypothesis made in [66]. In
addition to the identification of the shared structures,
our analysis provides a quantification of how the same
structural words are re-used in different loops. The exis-
tence of words found in both long and short loops could
allow transposing some short-loop results into the long-

loop analysis and decreasing the long-loop-analysis
complexity.
We observe that only one third of short (resp. long)

loops are covered by words that are specific to short
(resp. long) loops. Moreover, words specific to short
loops have higher amino-acid specificities than other
words. That means that these short loop regions (30%
of short loops) are more informative in terms of
sequence than other regions. Interestingly, words that
are specific to long loops are structurally less variable
than others meaning that a part of long loops (34%) are
structurally well defined.
We also analyze the dependence between recurrent

words and the loop flanking-regions. We show that
around 60% of words exhibit a significant preference.
Most of these words are specific to ba and bb loops.
These results are in agreement with classification of
short loops based on flanking region information as
[12,14,15,17,18,20,21] and provide an identification and
quantification of the structures with a dependence on
the flanking regions. Moreover, this study allows identi-
fying and quantifying regions with no preference for
flanking-region types. Indeed, 31% of loops are covered
by words with no preference for a flanking-region type.
The amino-acid specificities of structural words were

also assessed. We observed that 97% of recurrent words,
covering 70% of loops, have amino-acid specificities. Dif-
ferent studies have analyzed the amino-acid preferences
of loops, particularly for short loops. Kwasigroch et al.
(1997) have shown that amino-acid preferences were
more frequent in the core of short loops [15,16]. Other
studies have focused on the amino-acid preferences of
b-turns and shown that these amino-acid preferences
occurred at end positions [25,67]. This study provides
an identification of regions with amino-acid specificities
and a new quantification of the amino-acid specificity:
we found an average number of three positions with sig-
nificant amino-acid preference for Wset≥30 motifs.

Perspective in terms of loop-structure prediction
Most recurrent motifs exhibit significant amino-acid
specificities: half of them display significant level of
amino-acid conservation in at least four significant-posi-
tions. If we consider words with at least four significant-
positions as predictable, we extract 1359 words covering
60% of the loops (on a per-structural letter basis). It is
clear that this predictability index (at least four signifi-
cant positions) is very basic and too optimistic. The pre-
dictability index of a word has to combine both its
sequence informativity and sequence specificity. Indeed,
one word can have several positions with high amino-
acid preferences but close sequence from other words.
Conversely, words with few informative positions can be
clearly distinguishable from others in terms of sequence.
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Moreover, several words can be compatible with a same
seven-residue sequence, involving several candidates per
amino-acid sequence. A possible strategy for loop pre-
diction would consist in splitting the query sequence
into overlapping seven-residue fragments, and identify-
ing subset of structural words compatible in terms of
sequence profile with each fragment.
The successions of compatible overlapping word can-

didates would then be selected using a hidden Markov
model taking into account the favorable transitions
between structural words. This would result in a 1D
structural letter trajectory set compatible with the target
loop sequence. Then, the 3D reconstruction from this
set of 1D trajectories could be achieved using an energy
function as in PEPfold [68]. This approach could yield a
set of 3D structural conformation candidates for the tar-
get loop, in agreement with the flexibility of loops.
Finally, for long loop prediction, a confidence index
could be proposed for different parts of the predicted
loop. Indeed, for a given loop, prediction of some
regions could result in a limited number of word candi-
dates while for other regions, the prediction could result
in a large number of word candidates. This approach
could be a way to decrease the complexity of long-loop
prediction.

Illustrative Example of loop analysis
In Figure 5, we present an illustration of a long loop of
18 structural letters extracted from the protein structure
with pdb code 3SIL, encompassing residues 120 to 140.
Using the word extraction protocol, this loop was
decomposed into 15 words of 4 structural letters.
Among these 15 words, four words -namely UOGI,
KHBB, IFFR and RPBQ- belong to Wset≥30. These four
words are seen in both short and long loops in the data
set, as illustrated in Figure 5. Structural word KHBB is
over-represented, with an Lp value equal to 39.5. It is
characterized by a low structural variability (RMSdw =
0.4 Å) and strong amino-acid preference (Zmax = 25),
with conservation of hydrophobic amino acid at position
2 and Proline at position 3. These amino-acid conserva-
tion trends are derived from the analysis of every occur-
rence of a particular fragment.
In this particular protein, a Lysine and a Threonine

occupy positions 2 and 3 of word KHBB. This region
does not appear to be particularly conserved in the mul-
tiple alignment of homologous sequences retrieved from
a BLAST search in Swiss-Prot (data not shown). When
aligned with sequences retrieved from a BLAST search
in PDB sequences, this region exhibits three positions
with equivalent residues (see alignment in Additional
file 1). We attempted to further explore the functional
implication of this long loop. 3SIL is a sialidase from
Salmonella typhimurium. It corresponds to Swiss-Prot

entry NANH_SALTY, and is responsible for the clea-
vage of terminal sialic acid from glycoproteins. There is
no functional annotation in Swiss-Prot for the 120-140
region, but the catalytic and substrate-binding sites are
annotated. They are highlighted in pink and blue in Fig-
ure 6. Furthermore, a structure of sialidase co-crystal-
lized with an inhibitor is available in the PDB: structure
1DIL, with sequence identical to 3SIL. The inhibitor is
thus shown in red in Figure 6. It can be seen that loop
120-140 is spatially close to functional residues and inhi-
bitor molecules. This observation suggests that this loop
could be important for the substrate stabilization, but
only the observation of the enzyme co-crystallized with
a substrate could confirm this hypothesis.
This example shows that some motifs extracted from

loops seem to be involved in protein function. It is not
surprising due to the fact loops are often involved in
protein function.

Perspective of functional-motif identification
In genomic sequences, functional motifs are often char-
acterized by particular frequencies (rare or very fre-
quent). Therefore, the search for functional motifs is
successfully guided by the search for exceptional motifs
[44,45]. Inspired by this singularity, we explored the
properties of structural words in proteins to see if the
over- or under-representation of particular conforma-
tions can be linked to particular features. Contrary to
classic methods that were primarily developed for DNA
sequences, statistics are here computed by a method
that takes into account the large number and short
length of sequences of our data set [69]. We considered
the intrinsic properties of structural words and their
relationship with the statistical exceptionality status of
words, classified as over-represented, under-represented,
or not significant. The comparison of the three statisti-
cal word types showed that over-represented words have
indeed specific properties: they are highly conserved in
terms of structure or sequence and highly dependent on
loop types. By setting a RMSdw cut-off equal to 0.74 Å
and a Z-max cut-off equal to 14, we found that 89% of
over-represented words present either a low RMSd or a
high Zmax or a significant dependence to a loop type
defined by eight types according to the KLD criterion.
This ratio is only 62% for other words. This indicates
that statistical exceptionality results from a complex
process combining word frequency, sequence and/or
structure properties. The consideration of statistical
exceptionality thus enhances the signal-to-noise ratio in
protein loops. Most of the time, the relationship
between local structures and protein function is not
straightforward. Our findings open new perspectives to
the use of over-representation in order to detect func-
tional motifs in loops. It is the subject of an ongoing
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Figure 5 Recurrent words found both in long and short loops. A long loop of 18 structural letters (central figure) extracted from protein
with pdb code 3SIL contains four words (UOGI, KHBB, IFFR, RPBQ) of Wset≥30. The protein is colored in gray, and the loop in blue except
the four words UOGI in magenta, KHBB in cyan, IFFR in red and RPBQ in green. These four words are also seen in short loops in other
structures. For each word, we indicate the structural letter pattern, the loop length within brackets and the pdb code of the protein structures.
Structures are displayed with pymol [78].
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study (Regad et al, in preparation) where we suppose
that functional motifs could correspond to over-repre-
sented motifs in a protein family.

Methods
Data
We used a data set of protein structures corresponding
to chains presenting less than 50% of sequence pairwise
identity extracted from PDB of May 2008. The data set
is composed of 8186 protein chains of at least 30 resi-
dues, obtained by X-ray diffraction with a resolution
better than 2.5 Å. Proteins for with missing residues or
alternate conformations were removed.

Structure simplification using HMM-SA
Our structural alphabet, HMM-SA, is a library of 27
structural prototypes of four residues, called structural
letters, established using a hidden Markov model
[42,70]. Thanks to HMM-SA, the 3D structure of a pro-
tein backbone is simplified into a sequence of structural
letters. The simplification relies on Ca positions only:
each four-residue fragment of the protein structure is
described by four inter-Ca distances. Consecutive four-
residue fragments are overlapping on three residues
resulting in one common distance. The resulting dis-
tances are the input of a hidden Markov model, and the
3D structure is translated as a sequence of 1D structural
letters. This translation is made using the Viterbi algo-
rithm [71] and takes into account both the structural

similarity of the fragments with the 27 structural letters
of the structural alphabet and the preferred transitions
between structural letters. A protein structure of n resi-
dues is then simplified as a sequence of (n - 3) struc-
tural letters. The 27 structural letters, named [A-Z, a]
are shown in Figure 1. It has been shown previously
[51], that four structural-letters, [a, A, V, W], specifically
describe a-helices, and five structural letters, [L, M, N,
T, X], specifically describe b-strands. The remaining 18
structural letters [B, C, D, E, F, G, H, I, J, K, O, P, Q, R,
S, U, Y, Z] allow accurately describing loops. Some tran-
sitions between structural letters are not possible, which
results in a limited number of pathways between letters
and in a limited number of short patterns of structural
letters.

Extraction of structural motifs within loops
Following our previous study [40], loops are identified as
series of structural letters linking simplified regular sec-
ondary structures (a-helices and b-stands) that are
defined using regular expressions of structural letters.
This approach permits to extract a bank of 93396 sim-
plified loops ranging from 4 to 82 structural letters with
an average length of 8.5 ± 5.5 structural letters, corre-
sponding to an average length of 11.5 ± 8.6 residues. A
loop of l structural letters corresponds to (l + 3) resi-
dues. Long loops -more than 12 residues- represent 28%
of the loops in our data set. 39% of the loops are linking
two b-strands, 23% are linking a b-strand to an a-helix,
22% an a-helix to a b-strand, and 16% two a-helices.
The extraction of structural motifs in loops is illustrated
in Figure 1. Simplified loops are split into series of over-
lapping words of four structural-letters, i.e., seven resi-
dues. A loop of l structural letters is then split into (l -
3) words. As we focus on structural motifs within loops,
words beginning or ending with a structural letter speci-
fic to regular secondary structures [AaVWLMNTX] are
excluded. This results in a global set of 28274 structural
words describing all loops in the simplified structural
alphabet space. The structural words thus define a parti-
tion of the structural diversity of loops, where each
four-structural-letter word is a cluster of seven-residue
fragments.

Loop coverage by structural words
The coverage rate of loops by a word set corresponds to
the percentage of loop structural-letters covered by
these words.
For example, given two loops of 11 (l11) and 15 (l15)

structural letters and a set of recurrent 4-structural-let-
ter words (Sw). Loop l11 contains two words of Sw on
positions 1 to 4 and 8 to 11. As these two words are
not overlapping, they cover 8 structural letters. Loop l15
contains three words of Sw on positions 1 to 4, 3 to 6

Figure 6 Functional residues of sialidase 3SIL. Catalytic and
binding residues annotated in Swiss-Prot are highlighted in pink
and cyan. The inhibitor (found in structure 1DIL) is highlighted in
red. The long loop revealed by the structural word analysis is
highlighted in yellow.
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and 9 to 12. As the first two words are overlapping,
these three words cover 10 structural letters. Thus, the
coverage rate of these two loops by Sw is equal to

8 10
11 15

 = 69%.
This coverage rate is used in order to provide infor-

mation on loop description by a set of structural words.

Structural variability of words
Intra-word
The structural variability of a structural word is mea-
sured by the geometric variability of the seven-residue
fragments encoded by that word, computed using Ca

Root-Mean-Square deviation (RMSdw). It is obtained by
computing the average RMSdw between 30 randomly
selected fragments in the cluster. It is only computed
for words seen more than 30 times.
Inter-word
The structural dissimilarity between two words is simi-
larly measured by the average Ca Root-Mean-Square
deviation (RMSddev) between 30 fragment pairs ran-
domly selected within pairs of seven-residue fragments
encoded by the two words. The word-structure-space
coverage is analyzed by a Sammon’s map [72] performed
using the Ca RMSddev dissimilarity matrix

Sequential specificity of words
Although the structural-alphabet decomposition into
structural word is purely geometrical, it is still possible
to analyse the sequence-to-structure dependence a pos-
teriori. This is achieved using Z-score computation.
Intra-word
For a word w, we compute a Z-score for each of the 20
amino acids at each of the 7 positions of fragments cor-
responding to the word.
The Z-score of amino acid a, (1 ≤ a ≤ 20) at position l

(1 ≤ ℓ = 7) of a word w, is obtained by comparing the
observed frequency of amino acid a at position ℓ in
word w with its expected one:

Z
Na w Na w

Na w
a w, ,

, , ( , , )

( ( , , )
 





 (1)

To facilitate the computation of Z-scores, we approxi-
mate the distribution of amino acid a in position ℓ of
word w (corresponding to a binomial distribution ℬ
(Na ,ℓ,

Nw
N

)) by a Poisson distribution  (Na,ℓ·Nw),
Where

 ( ) ( ) ,
, , , ,N N

Na Nw
Na w a w 
 


(2)

where Nw is the frequency of w and N is the total
number of words in the whole data set.

To analyze the significance of a Z-score, the expected
frequency  (Na,ℓ, w) must be greater than 5. A positive
Z-score corresponds to an over-representation of the
amino acid, and a negative one corresponds to an
under-representation of the amino acid.
A word is thus described by a vector of 140 (7 posi-

tions × 20 amino acids) Z-scores. From these 140 Z-
scores, two criteria are used to assess the amino-acid
informativity of each word. The first criterion, denoted
Zmax, corresponds to the maximum Z-score among the
140. It measures the strongest amino-acid specificity
among the 7 positions of a word. The second criterion,
named nbpos*, 1 ≤ nbpos* ≤ 7, corresponds to the number
of positions of word w where at least one amino acid is
significant in terms of Z-scores. Significance cut-off is
set to 4 using Bonferroni correction. It should be noted
that this second criterion underestimates the sequence
informativity because of the limitation introduced by the
Z-score validity condition (only Z-scores with expected
frequency  (Na,ℓ, w) higher than 5 can be considered
for significance).
Inter-word
To check if two words have close amino-acid-sequence
preferences, the Euclidean distance between their 140 Z-
score vectors is computed [73]. The coverage of
sequence specificity of words is analyzed by a Sammon’s
map performed using this Euclidean distance [72].

Loop type specificity of words
To study the preference of structural words for particu-
lar ℓ loop types (defined by length and/or flanking
regions with ℓ, 1 ≤ ℓ ≤ Nℓ) the word distribution in dif-
ferent loop types is compared to the global distribution
of loop types using a relative entropy measure, called
the Kullback-Leibler asymmetric divergence, Kullback
distance or relative entropy, denoted KLD [52]. The
KLD quantifies the preference of a word w for the loop
types, as:

KLD w p
pw
pw

N

( ) log ,
, 




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



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 







1

(3)

where pw, ℓ, denotes the relative frequency of word w
in loop type ℓ and pℓ, the relative frequency of loop type
ℓ among all loops. The KLD is equal to 0 if is w is simi-
larly distributed in every loop type and increases with
loop type dependence. The significance of KLD value is
assessed by a chi-square test, since the quantity 2 × Nw

× KLD(w) follows a chi-square with Nw - 1 degrees of
freedom. Thus, words associated to specific loop types
have significant KLD values. A correction is introduced
using False Positive Rate (FPR) to take into account
multiple testing. A correspondence analysis is used to
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visualize the main relationships between words and loop
types.

Loop-word statistical exceptionality
The principle is to compare the actual frequency of a
word in the data set and its expected frequency under a
background reference model. A word seen significantly
more (respectively less) than expected is then classified
as over-represented (respectively under-represented).
The expected frequency is computed using a Markov
model for which the parameters are estimated from the
global set of loops. This is performed using the software
SPatt [74] available at http://stat.genopole.cnrs.fr/spatt,
with a first order Markov chain used as reference. SPatt
approach is based on the Pattern Markov Chain (PMC)
notion [75]. This software has been adapted to the case
of data sets with a large number of short sequences
[43]. The statistical significance of the exceptionality is
quantified by a p-value. To facilitate the analysis, p-
values are translated into scores using equations:

L N w N w

L
p w

p

  


log [ ( ( ) )]10   when  is seen more than expected

 log [ ( ( ) )]10  N w N ww  when  is seen less than expected
(4)

where N(w) is the expected frequency of the word w,
and Nw its observed frequency. An over-represented
word has a positive Lp value and an under-represented
word has a negative Lp value. For example, an Lp equal
to 21.3 means that the word is over-represented with a
p-value equal to 10-21.3. A Lp equal to -17.7 means that
the word is under-represented with a p-value equal to
10-17.7. The Lp threshold for statistical significance is set
to 5.94, using the Bonferroni adjustment to take into
account multiple tests. This permits to classify words as
over-represented (Lp > 5.94), under-represented (Lp <
-5.94) or not significant (-5.94 ≤ Lp ≤ 5.94).
As explained in [75], pattern significance scores tend

to increase with the considered database size. This is
due to the fact that a tail distribution event like the one
we usually consider in pattern problems (i.e. pattern
with small p-value) falls within the range of the Large
Deviations theory [76,77] which means that its probabil-
ity p to occur can be approximated by p ≃ exp(-ℓI)
where I is a real positive rate and ℓ is the database size.
As a consequence we have log p ≃ -ℓI which is exactly
the pattern score we consider (up to a constant multi-
plier). It is hence obvious that extreme pattern scores
will increase in magnitude linearly with database size. If
this is not a problem when we perform a pattern analy-
sis on a single database, this bias has obviously to be
corrected in order to compare results from two different
databases. The correction simply consists in using one
of the database as a reference and rescaling the pattern

scores obtained on the second database by the appropri-
ate ratio of sizes.

Additional file 1: Supplementary. This file is a pdf file. It contains
different information about: • Extraction of words of different lengths. •
Comparison of the loop length distribution in loops containing all words
and loops containing only words seen 30 times. • Coverage of SCOP
superfamilies by recurrent words. • Correlation between sequence
specificity (Zmax) and structure variability (RMSdw) for all words in
Wset≥30. • Exceptionality score Lp versus frequency for the 28274 words
of the data set. • Robustness of the word statistical analysis on different
data sets. • ClustalW of 3SIL sequence (P29768) and homologous
sequences from UniProt
Click here for file
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